1
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
2
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
3
|
Magni R, Almofee R, Yusuf S, Mueller C, Vuong N, Almosuli M, Hoang MT, Meade K, Sethi I, Mohammed N, Araujo R, McDonald TK, Marcelli P, Espina V, Kim B, Garritsen A, Green C, Russo P, Zhou W, Vaisman I, Petricoin EF, Hoadley D, Molestina RE, McIntyre H, Liotta LA, Luchini A. Evaluation of pathogen specific urinary peptides in tick-borne illnesses. Sci Rep 2020; 10:19340. [PMID: 33168903 PMCID: PMC7653918 DOI: 10.1038/s41598-020-75051-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry enhanced by nanotechnology can achieve previously unattainable sensitivity for characterizing urinary pathogen-derived peptides. We utilized mass spectrometry enhanced by affinity hydrogel particles (analytical sensitivity = 2.5 pg/mL) to study tick pathogen-specific proteins shed in the urine of patients with (1) erythema migrans rash and acute symptoms, (2) post treatment Lyme disease syndrome (PTLDS), and (3) clinical suspicion of tick-borne illnesses (TBI). Targeted pathogens were Borrelia, Babesia, Anaplasma, Rickettsia, Ehrlichia, Bartonella, Francisella, Powassan virus, tick-borne encephalitis virus, and Colorado tick fever virus. Specificity was defined by 100% amino acid sequence identity with tick-borne pathogen proteins, evolutionary taxonomic verification for related pathogens, and no identity with human or other organisms. Using a cut off of two pathogen peptides, 9/10 acute Lyme Borreliosis patients resulted positive, while we identified zero false positive in 250 controls. Two or more pathogen peptides were identified in 40% of samples from PTLDS and TBI patients (categories 2 and 3 above, n = 59/148). Collectively, 279 distinct unique tick-borne pathogen derived peptides were identified. The number of pathogen specific peptides was directly correlated with presence or absence of symptoms reported by patients (ordinal regression pseudo-R2 = 0.392, p = 0.010). Enhanced mass spectrometry is a new tool for studying tick-borne pathogen infections.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Raghad Almofee
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Sameen Yusuf
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Ngoc Vuong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mahmood Almosuli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Minh Thu Hoang
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Katherine Meade
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Ish Sethi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Nuha Mohammed
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Robyn Araujo
- Queensland University of Technology, Brisbane, Australia
| | - Teresa Kaza McDonald
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Paul Marcelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Iosif Vaisman
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Deborah Hoadley
- New England Institute for Lyme Disease and Tick-Borne Illness, Longmeadow, USA
| | | | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
4
|
Coman C, Ahrends R. Targeted Omics: Finding the Needle. Proteomics 2020; 20:e1900024. [PMID: 32491238 DOI: 10.1002/pmic.201900024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Cristina Coman
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Wien, 1090, Austria
| | - Robert Ahrends
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Wien, 1090, Austria
| |
Collapse
|
5
|
Zhang P, Gaffrey MJ, Zhu Y, Chrisler WB, Fillmore TL, Yi L, Nicora CD, Zhang T, Wu H, Jacobs J, Tang K, Kagan J, Srivastava S, Rodland KD, Qian WJ, Smith RD, Liu T, Wiley HS, Shi T. Carrier-Assisted Single-Tube Processing Approach for Targeted Proteomics Analysis of Low Numbers of Mammalian Cells. Anal Chem 2019; 91:1441-1451. [PMID: 30557009 PMCID: PMC6555634 DOI: 10.1021/acs.analchem.8b04258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heterogeneity in composition is inherent in all cell populations, even those containing a single cell type. Single-cell proteomics characterization of cell heterogeneity is currently achieved by antibody-based technologies, which are limited by the availability of high-quality antibodies. Herein we report a simple, easily implemented, mass spectrometry (MS)-based targeted proteomics approach, termed cLC-SRM (carrier-assisted liquid chromatography coupled to selected reaction monitoring), for reliable multiplexed quantification of proteins in low numbers of mammalian cells. We combine a new single-tube digestion protocol to process low numbers of cells with minimal loss together with sensitive LC-SRM for protein quantification. This single-tube protocol builds upon trifluoroethanol digestion and further minimizes sample losses by tube pretreatment and the addition of carrier proteins. We also optimized the denaturing temperature and trypsin concentration to significantly improve digestion efficiency. cLC-SRM was demonstrated to have sufficient sensitivity for reproducible detection of most epidermal growth factor receptor (EGFR) pathway proteins expressed at levels ≥30 000 and ≥3000 copies per cell for 10 and 100 mammalian cells, respectively. Thus, cLC-SRM enables reliable quantification of low to moderately abundant proteins in less than 100 cells and could be broadly useful for multiplexed quantification of important proteins in small subpopulations of cells or in size-limited clinical samples. Further improvements of this method could eventually enable targeted single-cell proteomics when combined with either SRM or other emerging ultrasensitive MS detection.