1
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
3
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. J Biol Chem 2024; 300:107746. [PMID: 39236875 PMCID: PMC11470594 DOI: 10.1016/j.jbc.2024.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan N Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| | - Andrei T Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
4
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599628. [PMID: 38948727 PMCID: PMC11212973 DOI: 10.1101/2024.06.18.599628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N. Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Timpani CA, Debrincat D, Kourakis S, Boyer R, Formosa LE, Steele JR, Zhang H, Schittenhelm RB, Russell AP, Rybalka E, Lindsay A. Loss of endogenous estrogen alters mitochondrial metabolism and muscle clock-related protein Rbm20 in female mdx mice. FASEB J 2024; 38:e23718. [PMID: 38847487 DOI: 10.1096/fj.202400329r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 11/01/2024]
Abstract
Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Didier Debrincat
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Rebecca Boyer
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Haijian Zhang
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
6
|
Du A, Guo Z, Chen A, Xu L, Sun D, Han B. PC Gene Affects Milk Production Traits in Dairy Cattle. Genes (Basel) 2024; 15:708. [PMID: 38927644 PMCID: PMC11202589 DOI: 10.3390/genes15060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In previous work, we found that PC was differentially expressed in cows at different lactation stages. Thus, we deemed that PC may be a candidate gene affecting milk production traits in dairy cattle. In this study, we found the polymorphisms of PC by resequencing and verified their genetic associations with milk production traits by using an animal model in a cattle population. In total, we detected six single-nucleotide polymorphisms (SNPs) in PC. The single marker association analysis showed that all SNPs were significantly associated with the five milk production traits (p < 0.05). Additionally, we predicted that allele G of 29:g.44965658 in the 5' regulatory region created binding sites for TF GATA1 and verified that this allele inhibited the transcriptional activity of PC by the dual-luciferase reporter assay. In conclusion, we proved that PC had a prominent genetic effect on milk production traits, and six SNPs with prominent genetic effects could be used as markers for genomic selection (GS) in dairy cattle, which is beneficial for accelerating the improvement in milk yield and quality in Chinese Holstein cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (A.D.); (Z.G.); (A.C.); (L.X.); (D.S.)
| |
Collapse
|
7
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Teixeira da Rosa N, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction in tafazzin-deficient cells. Sci Rep 2024; 14:11497. [PMID: 38769106 PMCID: PMC11106297 DOI: 10.1038/s41598-024-62262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | | | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Sanaa Hazime
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
8
|
You H, Havey L, Li Z, Asara J, Guo R. Epstein-Barr-Virus-Driven Cardiolipin Synthesis Sustains Metabolic Remodeling During B-cell Lymphomagenesis. RESEARCH SQUARE 2024:rs.3.rs-4013392. [PMID: 38659762 PMCID: PMC11042403 DOI: 10.21203/rs.3.rs-4013392/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Epstein-Barr Virus (EBV) is associated with a range of B-cell malignancies, including Burkitt, Hodgkin, post-transplant, and AIDS-related lymphomas. Studies highlight EBV's transformative capability to induce oncometabolism in B-cells to support energy, biosynthetic precursors, and redox equivalents necessary for transition from quiescent to proliferation. Mitochondrial dysfunction presents an intrinsic barrier to EBV B-cell immortalization. Yet, how EBV maintains B-cell mitochondrial function and metabolic fluxes remains unclear. Here we show that EBV boosts cardiolipin(CL) biosynthesis, essential for mitochondrial cristae biogenesis, via EBNA2-induced CL enzyme transactivation. Pharmaceutical and CRISPR genetic analyses underscore the essentiality of CL biosynthesis in EBV-transformed B-cells. Metabolomic and isotopic tracing highlight CL's role in sustaining respiration, one-carbon metabolism, and aspartate synthesis, all vital for EBV-transformed B-cells. Targeting CL biosynthesis destabilizes mitochondrial one-carbon enzymes, causing synthetic lethality when coupled with a SHMT1/2 inhibitor. We demonstrate EBV-induced CL metabolism as a therapeutic target, offering new strategies against EBV-associated B-cell malignancies.
