1
|
Tabatabaeian Nimavard R, Sadeghi SA, Mahmoudi M, Zhu G, Sun L. Top-Down Proteomic Profiling of Protein Corona by High-Throughput Capillary Isoelectric Focusing-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:778-786. [PMID: 40025702 PMCID: PMC11964827 DOI: 10.1021/jasms.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
In the rapidly evolving field of nanomedicine, understanding the interactions between nanoparticles (NPs) and biological systems is crucial. A pivotal aspect of these interactions is the formation of a protein corona when NPs are exposed to biological fluids (e.g., human plasma), which significantly influences their behavior and functionality. This study introduces an advanced capillary isoelectric focusing tandem mass spectrometry (cIEF-MS/MS) platform designed to enable high-throughput and reproducible top-down proteomic analysis of protein corona. Our cIEF-MS/MS technique completed each analysis within 30 min. It produced reproducible proteoform measurements of protein corona for at least 50 runs regarding the proteoforms' migration time [relative standard deviations (RSDs) <4%], the proteoforms' intensity (Pearson's correlation coefficients between any two runs >0.90), the number of proteoform identifications (71 ± 10), and the number of proteoform-spectrum matches (PrSMs) (196 ± 30). Of the 53 identified genes, 33 are potential biomarkers of various diseases (e.g., cancer, cardiovascular disease, and Alzheimer's disease). We identified 1-102 proteoforms per potential protein biomarker, containing various sequence variations or post-translational modifications. Delineating proteoforms in protein corona by our cIEF-MS/MS in a reproducible and high-throughput fashion will benefit our understanding of nanobiointeractions and advance both diagnostic and therapeutic nanomedicine technologies.
Collapse
Affiliation(s)
| | - Seyed Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Precision
Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Radiology, College of Human Medicine, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Guijie Zhu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Zhu G, Sadeghi SA, Mahmoudi M, Sun L. Deciphering nanoparticle protein coronas by capillary isoelectric focusing-mass spectrometry-based top-down proteomics. Chem Commun (Camb) 2024; 60:11528-11531. [PMID: 39310940 PMCID: PMC11418007 DOI: 10.1039/d4cc02666g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
The nanoparticle (NP) protein corona significantly influences the outcome of nanomedicine. We present the first example of top-down proteomics (TDP) measurement of the protein corona using capillary isoelectric focusing-mass spectrometry, identifying seventy proteoforms of 16 cancer-related genes. This technique has the potential to revolutionize our understanding of the protein corona and advance nanomedicine.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Seyed Amirhossein Sadeghi
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
| |
Collapse
|
3
|
Ramirez-Sagredo A, Sunny AT, Cupp-Sutton KA, Chowdhury T, Zhao Z, Wu S, Chiao YA. Characterizing age-related changes in intact mitochondrial proteoforms in murine hearts using quantitative top-down proteomics. Clin Proteomics 2024; 21:57. [PMID: 39343872 PMCID: PMC11440756 DOI: 10.1186/s12014-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
Affiliation(s)
- Andrea Ramirez-Sagredo
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Anju Teresa Sunny
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA.
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Sadeghi S, Ashkarran AA, Wang Q, Zhu G, Mahmoudi M, Sun L. Mass Spectrometry-Based Top-Down Proteomics in Nanomedicine: Proteoform-Specific Measurement of Protein Corona. ACS NANO 2024; 18. [PMID: 39276099 PMCID: PMC11440641 DOI: 10.1021/acsnano.4c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Conventional mass spectrometry (MS)-based bottom-up proteomics (BUP) analysis of the protein corona [i.e., an evolving layer of biomolecules, mostly proteins, formed on the surface of nanoparticles (NPs) during their interactions with biomolecular fluids] enabled the nanomedicine community to partly identify the biological identity of NPs. Such an approach, however, fails to pinpoint the specific proteoforms─distinct molecular variants of proteins in the protein corona. The proteoform-level information could potentially advance the prediction of the biological fate and pharmacokinetics of nanomedicines. Recognizing this limitation, this study pioneers a robust and reproducible MS-based top-down proteomics (TDP) technique for characterizing proteoforms in the protein corona. Our TDP approach has successfully identified about 900 proteoforms in the protein corona of polystyrene NPs, ranging from 2 to 70 kDa, revealing proteoforms of 48 protein biomarkers with combinations of post-translational modifications, signal peptide cleavages, and/or truncations─details that BUP could not fully discern. This advancement in MS-based TDP offers a more advanced approach to characterize NP protein coronas, deepening our understanding of NPs' biological identities. We, therefore, propose using both TDP and BUP strategies to obtain more comprehensive information about the protein corona, which, in turn, can further enhance the diagnostic and therapeutic efficacy of nanomedicine technologies.