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Huanming Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jon Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Research Progress and Application of Ion Funnel Technique. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(18)61133-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Commun Biol 2018; 1:103. [PMID: 30271983 PMCID: PMC6123794 DOI: 10.1038/s42003-018-0107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
There is an unmet technical challenge for mass spectrometry (MS)-based proteomic analysis of single mammalian cells. Quantitative proteomic analysis of single cells has been previously achieved by antibody-based immunoassays but is limited by the availability of high-quality antibodies. Herein we report a facile targeted MS-based proteomics method, termed cPRISM-SRM (carrier-assisted high-pressure, high-resolution separations with intelligent selection and multiplexing coupled to selected reaction monitoring), for reliable analysis of low numbers of mammalian cells. The method capitalizes on using “carrier protein” to assist processing of low numbers of cells with minimal loss, high-resolution PRISM separation for target peptide enrichment, and sensitive SRM for protein quantification. We have demonstrated that cPRISM-SRM has sufficient sensitivity to quantify proteins expressed at ≥200,000 copies per cell at the single-cell level and ≥3000 copies per cell in 100 mammalian cells. We envision that with further improvement cPRISM-SRM has the potential to move toward targeted MS-based single-cell proteomics. Tujin Shi et al. report a mass spectrometry-based proteomics approach, cPRISM-SRM, that allows for accurate quantification of proteins in small numbers of mammalian cells through the use of a carrier protein to prevent sample loss. The sensitivity of cPRISM-SRM allows for measurement of the 2500 most abundant proteins in a human cell.
Collapse
|
8
|
Garimella SVB, Ibrahim YM, Webb IK, Ipsen AB, Chen TC, Tolmachev AV, Baker ES, Anderson GA, Smith RD. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch. Analyst 2016; 140:6845-52. [PMID: 26289106 DOI: 10.1039/c5an00844a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of redirecting ions through 90° turns and 'tee' switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ∼10 V. The ion plume width in these conditions is ∼1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Steffen P, Kwiatkowski M, Robertson WD, Zarrine-Afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. J Proteomics 2016; 134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
10
|
Nicolardi S, Bogdanov B, Deelder AM, Palmblad M, van der Burgt YEM. Developments in FTICR-MS and Its Potential for Body Fluid Signatures. Int J Mol Sci 2015; 16:27133-44. [PMID: 26580595 PMCID: PMC4661870 DOI: 10.3390/ijms161126012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023] Open
Abstract
Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma. These biological samples are highly complex in terms of the type and number of components, their concentration range, and the structural identity of each species, and thus require extensive sample cleanup and chromatographic separation procedures. Clearly, such an elaborate and multi-step sample preparation process hampers high-throughput analysis of large clinical cohorts. A final MS read-out at ultra-high resolution enables the analysis of a more complex sample and can thus simplify upfront fractionations. To this end, FTICR-MS offers superior ultra-high resolving power with accurate and precise mass-to-charge ratio (m/z) measurement of a high number of peptides and small proteins (up to 20 kDa) at isotopic resolution over a wide mass range, and furthermore includes a wide variety of fragmentation strategies to characterize protein sequence and structure, including post-translational modifications (PTMs). In our laboratory, we have successfully applied FTICR “next-generation” peptide profiles with the purpose of cancer disease classifications. Here we will review a number of developments and innovations in FTICR-MS that have resulted in robust and routine procedures aiming for ultra-high resolution signatures of clinical samples, exemplified with state-of-the-art examples for serum and saliva.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Bogdan Bogdanov
- Perkin Elmer, San Jose Technology Center, San Jose, CA 95134, USA.