Collapse
Affiliation(s)
- Haixi You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Larissa Havey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston MA, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
9
|
Fuentes JM, Morcillo P. The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases. Cells 2024; 13:609. [PMID: 38607048 PMCID: PMC11012098 DOI: 10.3390/cells13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Morcillo
- Departmentof Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
11
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction and leads to increased glucose uptake in tafazzin-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578755. [PMID: 38352304 PMCID: PMC10862887 DOI: 10.1101/2024.02.03.578755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
|
12
|
Kagan VE, Tyurina YY, Mikulska-Ruminska K, Damschroder D, Vieira Neto E, Lasorsa A, Kapralov AA, Tyurin VA, Amoscato AA, Samovich SN, Souryavong AB, Dar HH, Ramim A, Liang Z, Lazcano P, Ji J, Schmidtke MW, Kiselyov K, Korkmaz A, Vladimirov GK, Artyukhova MA, Rampratap P, Cole LK, Niyatie A, Baker EK, Peterson J, Hatch GM, Atkinson J, Vockley J, Kühn B, Wessells R, van der Wel PCA, Bahar I, Bayir H, Greenberg ML. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome. Nat Metab 2023; 5:2184-2205. [PMID: 37996701 PMCID: PMC11213643 DOI: 10.1038/s42255-023-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.
Collapse
Affiliation(s)
- Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eduardo Vieira Neto
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Austin B Souryavong
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abu Ramim
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aybike Korkmaz
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Georgy K Vladimirov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margarita A Artyukhova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Ammanamanchi Niyatie
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emma-Kate Baker
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jim Peterson
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey Atkinson
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jerry Vockley
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ivet Bahar
- Laufer Center for Physical Quantitative Biology and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, New York, NY, USA
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
13
|
Joshi A, Gohil VM. Cardiolipin deficiency leads to the destabilization of mitochondrial magnesium channel MRS2 in Barth syndrome. Hum Mol Genet 2023; 32:3353-3360. [PMID: 37721533 DOI: 10.1093/hmg/ddad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Barth syndrome (BTHS) is a debilitating X-linked cardio-skeletal myopathy caused by loss-of-function mutations in TAFAZZIN, a cardiolipin (CL)-remodeling enzyme required for the maintenance of normal levels of CL species in mitochondrial membranes. At present, how perturbations in CL abundance and composition lead to many debilitating clinical presentations in BTHS patients have not been fully elucidated. Inspired by our recent findings that CL is essential for optimal mitochondrial calcium uptake, we measured the levels of other biologically important metal ions in BTHS mitochondria and found that in addition to calcium, magnesium levels are significantly reduced. Consistent with this observation, we report a decreased abundance of the mitochondrial magnesium influx channel MRS2 in multiple models of BTHS including yeast, murine myoblast, and BTHS patient cells and cardiac tissue. Mechanistically, we attribute reduced steady-state levels of MRS2 to its increased turnover in CL-deficient BTHS models. By expressing Mrs2 in well-characterized yeast mutants of the phospholipid biosynthetic pathways, we demonstrate a specific requirement of CL for Mrs2 abundance and assembly. Finally, we provide in vitro evidence for the direct binding of CL with human MRS2. Together, our study has identified a critical requirement of CL for MRS2 stability and suggests perturbation of mitochondrial magnesium homeostasis as a novel contributing factor to BTHS pathology.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, TAMU 3474, College Station, TX 77843, United States
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, TAMU 3474, College Station, TX 77843, United States
| |
Collapse
|
14
|
Kutschka I, Bertero E, Wasmus C, Xiao K, Yang L, Chen X, Oshima Y, Fischer M, Erk M, Arslan B, Alhasan L, Grosser D, Ermer KJ, Nickel A, Kohlhaas M, Eberl H, Rebs S, Streckfuss-Bömeke K, Schmitz W, Rehling P, Thum T, Higuchi T, Rabinowitz J, Maack C, Dudek J. Activation of the integrated stress response rewires cardiac metabolism in Barth syndrome. Basic Res Cardiol 2023; 118:47. [PMID: 37930434 PMCID: PMC10628049 DOI: 10.1007/s00395-023-01017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.
Collapse
Affiliation(s)
- Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- Department of Internal Medicine, University of Genova, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| | - Christina Wasmus
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Xinyu Chen
- Department of Nuclear Medicine, University Clinic Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Yasuhiro Oshima
- Department of Nuclear Medicine, University Clinic Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Marcus Fischer
- Division of Pediatric Cardiology and Intensive Care, University Hospital LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Manuela Erk
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Berkan Arslan
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Lin Alhasan
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Daria Grosser
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Katharina J Ermer
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Hanna Eberl
- Department for Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Sabine Rebs
- Department for Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Katrin Streckfuss-Bömeke
- Department for Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Peter Rehling
- University Göttingen, Institute of Biochemistry and Molecular Cell Biology, Humboldtallee 23, 37072, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
- Rebirth Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Clinic Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Joshua Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
15
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Vo L, Schmidtke MW, Da Rosa-Junior NT, Ren M, Schlame M, Greenberg ML. Cardiolipin metabolism regulates expression of muscle transcription factor MyoD1 and muscle development. J Biol Chem 2023; 299:102978. [PMID: 36739949 PMCID: PMC9999232 DOI: 10.1016/j.jbc.2023.102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.