Collapse
Affiliation(s)
- Seyed
Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Guijie Zhu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
6
|
Ramirez-Sagredo A, Sunny A, Cupp-Sutton K, Chowdhury T, Zhao Z, Wu S, Ann Chiao Y. Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics. RESEARCH SQUARE 2024:rs.3.rs-3868218. [PMID: 38313302 PMCID: PMC10836115 DOI: 10.21203/rs.3.rs-3868218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
|
7
|
Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead. Nat Rev Mol Cell Biol 2024; 25:65-82. [PMID: 37773518 PMCID: PMC11378943 DOI: 10.1038/s41580-023-00650-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
Collapse
Affiliation(s)
- Zakery N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
9
|
Reitz CJ, Kuzmanov U, Gramolini AO. Multi-omic analyses and network biology in cardiovascular disease. Proteomics 2023; 23:e2200289. [PMID: 37691071 DOI: 10.1002/pmic.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Heart disease remains a leading cause of death in North America and worldwide. Despite advances in therapies, the chronic nature of cardiovascular diseases ultimately results in frequent hospitalizations and steady rates of mortality. Systems biology approaches have provided a new frontier toward unraveling the underlying mechanisms of cell, tissue, and organ dysfunction in disease. Mapping the complex networks of molecular functions across the genome, transcriptome, proteome, and metabolome has enormous potential to advance our understanding of cardiovascular disease, discover new disease biomarkers, and develop novel therapies. Computational workflows to interpret these data-intensive analyses as well as integration between different levels of interrogation remain important challenges in the advancement and application of systems biology-based analyses in cardiovascular research. This review will focus on summarizing the recent developments in network biology-level profiling in the heart, with particular emphasis on modeling of human heart failure. We will provide new perspectives on integration between different levels of large "omics" datasets, including integration of gene regulatory networks, protein-protein interactions, signaling networks, and metabolic networks in the heart.
Collapse
Affiliation(s)
- Cristine J Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Robey MT, Utley D, Greer JB, Fellers RT, Kelleher NL, Durbin KR. Advancing Intact Protein Quantitation with Updated Deconvolution Routines. Anal Chem 2023; 95:14954-14962. [PMID: 37750863 PMCID: PMC10840078 DOI: 10.1021/acs.analchem.3c02345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Analysis of intact proteins by mass spectrometry enables direct quantitation of the specific proteoforms present in a sample and is an increasingly important tool for biopharmaceutical and academic research. Interpreting and quantifying intact protein species from mass spectra typically involves many challenges including mass deconvolution and peak processing as well as determining optimal spectral averaging parameters and matching masses to theoretical proteoforms. Each of these steps can present informatic hurdles, as parameters often need to be tailored specifically to the data sets. To reduce intact mass deconvolution data analysis burdens, we built upon the widely used "sliding window" mass deconvolution technique with several additional concepts. First, we found that how spectra are averaged and the overlap in spectral windows can be tuned to favor either sensitivity or speed. A multiple window averaging approach was found to be the most effective way to increase mass detection and yielded a >2-fold increase in the number of masses detected. We also developed a targeted feature-finding routine that boosted sensitivity by >2-fold, decreased coefficient of variation across replicates by 50%, and increased the quality of mass elution profiles through 3-fold more detected time points. Lastly, we furthered existing approaches for annotating detected masses with potential proteoforms through spectral fitting for possible proteoform family modifications and network viewing. These proteoform annotation approaches ultimately produced a more accurate way of finding related, but previously unknown proteoforms from intact mass-only data. Together, these quantitation workflow improvements advance the information obtainable from intact protein mass spectrometry analyses.