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
11
|
Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van Eyk J, Srinivas PR. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation 2015. [PMID: 26195497 DOI: 10.1161/cir.0000000000000226] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings.
Collapse
|
12
|
Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol 2014; 5:512. [PMID: 25309531 PMCID: PMC4176082 DOI: 10.3389/fmicb.2014.00512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of RajasthanAjmer, India
| | | |
Collapse
|
13
|
Mesri M. Advances in Proteomic Technologies and Its Contribution to the Field of Cancer. Adv Med 2014; 2014:238045. [PMID: 26556407 PMCID: PMC4590950 DOI: 10.1155/2014/238045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
Systematic studies of the cancer genome have generated a wealth of knowledge in recent years. These studies have uncovered a number of new cancer genes not previously known to be causal targets in cancer. Genetic markers can be used to determine predisposition to tumor development, but molecularly targeted treatment strategies are not widely available for most cancers. Precision care plans still must be developed by understanding and implementing basic science research into clinical treatment. Proteomics is continuing to make major strides in the discovery of fundamental biological processes as well as more recent transition into an assay platform capable of measuring hundreds of proteins in any biological system. As such, proteomics can translate basic science discoveries into the clinical practice of precision medicine. The proteomic field has progressed at a fast rate over the past five years in technology, breadth and depth of applications in all areas of the bioscience. Some of the previously experimental technical approaches are considered the gold standard today, and the community is now trying to come to terms with the volume and complexity of the data generated. Here I describe contribution of proteomics in general and biological mass spectrometry in particular to cancer research, as well as related major technical and conceptual developments in the field.
Collapse
Affiliation(s)
- Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Percy AJ, Simon R, Chambers AG, Borchers CH. Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics 2014; 106:113-24. [PMID: 24769237 DOI: 10.1016/j.jprot.2014.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Mass spectrometry (MS)-based protein quantitation is increasingly being employed to verify candidate protein biomarkers. Multiple or selected reaction monitoring-mass spectrometry (MRM-MS or SRM-MS) with isotopically labeled internal standards has proven to be a successful approach in that regard, but has yet to reach its full potential in terms of multiplexing and sensitivity. Here, we report the development of a new MRM method for the quantitation of 253 disease-associated proteins (represented by 625 interference-free peptides) in 13 LC fractions. This 2D RPLC/MRM-MS approach extends the depth and breadth of the assay by 2 orders of magnitude over pre-fractionation-free assays, with 31 proteins below 10 ng/mL and 41 proteins above 10 ng/mL now quantifiable. Standard flow rates are used in both chromatographic dimensions, and up-front depletion or antibody-based enrichment is not required. The LC separations utilize high and low pH conditions, with the former employing an ammonium hydroxide-based eluent, instead of the conventional ammonium formate, resulting in improved LC column lifetime and performance. The high sensitivity (determined concentration range: 15 mg/mL to 452 pg/mL) and robustness afforded by this method makes the full MRM panel, or subsets thereof, useful for the verification of disease-associated plasma protein biomarkers in patient samples. BIOLOGICAL SIGNIFICANCE The described research extends the breadth and depth of protein quantitation in undepleted and non-enriched human plasma by employing standard-flow 2D RPLC/MRM-MS in conjunction with a complex mixture of isotopically labeled peptide standards. The proteins quantified are mainly putative biomarkers of non-communicable (i.e., non-infectious) disease (e.g., cardiovascular or cancer), which require pre-clinical verification and validation before clinical implementation. Based on the enhanced sensitivity and multiplexing, this quantitative plasma proteomic method should prove useful in future candidate biomarker verification studies.