Collapse
Affiliation(s)
- Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
17
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
18
|
Artiukhov AV, Aleshin VA, Karlina IS, Kazantsev AV, Sibiryakina DA, Ksenofontov AL, Lukashev NV, Graf AV, Bunik VI. Phosphonate Inhibitors of Pyruvate Dehydrogenase Perturb Homeostasis of Amino Acids and Protein Succinylation in the Brain. Int J Mol Sci 2022; 23:13186. [PMID: 36361974 PMCID: PMC9655319 DOI: 10.3390/ijms232113186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
Mitochondrial pyruvate dehydrogenase complex (PDHC) is essential for brain glucose and neurotransmitter metabolism, which is dysregulated in many pathologies. Using specific inhibitors of PDHC in vivo, we determine biochemical and physiological responses to PDHC dysfunction. Dose dependence of the responses to membrane-permeable dimethyl acetylphosphonate (AcPMe2) is non-monotonous. Primary decreases in glutathione and its redox potential, methionine, and ethanolamine are alleviated with increasing PDHC inhibition, the alleviation accompanied by physiological changes. A comparison of 39 brain biochemical parameters after administration of four phosphinate and phosphonate analogs of pyruvate at a fixed dose of 0.1 mmol/kg reveals no primary, but secondary changes, such as activation of 2-oxoglutarate dehydrogenase complex (OGDHC) and decreased levels of glutamate, isoleucine and leucine. The accompanying decreases in freezing time are most pronounced after administration of methyl acetylphosphinate and dimethyl acetylphosphonate. The PDHC inhibitors do not significantly change the levels of PDHA1 expression and phosphorylation, sirtuin 3 and total protein acetylation, but increase total protein succinylation and glutarylation, affecting sirtuin 5 expression. Thus, decreased production of the tricarboxylic acid cycle substrate acetyl-CoA by inhibited PDHC is compensated by increased degradation of amino acids through the activated OGDHC, increasing total protein succinylation/glutarylation. Simultaneously, parasympathetic activity and anxiety indicators decrease.
Collapse
Affiliation(s)
- Artem V. Artiukhov
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 105043 Moscow, Russia
| | - Vasily A. Aleshin
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 105043 Moscow, Russia
| | - Irina S. Karlina
- Department of Clinical Medicine, Sechenov University, 105043 Moscow, Russia
| | - Alexey V. Kazantsev
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander L. Ksenofontov
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolay V. Lukashev
- Faculty of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia V. Graf
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria I. Bunik
- Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 105043 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
19
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
20
|
Greenwell AA, Tabatabaei Dakhili SA, Ussher JR. Myocardial disturbances of intermediary metabolism in Barth syndrome. Front Cardiovasc Med 2022; 9:981972. [PMID: 36035919 PMCID: PMC9399503 DOI: 10.3389/fcvm.2022.981972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked mitochondrial disorder due to mutations in the gene TAFAZZIN, which leads to immature cardiolipin (CL) remodeling and is characterized by the development of cardiomyopathy. The immature CL remodeling in BTHS results in electron transport chain respiratory defects and destabilization of supercomplexes, thereby impairing ATP production. Thus, BTHS-related cardiomyopathy appears to share metabolic characteristics of the failing heart being an "engine out of fuel." As CL associates with numerous mitochondrial enzymes involved in ATP production, BTHS is also characterized by several defects in intermediary energy metabolism. Herein we will describe the primary disturbances in intermediary energy metabolism relating to the heart's major fuel sources, fatty acids, carbohydrates, ketones, and amino acids. In addition, we will interrogate whether these disturbances represent potential metabolic targets for alleviating BTHS-related cardiomyopathy.