Collapse
Affiliation(s)
- Matthew T Robey
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
- Northwestern University, Evanston, Illinois 60208, United States
| | - Daisha Utley
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
| | - Joseph B Greer
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
- Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
- Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
- Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Durbin
- Proteinaceous, Inc., Evanston, Illinois 60201, United States
- Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Wang Q, Xu T, Fang F, Wang Q, Lundquist P, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of Mouse Brain Integral Membrane Proteins. Anal Chem 2023; 95:12590-12594. [PMID: 37595263 PMCID: PMC10540247 DOI: 10.1021/acs.analchem.3c02346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Mass spectrometry (MS)-based top-down characterization of integral membrane proteins (IMPs) is crucial for understanding their functions in biological processes. However, it is technically challenging due to their low solubility in typical MS-compatible buffers. In this work, for the first time, we developed an efficient capillary zone electrophoresis (CZE)-tandem MS (MS/MS) method for the top-down proteomics (TDP) of IMPs enriched from mouse brains. Our technique employs a sample buffer containing 30% (v/v) formic acid and 60% (v/v) methanol for solubilizing IMPs and utilizes a separation buffer of 30% (v/v) acetic acid and 30% (v/v) methanol for maintaining the solubility of IMPs during CZE separation. Single-shot CZE-MS/MS identified 51 IMP proteoforms from the mouse brain sample. Coupling size exclusion chromatography (SEC) to CZE-MS/MS enabled the identification of 276 IMP proteoforms from the mouse brain sample containing 1-4 transmembrane domains. This proof-of-concept work demonstrates the high potential of CZE-MS/MS for the large-scale TDP of IMPs.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Peter Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Guo Y, Cupp‐Sutton KA, Zhao Z, Anjum S, Wu S. Multidimensional Separations in Top-Down Proteomics. ANALYTICAL SCIENCE ADVANCES 2023; 4:181-203. [PMID: 38188188 PMCID: PMC10769458 DOI: 10.1002/ansa.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 01/09/2024]
Abstract
Top-down proteomics (TDP) identifies, quantifies, and characterizes proteins at the intact proteoform level in complex biological samples to understand proteoform function and cellular mechanisms. However, analyzing complex biological samples using TDP is still challenging due to high sample complexity and wide dynamic range. High-resolution separation methods are often applied prior to mass spectrometry (MS) analysis to decrease sample complexity and increase proteomics throughput. These separation methods, however, may not be efficient enough to characterize low abundance intact proteins in complex samples. As such, multidimensional separation techniques (combination of two or more separation methods with high orthogonality) have been developed and applied that demonstrate improved separation resolution and more comprehensive identification in TDP. A suite of multidimensional separation methods that couple various types of liquid chromatography (LC), capillary electrophoresis (CE), and/or gel electrophoresis-based separation approaches have been developed and applied in TDP to analyze complex biological samples. Here, we reviewed multidimensional separation strategies employed for TDP, summarized current applications, and discussed the gaps that may be addressed in the future.
Collapse
Affiliation(s)
- Yanting Guo
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | | | - Zhitao Zhao
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Samin Anjum
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| | - Si Wu
- Department of Chemistry and BiochemistryUniversity of OklahomaOklahomaNormanUSA
| |
Collapse
|
13
|
Naryzhny S. Quantitative Aspects of the Human Cell Proteome. Int J Mol Sci 2023; 24:8524. [PMID: 37239870 PMCID: PMC10218018 DOI: 10.3390/ijms24108524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The number and identity of proteins and proteoforms presented in a single human cell (a cellular proteome) are fundamental biological questions. The answers can be found with sophisticated and sensitive proteomics methods, including advanced mass spectrometry (MS) coupled with separation by gel electrophoresis and chromatography. So far, bioinformatics and experimental approaches have been applied to quantitate the complexity of the human proteome. This review analyzed the quantitative information obtained from several large-scale panoramic experiments in which high-resolution mass spectrometry-based proteomics in combination with liquid chromatography or two-dimensional gel electrophoresis (2DE) were used to evaluate the cellular proteome. It is important that even though all these experiments were performed in different labs using different equipment and calculation algorithms, the main conclusion about the distribution of proteome components (proteins or proteoforms) was basically the same for all human tissues or cells. It follows Zipf's law and has a formula N = A/x, where N is the number of proteoforms, A is a coefficient, and x is the limit of proteoform detection in terms of abundance.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10, 119121 Moscow, Russia;
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| |
Collapse
|
14
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
16
|
McCool EN, Xu T, Chen W, Beller NC, Nolan SM, Hummon AB, Liu X, Sun L. Deep top-down proteomics revealed significant proteoform-level differences between metastatic and nonmetastatic colorectal cancer cells. SCIENCE ADVANCES 2022; 8:eabq6348. [PMID: 36542699 PMCID: PMC9770947 DOI: 10.1126/sciadv.abq6348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 05/23/2023]
Abstract
Understanding cancer metastasis at the proteoform level is crucial for discovering previously unknown protein biomarkers for cancer diagnosis and drug development. We present the first top-down proteomics (TDP) study of a pair of isogenic human nonmetastatic and metastatic colorectal cancer (CRC) cell lines (SW480 and SW620). We identified 23,622 proteoforms of 2332 proteins from the two cell lines, representing nearly fivefold improvement in the number of proteoform identifications (IDs) compared to previous TDP datasets of human cancer cells. We revealed substantial differences between the SW480 and SW620 cell lines regarding proteoform and single amino acid variant (SAAV) profiles. Quantitative TDP unveiled differentially expressed proteoforms between the two cell lines, and the corresponding genes had diversified functions and were closely related to cancer. Our study represents a pivotal advance in TDP toward the characterization of human proteome in a proteoform-specific manner, which will transform basic and translational biomedical research.