Collapse
Affiliation(s)
- Andrew J Percy
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Romain Simon
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Andrew G Chambers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
15
|
Bennett DA, Yu L, De Jager PL. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer's disease. Biochem Pharmacol 2014; 88:617-30. [PMID: 24508835 PMCID: PMC4054869 DOI: 10.1016/j.bcp.2014.01.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/18/2014] [Accepted: 01/24/2014] [Indexed: 01/11/2023]
Abstract
Cognitive decline, Alzheimer's disease (AD) and other causes are major public health problems worldwide. With changing demographics, the number of persons with dementia will increase rapidly. The treatment and prevention of AD and other dementias, therefore, is an urgent unmet need. There have been considerable advances in understanding the biology of many age-related disorders that cause dementia. Gains in understanding AD have led to the development of ante-mortem biomarkers of traditional neuropathology and the conduct of several phase III interventions in the amyloid-β cascade early in the disease process. Many other intervention strategies are in various stages of development. However, efforts to date have met with limited success. A recent National Institute on Aging Research Summit led to a number of requests for applications. One was to establish multi-disciplinary teams of investigators who use systems biology approaches and stem cell technology to identify a new generation of AD targets. We were recently awarded one of three such grants to build a pipeline that integrates epidemiology, systems biology, and stem cell technology to discover and validate novel therapeutic targets and lead compounds for AD treatment and prevention. Here we describe the two cohorts that provide the data and biospecimens being exploited for our pipeline and describe the available unique datasets. Second, we present evidence in support of a chronic disease model of AD that informs our choice of phenotypes as the target outcome. Third, we provide an overview of our approach. Finally, we present the details of our planned drug discovery pipeline.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States.
| |
Collapse
|
16
|
Chen C, Liu X, Zheng W, Zhang L, Yao J, Yang P. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics. J Proteome Res 2014; 13:1969-78. [PMID: 24597967 DOI: 10.1021/pr4010986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemistry, Fudan University , Shanghai 200032, P. R. China
| | | | | | | | | | | |
Collapse
|
17
|
Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis 2013; 5:2837-56. [DOI: 10.4155/bio.13.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitative plasma proteomics, through the use of targeted MRM-MS and isotopically labeled standards, is emerging as a popular technique to address biological- and biomedical-centered queries. High precision and accuracy are essential in such measurements, particularly in protein biomarker research where translation to the clinic is sought. Standardized procedures and routine performance evaluation of all stages of the workflow (both pre-analytical and analytical) are therefore imperative to satisfy these requisites and enable high inter-laboratory reproducibility and transferability. In this review, we first discuss the pre-analytical and analytical variables that can affect the precision and accuracy of ‘absolute’ quantitative plasma proteomic measurements. Proposed strategies to limit such variability will then be highlighted and unmet needs for future exploration will be noted. Although there is no way to conduct a truly comprehensive review on this broad, rapidly changing topic, we have highlighted key aspects and included references to review articles on various sub-topics.
Collapse
|
18
|
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci 2013; 14:20658-81. [PMID: 24132152 PMCID: PMC3821636 DOI: 10.3390/ijms141020658] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.
Collapse
Affiliation(s)
- Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-151-795-6006; Fax: +44-151-795-6101
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; E-Mail:
| | - Peter D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK; E-Mail:
| |
Collapse
|
19
|
Shi T, Fillmore TL, Gao Y, Zhao R, He J, Schepmoes AA, Nicora CD, Wu C, Chambers JL, Moore RJ, Kagan J, Srivastava S, Liu AY, Rodland KD, Liu T, Camp DG, Smith RD, Qian WJ. Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis. Anal Chem 2013; 85:9196-203. [PMID: 24004026 DOI: 10.1021/ac402105s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (~3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nagore LI, Nadeau RJ, Guo Q, Jadhav YLA, Jarrett HW, Haskins WE. Purification and characterization of transcription factors. MASS SPECTROMETRY REVIEWS 2013; 32:386-398. [PMID: 23832591 PMCID: PMC3758410 DOI: 10.1002/mas.21369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements (REs) on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular REs has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome.