Collapse
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Ji J, Damschroder D, Bessert D, Lazcano P, Wessells R, Reynolds CA, Greenberg ML. NAD supplementation improves mitochondrial performance of cardiolipin mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159094. [PMID: 35051613 PMCID: PMC8883178 DOI: 10.1016/j.bbalip.2021.159094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Cardiolipin (CL) deficiency causes mitochondrial dysfunction and aberrant metabolism that are associated in humans with the severe disease Barth syndrome (BTHS). Several metabolic abnormalities are observed in BTHS patients and model systems, including decreased oxidative phosphorylation, reduced tricarboxylic acid (TCA) cycle flux, and accumulated lactate and D-β-hydroxybutyrate, which strongly suggests that nicotinamide adenine dinucleotide (NAD) redox metabolism may be altered in CL-deficient cells. In this study, we identified abnormal NAD+ metabolism in multiple BTHS model systems and demonstrate that supplementation of NAD+ precursors such as nicotinamide mononucleotide (NMN) improves mitochondrial function. Improved mitochondrial function in the Drosophila model was associated with restored exercise endurance, which suggests a potential therapeutic benefit of NAD+ precursor supplementation in the management of BTHS patients.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America
| | - Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Denise Bessert
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Pablo Lazcano
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Christian A Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America.
| | - Miriam L Greenberg
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
22
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Ji J, Greenberg ML. Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome. J Inherit Metab Dis 2022; 45:60-71. [PMID: 34626131 PMCID: PMC8755574 DOI: 10.1002/jimd.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Cardiolipin (CL) is the signature phospholipid (PL) of mitochondria and plays a pivotal role in mitochondrial and cellular function. Disruption of the CL remodeling gene tafazzin (TAZ) causes the severe genetic disorder Barth syndrome (BTHS). Our current understanding of the function of CL and the mechanism underlying the disease has greatly benefited from studies utilizing the powerful yeast model Saccharomyces cerevisiae. In this review, we discuss important findings on the function of CL and its remodeling from yeast studies and the implications of these findings for BTHS, highlighting the potential physiological modifiers that may contribute to the disparities in clinical presentation among BTHS patients.
Collapse
Affiliation(s)
- Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
25
|
Ghosh S, Zulkifli M, Joshi A, Venkatesan M, Cristel A, Vishnu N, Madesh M, Gohil VM. MCU-complex-mediated mitochondrial calcium signaling is impaired in Barth syndrome. Hum Mol Genet 2021; 31:376-385. [PMID: 34494107 DOI: 10.1093/hmg/ddab254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/02/2023] Open
Abstract
Calcium signaling via mitochondrial calcium uniporter (MCU) complex coordinates mitochondrial bioenergetics with cellular energy demands. Emerging studies show that the stability and activity of the pore-forming subunit of the complex, MCU, is dependent on the mitochondrial phospholipid, cardiolipin (CL), but how this impacts calcium-dependent mitochondrial bioenergetics in CL-deficiency disorder like Barth syndrome (BTHS) is not known. Here we utilized multiple models of BTHS including yeast, mouse muscle cell line, as well as BTHS patient cells and cardiac tissue to show that CL is required for the abundance and stability of the MCU-complex regulatory subunit MICU1. Interestingly, the reduction in MICU1 abundance in BTHS mitochondria is independent of MCU. Unlike MCU and MICU1/MICU2, other subunit and associated factor of the uniporter complex, EMRE and MCUR1, respectively, are not affected in BTHS models. Consistent with the decrease in MICU1 levels, we show that the kinetics of MICU1-dependent mitochondrial calcium uptake is perturbed and acute stimulation of mitochondrial calcium signaling in BTHS myoblasts fails to activate pyruvate dehydrogenase, which in turn impairs the generation of reducing equivalents and blunts mitochondrial bioenergetics. Taken together, our findings suggest that defects in mitochondrial calcium signaling could contribute to cardiac and skeletal muscle pathologies observed in BTHS patients.