Collapse
Affiliation(s)
- Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Wenrong Chen
- Department of BioHealth Informatics, Indiana University–Purdue University Indianapolis, 719 Indiana Avenue, Indianapolis, IN 46202, USA
| | - Nicole C. Beller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Scott M. Nolan
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Brodbelt JS. Deciphering combinatorial post-translational modifications by top-down mass spectrometry. Curr Opin Chem Biol 2022; 70:102180. [PMID: 35779351 PMCID: PMC9489649 DOI: 10.1016/j.cbpa.2022.102180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) create vast structural and functional diversity of proteins, ultimately modulating protein function and degradation, influencing cellular signaling, and regulating transcription. The combinatorial patterns of PTMs increase the heterogeneity of proteins and further mediates their interactions. Advances in mass spectrometry-based proteomics have resulted in identification of thousands of proteins and allowed characterization of numerous types and sites of PTMs. Examination of intact proteins, termed the top-down approach, offers the potential to map protein sequences and localize multiple PTMs on each protein, providing the most comprehensive cataloging of proteoforms. This review describes some of the dividends of using mass spectrometry to analyze intact proteins and showcases innovative strategies that have enhanced the promise of top-down proteomics for exploring the impact of combinatorial PTMs in unsurpassed detail.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Rovira M, Sereda R, Pladevall‐Morera D, Ramponi V, Marin I, Maus M, Madrigal‐Matute J, Díaz A, García F, Muñoz J, Cuervo AM, Serrano M. The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 2022; 21:e13707. [PMID: 36087066 PMCID: PMC9577959 DOI: 10.1111/acel.13707] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/31/2023] Open
Abstract
Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.
Collapse
Affiliation(s)
- Miguel Rovira
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Rebecca Sereda
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - David Pladevall‐Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Valentina Ramponi
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Ines Marin
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mate Maus
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Julio Madrigal‐Matute
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Instituto Biomédico de Nutrición y SaludEldaSpain
| | - Antonio Díaz
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Fernando García
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Ana María Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Manuel Serrano
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
19
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Melani RD, Gerbasi VR, Anderson LC, Sikora JW, Toby TK, Hutton JE, Butcher DS, Negrão F, Seckler HS, Srzentić K, Fornelli L, Camarillo JM, LeDuc RD, Cesnik AJ, Lundberg E, Greer JB, Fellers RT, Robey MT, DeHart CJ, Forte E, Hendrickson CL, Abbatiello SE, Thomas PM, Kokaji AI, Levitsky J, Kelleher NL. The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells. Science 2022; 375:411-418. [PMID: 35084980 PMCID: PMC9097315 DOI: 10.1126/science.aaz5284] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.