Collapse
Affiliation(s)
- LI Nagore
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
| | - RJ Nadeau
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Q Guo
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - YLA Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - HW Jarrett
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
| | - WE Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Departments of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
- Departments of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| |
Collapse
|
21
|
Shi T, Sun X, Gao Y, Fillmore TL, Schepmoes AA, Zhao R, He J, Moore RJ, Kagan J, Rodland KD, Liu T, Liu AY, Smith RD, Tang K, Camp DG, Qian WJ. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion. J Proteome Res 2013; 12:3353-61. [PMID: 23763644 DOI: 10.1021/pr400178v] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM), for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50-100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion. Limits of quantification (LOQ) at low ng/mL levels with a median coefficient of variation (CV) of ∼12% were achieved for proteins spiked into human female serum. PRISM-SRM provided >100-fold improvement in the LOQ when compared to conventional LC-SRM measurements. PRISM-SRM was then applied to measure several low-abundance endogenous serum proteins, including prostate-specific antigen (PSA), in clinical prostate cancer patient sera. PRISM-SRM enabled confident detection of all target endogenous serum proteins except the low pg/mL-level cardiac troponin T. A correlation coefficient >0.99 was observed for PSA between the results from PRISM-SRM and immunoassays. Our results demonstrate that PRISM-SRM can successfully quantify low ng/mL proteins in human plasma or serum without depletion. We anticipate broad applications for PRISM-SRM quantification of low-abundance proteins in candidate biomarker verification and systems biology studies.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 929:161-79. [DOI: 10.1016/j.jchromb.2013.04.030] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/15/2013] [Accepted: 04/20/2013] [Indexed: 12/18/2022]
|
23
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1007] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Piehowski PD, Petyuk VA, Orton DJ, Xie F, Moore RJ, Ramirez-Restrepo M, Engel A, Lieberman AP, Albin RL, Camp DG, Smith RD, Myers AJ. Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J Proteome Res 2013; 12:2128-37. [PMID: 23495885 DOI: 10.1021/pr301146m] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE cleanup (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its suitability for discovery proteomics studies is demonstrated.
Collapse
Affiliation(s)
- Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Enjalbert Q, Girod M, Simon R, Jeudy J, Chirot F, Salvador A, Antoine R, Dugourd P, Lemoine J. Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM. Anal Bioanal Chem 2013; 405:2321-31. [PMID: 23325399 DOI: 10.1007/s00216-012-6603-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/16/2012] [Accepted: 11/23/2012] [Indexed: 01/05/2023]
Abstract
Targeted mass spectrometry using selected reaction monitoring (SRM) has emerged as an alternative to immunoassays for protein quantification owing to faster development time and higher multiplexing capability. However, the SRM strategy is faced with the high complexity of peptide mixtures after trypsin digestion of whole plasma or the cellular proteome that most of the time causes contamination, irremediably, by interfering compounds in the transition channels monitored. This problem becomes increasingly acute when the targeted protein is present at a low concentration. In this work, the merit of laser-induced photo-dissociation in the visible region at 473 nm implemented in an hybrid quadrupole linear ion-trap mass spectrometer (photo-SRM) was evaluated for detection specificity of cysteine-containing peptides in a group of plasma proteins after tagging with a dabcyl chromophore. Compared with conventional SRM, photo-SRM chromatograms have improved detection specificity for most of peptides monitored. Comparison of the signals obtained for the best proteotypic peptides in SRM mode and those recorded by photo-SRM of cysteine-containing peptides for the same proteins reveals either increased (up to 10-fold) or similar signal to photo-SRM detection. Finally, photo-SRM has extended response linearity across a calibration plot obtained by diluting human plasma in rat plasma, down to the lowest concentrations. Hence, photo-SRM may advantageously complement conventional SRM in assay of proteins in complex biological matrices.
Collapse
Affiliation(s)
- Quentin Enjalbert
- Université Lyon, 43 Boulevard du 11 Novembre 1918, 69622 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Protein target quantification decision tree. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:701247. [PMID: 23401774 PMCID: PMC3562589 DOI: 10.1155/2013/701247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
The utility of mass spectrometry-(MS-) based proteomic platforms and their clinical applications have become an emerging field in proteomics in recent years. Owing to its selectivity and sensitivity, MS has become a key technological platform in proteomic research. Using this platform, a large number of potential biomarker candidates for specific diseases have been reported. However, due to lack of validation, none has been approved for use in clinical settings by the Food and Drug Administration (FDA). Successful candidate verification and validation will facilitate the development of potential biomarkers, leading to better strategies for disease diagnostics, prognostics, and treatment. With the recent new developments in mass spectrometers, high sensitivity, high resolution, and high mass accuracy can be achieved. This greatly enhances the capabilities of protein biomarker validation. In this paper, we describe and discuss recent developments and applications of targeted proteomics methods for biomarker validation.