Collapse
Affiliation(s)
- Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Manigandan Venkatesan
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Allen Cristel
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neelanjan Vishnu
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
26
|
Greenwell AA, Gopal K, Altamimi TR, Saed CT, Wang F, Tabatabaei Dakhili SA, Ho KL, Zhang L, Eaton F, Kruger J, Al Batran R, Lopaschuk GD, Oudit GY, Ussher JR. Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. Am J Physiol Heart Circ Physiol 2021; 320:H2255-H2269. [PMID: 33929899 DOI: 10.1152/ajpheart.00873.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure presents as the leading cause of infant mortality in individuals with Barth syndrome (BTHS), a rare genetic disorder due to mutations in the tafazzin (TAZ) gene affecting mitochondrial structure and function. Investigations into the perturbed bioenergetics in the BTHS heart remain limited. Hence, our objective was to identify the potential alterations in myocardial energy metabolism and molecular underpinnings that may contribute to the early cardiomyopathy and heart failure development in BTHS. Cardiac function and myocardial energy metabolism were assessed via ultrasound echocardiography and isolated working heart perfusions, respectively, in a mouse model of BTHS [doxycycline-inducible Taz knockdown (TazKD) mice]. In addition, we also performed mRNA/protein expression profiling for key regulators of energy metabolism in hearts from TazKD mice and their wild-type (WT) littermates. TazKD mice developed hypertrophic cardiomyopathy as evidenced by increased left ventricular anterior and posterior wall thickness, as well as increased cardiac myocyte cross-sectional area, though no functional impairments were observed. Glucose oxidation rates were markedly reduced in isolated working hearts from TazKD mice compared with their WT littermates in the presence of insulin, which was associated with decreased pyruvate dehydrogenase activity. Conversely, myocardial fatty acid oxidation rates were elevated in TazKD mice, whereas no differences in glycolytic flux or ketone body oxidation rates were observed. Our findings demonstrate that myocardial glucose oxidation is impaired before the development of overt cardiac dysfunction in TazKD mice, and may thus represent a pharmacological target for mitigating the development of cardiomyopathy in BTHS.NEW & NOTEWORTHY Barth syndrome (BTHS) is a rare genetic disorder due to mutations in tafazzin that is frequently associated with infantile-onset cardiomyopathy and subsequent heart failure. Although previous studies have provided evidence of perturbed myocardial energy metabolism in BTHS, actual measurements of flux are lacking. We now report a complete energy metabolism profile that quantifies flux in isolated working hearts from a murine model of BTHS, demonstrating that BTHS is associated with a reduction in glucose oxidation.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Tariq R Altamimi
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Faqi Wang
- Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Divsion of Cardiology, Department of Medicine, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Kim L Ho
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Liyan Zhang
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Jennifer Kruger
- Health Sciences Laboratory Animal Services, University of Alberta, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Divsion of Cardiology, Department of Medicine, University of Alberta, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Alberta, Canada
| |
Collapse
|
27
|
Song X, Liu J, Kuang F, Chen X, Zeh HJ, Kang R, Kroemer G, Xie Y, Tang D. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 2021; 34:108767. [PMID: 33626342 DOI: 10.1016/j.celrep.2021.108767] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc-. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc- inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Diet, High-Fat
- Drug Resistance, Neoplasm
- Energy Metabolism
- Fatty Acids/biosynthesis
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidation-Reduction
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Pyruvic Acid/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Feimei Kuang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangdong, China
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Hunan, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Xiao Y, Yang C, Xu H, Wu Q, Zhou Y, Zhou X, Miao J. Procyanidin B2 prevents dyslipidemia via modulation of gut microbiome and related metabolites in high-fat diet fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
31
|
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int J Mol Sci 2020; 21:E8031. [PMID: 33126604 PMCID: PMC7662448 DOI: 10.3390/ijms21218031] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Dumas
- Université de Tours, Inserm, Nutrition, Croissance et Cancer UMR1069, 37032 Tours, France; (S.T.A.); (K.M.); (S.S.); (L.B.)
| |
Collapse
|
32
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Le CH, Benage LG, Specht KS, Li Puma LC, Mulligan CM, Heuberger AL, Prenni JE, Claypool SM, Chatfield KC, Sparagna GC, Chicco AJ. Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. J Biol Chem 2020; 295:12485-12497. [PMID: 32665401 DOI: 10.1074/jbc.ra119.011229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin (TAZ) gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized Taz-shRNA knockdown (TazKD ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial H2O2 emission and oxidative damage were greater in TazKD than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in TazKD mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in TazKD mitochondrial metabolism. Incubation of TazKD mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.
Collapse
Affiliation(s)
- Catherine H Le
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA
| | - Lindsay G Benage
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Mulligan
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam J Chicco
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA .,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
34
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
35
|
Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019; 9:E306. [PMID: 31861102 PMCID: PMC6950123 DOI: 10.3390/metabo9120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart disease is the major clinical manifestation of BTHS with a high incidence in early life. Although the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to replenish the Krebs cycle.
Collapse
Affiliation(s)
- Erica M. Fatica
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Gina A. DeLeonibus
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Alisha House
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Jillian V. Kodger
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Ryan W. Pearce
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Rohan R. Shah
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Liraz Levi
- Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| |
Collapse
|
36
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|