Collapse
Affiliation(s)
- Rafael D. Melani
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Vincent R. Gerbasi
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Lissa C. Anderson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Jacek W. Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Timothy K. Toby
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Josiah E. Hutton
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David S. Butcher
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Fernanda Negrão
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Henrique S. Seckler
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Kristina Srzentić
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Jeannie M. Camarillo
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Richard D. LeDuc
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Anthony J. Cesnik
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joseph B. Greer
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T. Fellers
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew T. Robey
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Caroline J. DeHart
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Paul M. Thomas
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | - Josh Levitsky
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Yang Z, Sun L. Membrane Ultrafiltration-Based Sample Preparation Method and Sheath-Flow CZE-MS/MS for Top-Down Proteomics. Methods Mol Biol 2022; 2500:5-14. [PMID: 35657583 DOI: 10.1007/978-1-0716-2325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) identify proteoforms without pretreatment of enzyme proteolysis. A universal sample preparation method that can efficiently extract protein, reduce sample loss, maintain protein solubility, and be compatible with following up liquid-phase separation, MS, and tandem MS (MS/MS) is vital for large-scale proteoform characterization. Membrane ultrafiltration (MU) was employed here for buffer exchange to efficiently remove the sodium dodecyl sulfate (SDS) detergent in protein samples used for protein extraction and solubilization, followed by capillary zone electrophoresis (CZE)-MS/MS analysis. The MU method showed good protein recovery, minimum protein bias, and nice compatibility with CZE-MS/MS. Single-shot CZE-MS/MS analysis of an Escherichia coli sample prepared by the MU method identified over 800 proteoforms.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Brown KA, Anderson C, Reilly L, Sondhi K, Ge Y, Eckhardt LL. Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites. Biochemistry 2021; 60:3292-3301. [PMID: 34676745 DOI: 10.1021/acs.biochem.1c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the β-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly β-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Anderson
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kunal Sondhi
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Farina S, Esposito F, Battistoni M, Biamonti G, Francia S. Post-Translational Modifications Modulate Proteinopathies of TDP-43, FUS and hnRNP-A/B in Amyotrophic Lateral Sclerosis. Front Mol Biosci 2021; 8:693325. [PMID: 34291086 PMCID: PMC8287968 DOI: 10.3389/fmolb.2021.693325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
It has been shown that protein low-sequence complexity domains (LCDs) induce liquid-liquid phase separation (LLPS), which is responsible for the formation of membrane-less organelles including P-granules, stress granules and Cajal bodies. Proteins harbouring LCDs are widely represented among RNA binding proteins often mutated in ALS. Indeed, LCDs predispose proteins to a prion-like behaviour due to their tendency to form amyloid-like structures typical of proteinopathies. Protein post-translational modifications (PTMs) can influence phase transition through two main events: i) destabilizing or augmenting multivalent interactions between phase-separating macromolecules; ii) recruiting or excluding other proteins and/or nucleic acids into/from the condensate. In this manuscript we summarize the existing evidence describing how PTM can modulate LLPS thus favouring or counteracting proteinopathies at the base of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Stefania Farina
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,University School for Advanced Studies IUSS, Pavia, Italy
| | - Francesca Esposito
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,Università Degli Studi di Pavia, Pavia, Italy
| | | | - Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| |
Collapse
|
24
|
Khalid MF, Iman K, Ghafoor A, Saboor M, Ali A, Muaz U, Basharat AR, Tahir T, Abubakar M, Akhter MA, Nabi W, Vanderbauwhede W, Ahmad F, Wajid B, Chaudhary SU. PERCEPTRON: an open-source GPU-accelerated proteoform identification pipeline for top-down proteomics. Nucleic Acids Res 2021; 49:W510-W515. [PMID: 33999207 PMCID: PMC8262694 DOI: 10.1093/nar/gkab368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 11/12/2022] Open
Abstract
PERCEPTRON is a next-generation freely available web-based proteoform identification and characterization platform for top-down proteomics (TDP). PERCEPTRON search pipeline brings together algorithms for (i) intact protein mass tuning, (ii) de novo sequence tags-based filtering, (iii) characterization of terminal as well as post-translational modifications, (iv) identification of truncated proteoforms, (v) in silico spectral comparison, and (vi) weight-based candidate protein scoring. High-throughput performance is achieved through the execution of optimized code via multiple threads in parallel, on graphics processing units (GPUs) using NVidia Compute Unified Device Architecture (CUDA) framework. An intuitive graphical web interface allows for setting up of search parameters as well as for visualization of results. The accuracy and performance of the tool have been validated on several TDP datasets and against available TDP software. Specifically, results obtained from searching two published TDP datasets demonstrate that PERCEPTRON outperforms all other tools by up to 135% in terms of reported proteins and 10-fold in terms of runtime. In conclusion, the proposed tool significantly enhances the state-of-the-art in TDP search software and is publicly available at https://perceptron.lums.edu.pk. Users can also create in-house deployments of the tool by building code available on the GitHub repository (http://github.com/BIRL/Perceptron).