Collapse
|
27
|
Rivera-Burgos D, Regnier FE. Disparities between immobilized enzyme and solution based digestion of transferrin with trypsin. J Sep Sci 2012; 36:454-60. [PMID: 23281316 DOI: 10.1002/jssc.201200740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
| | - Fred E. Regnier
- Department of Chemistry; Purdue University; West Lafayette IN USA
| |
Collapse
|
28
|
Savino R, Paduano S, Preianò M, Terracciano R. The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 2012. [PMID: 23203042 PMCID: PMC3509558 DOI: 10.3390/ijms131113926] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets.
Collapse
Affiliation(s)
- Rocco Savino
- Department of Health Sciences, Laboratory of Mass Spectrometry and Proteomics, University "Magna Græcia", Catanzaro, University Campus, Europa Avenue, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
29
|
Simon R, Enjalbert Q, Biarc J, Lemoine J, Salvador A. Evaluation of hydrophilic interaction chromatography (HILIC) versus C₁₈ reversed-phase chromatography for targeted quantification of peptides by mass spectrometry. J Chromatogr A 2012; 1264:31-9. [PMID: 23073287 DOI: 10.1016/j.chroma.2012.09.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Hydrophilic-interaction liquid chromatography (HILIC) is a widely used technique for small polar molecule analysis and offers the advantage of improved sensitivity in mass spectrometry. Although HILIC is today frequently employed as an orthogonal fractionation method for peptides during the proteomic discovery phase, it is still seldom considered for quantification. In this study, the performances in terms of peak capacity and sensitivity of 3 HILIC columns were compared to traditional reversed phase liquid C(18) column in the context of targeted quantification of proteotypic peptides using selected reaction monitoring mode (SRM). The results showed that the maximum sensitivity in HILIC chromatography was achieved by using an amide column without salt buffer and that the signal increased compared to classic reversed phase chromatography. However, the intensity improvement is quite low compared to the one obtained for small molecules. This is due on one hand to a higher matrix effect in HILIC and on the other hand to a change of charge states of peptides in organic solvent (doubly charged to monocharged). The doubly charged ions can be more readily dissociated than singly charged ions, making them ideal for SRM peptide quantification. As a result "supercharging" reagents are added to the mobile phase to shift from predominant singly charged ions to the more favorable doubly charged species. Using such optimized conditions, peptide signal is improved by a factor of between two and ten for 88% of the peptides of the 81 peptides investigated.
Collapse
Affiliation(s)
- Romain Simon
- UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, France
| | | | | | | | | |
Collapse
|
30
|
Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 2012; 109:15395-400. [PMID: 22949669 DOI: 10.1073/pnas.1204366109] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitive detection of low-abundance proteins in complex biological samples has typically been achieved by immunoassays that use antibodies specific to target proteins; however, de novo development of antibodies is associated with high costs, long development lead times, and high failure rates. To address these challenges, we developed an antibody-free strategy that involves PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing) for sensitive selected reaction monitoring (SRM)-based targeted protein quantification. The strategy capitalizes on high-resolution reversed-phase liquid chromatographic separations for analyte enrichment, intelligent selection of target fractions via on-line SRM monitoring of internal standards, and fraction multiplexing before nano-liquid chromatography-SRM quantification. Application of this strategy to human plasma/serum demonstrated accurate and reproducible quantification of proteins at concentrations in the 50-100 pg/mL range, which represents a major advance in the sensitivity of targeted protein quantification without the need for specific-affinity reagents. Application to a set of clinical serum samples illustrated an excellent correlation between the results obtained from the PRISM-SRM assay and those from clinical immunoassay for the prostate-specific antigen level.
Collapse
|
31
|
Baker ES, Liu T, Petyuk VA, Burnum-Johnson KE, Ibrahim YM, Anderson GA, Smith RD. Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med 2012; 4:63. [PMID: 22943415 PMCID: PMC3580401 DOI: 10.1186/gm364] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The utility of mass spectrometry (MS)-based proteomic analyses and their clinical applications have been increasingly recognized over the past decade due to their high sensitivity, specificity and throughput. MS-based proteomic measurements have been used in a wide range of biological and biomedical investigations, including analysis of cellular responses and disease-specific post-translational modifications. These studies greatly enhance our understanding of the complex and dynamic nature of the proteome in biology and disease. Some MS techniques, such as those for targeted analysis, are being successfully applied for biomarker verification, whereas others, including global quantitative analysis (for example, for biomarker discovery), are more challenging and require further development. However, recent technological improvements in sample processing, instrumental platforms, data acquisition approaches and informatics capabilities continue to advance MS-based applications. Improving the detection of significant changes in proteins through these advances shows great promise for the discovery of improved biomarker candidates that can be verified pre-clinically using targeted measurements, and ultimately used in clinical studies - for example, for early disease diagnosis or as targets for drug development and therapeutic intervention. Here, we review the current state of MS-based proteomics with regard to its advantages and current limitations, and we highlight its translational applications in studies of protein biomarkers.