Collapse
Affiliation(s)
- Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amna Ghafoor
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Mujtaba Saboor
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ahsan Ali
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Urwa Muaz
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Abdul Rehman Basharat
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Taha Tahir
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Abubakar
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momina Amer Akhter
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Waqar Nabi
- School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wim Vanderbauwhede
- School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Bilal Wajid
- Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
- Division of Research and Development, Sabz-Qalam, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
25
|
Lu L, Scalf M, Shortreed MR, Smith LM. Mesh Fragmentation Improves Dissociation Efficiency in Top-down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1319-1325. [PMID: 33754701 PMCID: PMC8783543 DOI: 10.1021/jasms.0c00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Top-down proteomics is a key mass spectrometry-based technology for comprehensive analysis of proteoforms. Proteoforms exhibit multiple high charge states and isotopic forms in full MS scans. The dissociation behavior of proteoforms in different charge states and subjected to different collision energies is highly variable. The current widely employed data-dependent acquisition (DDA) method selects a narrow m/z range (corresponding to a single proteoform charge state) for dissociation from the most abundant precursors. We describe here Mesh, a novel dissociation strategy, to dissociate multiple charge states of one proteoform with multiple collision energies. We show that the Mesh strategy has the potential to generate fragment ions with improved sequence coverage and improve identification ratios in top-down proteomic analyses of complex samples. The strategy is implemented within an open-source instrument control software program named MetaDrive to perform real time deconvolution and precursor selection.
Collapse
Affiliation(s)
- Lei Lu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Corresponding Author Phone: (608) 263-2594. Fax: (608) 265-6780.
| |
Collapse
|
26
|
Cohn W, Huguet R, Zabrouskov V, Whitelegge J. Dissociation Strategies to Maximize Coverage of α-Helical Domains in Top-Down Mass Spectrometry of Integral Membrane Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1380-1387. [PMID: 33956438 DOI: 10.1021/jasms.1c00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transmembrane α-helical domains of membrane proteins tend to remain structured in the gas phase, presenting a challenge for efficient electron capture/transfer dissociation during top-down dissociation mass spectrometry (MS) experiments. In this study, we compare results from different dissociation modes on a modern Orbitrap platform applied to a model integral membrane protein containing two transmembrane helices, the c-subunit of the Fo domain of the chloroplast ATP synthase. Using commercially available options, we compare collisionally activated dissociation (CAD) with the related variant higher-energy collisional dissociation (HCD) and with electron transfer dissociation (ETD). HCD performed better than CAD and ETD. A combined method utilizing both ETD and HCD (EThcD) demonstrates significant synergy over HCD or ETD alone, representing a robust option analogous to activated ion electron capture dissociation, whereby an infrared laser was used to heat the protein ion alongside electron bombardment. Ultraviolet photodissociation at 213 nm displays at least three backbone dissociation mechanisms and covered nearly 100% of backbone bonds, suggesting significant potential for this technique.
Collapse
Affiliation(s)
- Whitaker Cohn
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024, United States
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95054, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose, California 95054, United States
| | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024, United States
| |
Collapse
|
27
|
Shen X, Xu T, Hakkila B, Hare M, Wang Q, Wang Q, Beckman JS, Sun L. Capillary Zone Electrophoresis-Electron-Capture Collision-Induced Dissociation on a Quadrupole Time-of-Flight Mass Spectrometer for Top-Down Characterization of Intact Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1361-1369. [PMID: 33749270 PMCID: PMC8576897 DOI: 10.1021/jasms.0c00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) requires high-capacity separation and extensive gas-phase fragmentation of proteoforms. Herein, we coupled capillary zone electrophoresis (CZE) to electron-capture collision-induced dissociation (ECciD) on an Agilent 6545 XT quadrupole time-of-flight (Q-TOF) mass spectrometer for dTDP for the first time. During ECciD, the protein ions were first fragmented using ECD, followed by further activation and fragmentation by applying a CID potential. In this pilot study, we optimized the CZE-ECciD method for small proteins (lower than 20 kDa) regarding the charge state of protein parent ions for fragmentation and the CID potential applied to maximize the protein backbone cleavage coverage and the number of sequence-informative fragment ions. The CZE-ECciD Q-TOF platform provided extensive backbone cleavage coverage for three standard proteins lower than 20 kDa from only single charge states in a single CZE-MS/MS run in the targeted MS/MS mode, including ubiquitin (97%, +7, 8.6 kDa), superoxide dismutase (SOD, 87%, +17, 16 kDa), and myoglobin (90%, +16, 17 kDa). The CZE-ECciD method produced comparable cleavage coverage of small proteins (i.e., myoglobin) with direct-infusion MS studies using electron transfer dissociation (ETD), activated ion-ETD, and combinations of ETD and collision-based fragmentation on high-end orbitrap mass spectrometers. The results render CZE-ECciD a new tool for dTDP to enhance both separation and gas-phase fragmentation of proteoforms.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Blake Hakkila
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
| | - Mike Hare
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Joseph S Beckman
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1278-1294. [PMID: 33983025 PMCID: PMC8310706 DOI: 10.1021/jasms.1c00099] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
29
|
Bock AS, Murthy AC, Tang WS, Jovic N, Shewmaker F, Mittal J, Fawzi NL. N-terminal acetylation modestly enhances phase separation and reduces aggregation of the low-complexity domain of RNA-binding protein fused in sarcoma. Protein Sci 2021; 30:1337-1349. [PMID: 33547841 DOI: 10.1002/pro.4029] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) assembles via liquid-liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge-altering phosphorylation of the nearly uncharged N-terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N-terminal acetylation on FUS phase separation remains unexplored, even though N-terminal acetylation is the most common PTM in mammals and changes the charge at the N-terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co-expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N-terminal acetylated FUS LC (FUS LC Nt-Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt-Ac-FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N-terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N-terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.
Collapse
Affiliation(s)
- Anna S Bock
- Graduate Program in Biotechnology, Brown University, Providence, Rhode Island, USA
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Wai Shing Tang
- Graduate Program in Physics, Brown University, Providence, Rhode Island, USA
| | - Nina Jovic
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Frank Shewmaker
- Department of Biochemistry, Uniformed Services University, Bethesda, Maryland, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Nicolas L Fawzi
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
30
|
Biological Applications for LC-MS-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:17-29. [PMID: 34628625 DOI: 10.1007/978-3-030-77252-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Since its inception, liquid chromatography-mass spectrometry (LC-MS) has been continuously improved upon in many aspects, including instrument capabilities, sensitivity, and resolution. Moreover, the costs to purchase and operate mass spectrometers and liquid chromatography systems have decreased, thus increasing affordability and availability in sectors outside of academic and industrial research. Processing power has also grown immensely, cutting the time required to analyze samples, allowing more data to be feasibly processed, and allowing for standardized processing pipelines. As a result, proteomics via LC-MS has become popular in many areas of biological sciences, forging an important seat for itself in targeted and untargeted assays, pure and applied science, the laboratory, and the clinic. In this chapter, many of these applications of LC-MS-based proteomics and an outline of how they can be executed will be covered. Since the field of personalized medicine has matured alongside proteomics, it has also come to rely on various mass spectrometry methods and will be elaborated upon as well. As time goes on and mass spectrometry evolves, there is no doubt that its presence in these areas, and others, will only continue to grow.