Collapse
Affiliation(s)
- Erin Shammel Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
32
|
Boja ES, Rodriguez H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012; 12:1093-110. [PMID: 22577011 DOI: 10.1002/pmic.201100387] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
Jia Y, Wu T, Jelinek CA, Bielekova B, Chang L, Newsome S, Gnanapavan S, Giovannoni G, Chen D, Calabresi PA, Nath A, Cotter RJ. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS). Clin Proteomics 2012; 9:9. [PMID: 22846148 PMCID: PMC3466133 DOI: 10.1186/1559-0275-9-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS). The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. RESULTS Using high performance liquid chromatography-coupled mass spectrometry (HPLC); we have established a highly specific and sensitive selected reaction monitoring (SRM) assay. Our multiplexed SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 26 proteins present in cerebrospinal fluid (CSF). Protein levels in CSF were generally ~200-fold lower than that in human sera. A limit of detection (LOD) was determined to be as low as one femtomol. We processed and analysed CSF samples from a total of 22 patients with SPMS, 7 patients with SPMS treated with lamotrigine, 12 patients with non-inflammatory neurological disorders (NIND) and 10 healthy controls (HC) for the levels of these 26 selected potential protein biomarkers. Our SRM data found one protein showing significant difference between SPMS and HC, three proteins differing between SPMS and NIND, two proteins between NIND and HC, and 11 protein biomarkers showing significant difference between a lamotrigine-treated and untreated SPMS group. Principal component analysis (PCA) revealed that these 26 proteins were correlated, and could be represented by four principal components. Overall, we established an efficient platform to develop and verify protein biomarkers in CSF, which can be easily adapted to other proteins of interest related to neurodegenerative diseases. CONCLUSIONS A highly specific and sensitive multiplex SRM-MS assay was established for development and verification of CSF protein biomarkers in SPMS. Five proteins were found to be expressed significantly differently between the three cohorts, SPMS, NIND and HC and 11 proteins associated with lamotrigine treatment, which we expect will further our current understanding of SPMS disease pathology and/or therapeutic intervention.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou JY, Dann GP, Liew CW, Smith RD, Kulkarni RN, Qian WJ. Unraveling pancreatic islet biology by quantitative proteomics. Expert Rev Proteomics 2012; 8:495-504. [PMID: 21819304 DOI: 10.1586/epr.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
35
|
Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012; 9:555-66. [PMID: 22669653 DOI: 10.1038/nmeth.2015] [Citation(s) in RCA: 950] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that is emerging in the field of proteomics as a complement to untargeted shotgun methods. SRM is particularly useful when predetermined sets of proteins, such as those constituting cellular networks or sets of candidate biomarkers, need to be measured across multiple samples in a consistent, reproducible and quantitatively precise manner. Here we describe how SRM is applied in proteomics, review recent advances, present selected applications and provide a perspective on the future of this powerful technology.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | | |
Collapse
|
36
|
Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 2012. [PMID: 22498958 DOI: 10.1039/c2cs15331a.mass] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 2012; 41:3912-28. [PMID: 22498958 DOI: 10.1039/c2cs15331a] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Shi T, Su D, Liu T, Tang K, Camp DG, Qian WJ, Smith RD. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 2012; 12:1074-92. [PMID: 22577010 PMCID: PMC3375056 DOI: 10.1002/pmic.201100436] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022]
Abstract
Selected reaction monitoring (SRM) - also known as multiple reaction monitoring (MRM) - has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for, e.g. detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein, we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications, as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low- to sub-ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Dian Su
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - David G. Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
39
|
Angel TE, Jacobs JM, Spudich SS, Gritsenko MA, Fuchs D, Liegler T, Zetterberg H, Camp DG, Price RW, Smith RD. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics 2012; 9:3. [PMID: 22433316 PMCID: PMC3353874 DOI: 10.1186/1559-0275-9-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/20/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment. RESULTS After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node. CONCLUSIONS Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rafalko A, Dai S, Hancock WS, Karger BL, Hincapie M. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J Proteome Res 2012; 11:808-17. [PMID: 22098410 PMCID: PMC3656385 DOI: 10.1021/pr2006704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.
Collapse
Affiliation(s)
- Agnes Rafalko
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Shujia Dai
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - William S. Hancock
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Barry L. Karger
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Marina Hincapie
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
41
|
Greco TM, Miteva Y, Conlon FL, Cristea IM. Complementary proteomic analysis of protein complexes. Methods Mol Biol 2012; 917:391-407. [PMID: 22956100 DOI: 10.1007/978-1-61779-992-1_22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomic characterization of protein complexes leverages the versatile platform of liquid chromatography-tandem mass spectrometry to elucidate molecular and cellular signaling processes underlying the dynamic regulation of macromolecular assemblies. Here, we describe a complementary proteomic approach optimized for immunoisolated protein complexes. As the relative complexity, abundance, and physiochemical properties of proteins can vary significantly between samples, we have provided (1) complementary sample preparation workflows, (2) detailed steps for HPLC and mass spectrometric method development, and (3) a bioinformatic workflow that provides confident peptide/protein identification paired with unbiased functional gene ontology analysis. This protocol can also be extended for characterization of larger complexity samples from whole cell or tissue Xenopus proteomes.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | | | |
Collapse
|
42
|
Smith RD. Mass spectrometry in biomarker applications: from untargeted discovery to targeted verification, and implications for platform convergence and clinical application. Clin Chem 2011; 58:528-30. [PMID: 22194635 DOI: 10.1373/clinchem.2011.180596] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
43
|
Kim JS, Fillmore TL, Liu T, Robinson E, Hossain M, Champion BL, Moore RJ, Camp DG, Smith RD, Qian WJ. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry. Mol Cell Proteomics 2011; 10:M110.007302. [PMID: 21988777 DOI: 10.1074/mcp.m110.007302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.
Collapse
Affiliation(s)
- Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schutzer SE, Angel TE, Liu T, Schepmoes AA, Clauss TR, Adkins JN, Camp DG, Holland BK, Bergquist J, Coyle PK, Smith RD, Fallon BA, Natelson BH. Distinct cerebrospinal fluid proteomes differentiate post-treatment lyme disease from chronic fatigue syndrome. PLoS One 2011; 6:e17287. [PMID: 21383843 PMCID: PMC3044169 DOI: 10.1371/journal.pone.0017287] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/26/2011] [Indexed: 11/21/2022] Open
Abstract
Background Neurologic Post Treatment Lyme disease (nPTLS) and Chronic Fatigue (CFS) are syndromes of unknown etiology. They share features of fatigue and cognitive dysfunction, making it difficult to differentiate them. Unresolved is whether nPTLS is a subset of CFS. Methods and Principal Findings Pooled cerebrospinal fluid (CSF) samples from nPTLS patients, CFS patients, and healthy volunteers were comprehensively analyzed using high-resolution mass spectrometry (MS), coupled with immunoaffinity depletion methods to reduce protein-masking by abundant proteins. Individual patient and healthy control CSF samples were analyzed directly employing a MS-based label-free quantitative proteomics approach. We found that both groups, and individuals within the groups, could be distinguished from each other and normals based on their specific CSF proteins (p<0.01). CFS (n = 43) had 2,783 non-redundant proteins, nPTLS (n = 25) contained 2,768 proteins, and healthy normals had 2,630 proteins. Preliminary pathway analysis demonstrated that the data could be useful for hypothesis generation on the pathogenetic mechanisms underlying these two related syndromes. Conclusions nPTLS and CFS have distinguishing CSF protein complements. Each condition has a number of CSF proteins that can be useful in providing candidates for future validation studies and insights on the respective mechanisms of pathogenesis. Distinguishing nPTLS and CFS permits more focused study of each condition, and can lead to novel diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Steven E Schutzer
- Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|