Collapse
|
31
|
Brown KA, Tucholski T, Alpert AJ, Eken C, Wesemann L, Kyrvasilis A, Jin S, Ge Y. Top-Down Proteomics of Endogenous Membrane Proteins Enabled by Cloud Point Enrichment and Multidimensional Liquid Chromatography-Mass Spectrometry. Anal Chem 2020; 92:15726-15735. [PMID: 33231430 PMCID: PMC7968110 DOI: 10.1021/acs.analchem.0c02533] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although top-down proteomics has emerged as a powerful strategy to characterize proteins in biological systems, the analysis of endogenous membrane proteins remains challenging due to their low solubility, low abundance, and the complexity of the membrane subproteome. Here, we report a simple but effective enrichment and separation strategy for top-down proteomics of endogenous membrane proteins enabled by cloud point extraction and multidimensional liquid chromatography coupled to high-resolution mass spectrometry (MS). The cloud point extraction efficiently enriched membrane proteins using a single extraction, eliminating the need for time-consuming ultracentrifugation steps. Subsequently, size-exclusion chromatography (SEC) with an MS-compatible mobile phase (59% water, 40% isopropanol, 1% formic acid) was used to remove the residual surfactant and fractionate intact proteins (6-115 kDa). The fractions were separated further by reversed-phase liquid chromatography (RPLC) coupled with MS for protein characterization. This method was applied to human embryonic kidney cells and cardiac tissue lysates to enable the identification of 188 and 124 endogenous integral membrane proteins, respectively, some with as many as 19 transmembrane domains.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Andrew J. Alpert
- PolyLC Inc., Columbia, Maryland 21045, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Christian Eken
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Lucas Wesemann
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Andreas Kyrvasilis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
32
|
Cesnik AJ, Miller RM, Ibrahim K, Lu L, Millikin RJ, Shortreed MR, Frey BL, Smith LM. Spritz: A Proteogenomic Database Engine. J Proteome Res 2020; 20:1826-1834. [PMID: 32967423 DOI: 10.1021/acs.jproteome.0c00407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoforms are the workhorses of the cell, and subtle differences between their amino acid sequences or post-translational modifications (PTMs) can change their biological function. To most effectively identify and quantify proteoforms in genetically diverse samples by mass spectrometry (MS), it is advantageous to search the MS data against a sample-specific protein database that is tailored to the sample being analyzed, in that it contains the correct amino acid sequences and relevant PTMs for that sample. To this end, we have developed Spritz (https://smith-chem-wisc.github.io/Spritz/), an open-source software tool for generating protein databases annotated with sequence variations and PTMs. We provide a simple graphical user interface for Windows and scripts that can be run on any operating system. Spritz automatically sets up and executes approximately 20 tools, which enable the construction of a proteogenomic database from only raw RNA sequencing data. Sequence variations that are discovered in RNA sequencing data upon comparison to the Ensembl reference genome are annotated on proteins in these databases, and PTM annotations are transferred from UniProt. Modifications can also be discovered and added to the database using bottom-up mass spectrometry data and global PTM discovery in MetaMorpheus. We demonstrate that such sample-specific databases allow the identification of variant peptides, modified variant peptides, and variant proteoforms by searching bottom-up and top-down proteomic data from the Jurkat human T lymphocyte cell line and demonstrate the identification of phosphorylated variant sites with phosphoproteomic data from the U2OS human osteosarcoma cell line.
Collapse
Affiliation(s)
- Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm 17121, Sweden.,Department of Genetics, Stanford University, Stanford, California 94305, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Khairina Ibrahim
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lei Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Brown KA, Melby JA, Roberts DS, Ge Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 2020; 17:719-733. [PMID: 33232185 PMCID: PMC7864889 DOI: 10.1080/14789450.2020.1855982] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Introduction- A better understanding of the underlying molecular mechanism of diseases is critical for developing more effective diagnostic tools and therapeutics toward precision medicine. However, many challenges remain to unravel the complex nature of diseases. Areas covered- Changes in protein isoform expression and post-translation modifications (PTMs) have gained recognition for their role in underlying disease mechanisms. Top-down mass spectrometry (MS)-based proteomics is increasingly recognized as an important method for the comprehensive characterization of proteoforms that arise from alternative splicing events and/or PTMs for basic and clinical research. Here, we review the challenges, technological innovations, and recent studies that utilize top-down proteomics to elucidate changes in the proteome with an emphasis on its use to study heart diseases. Expert opinion- Proteoform-resolved information can substantially contribute to the understanding of the molecular mechanisms underlying various diseases and for the identification of novel proteoform targets for better therapeutic development . Despite the challenges of sequencing intact proteins, top-down proteomics has enabled a wealth of information regarding protein isoform switching and changes in PTMs. Continuous developments in sample preparation, intact protein separation, and instrumentation for top-down MS have broadened its capabilities to characterize proteoforms from a range of samples on an increasingly global scale.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
34
|
Ives AN, Su T, Durbin KR, Early BP, Dos Santos Seckler H, Fellers RT, LeDuc RD, Schachner LF, Patrie SM, Kelleher NL. Using 10,000 Fragment Ions to Inform Scoring in Native Top-down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1398-1409. [PMID: 32436704 PMCID: PMC7539637 DOI: 10.1021/jasms.0c00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein fragmentation is a critical component of top-down proteomics, enabling gene-specific protein identification and full proteoform characterization. The factors that influence protein fragmentation include precursor charge, structure, and primary sequence, which have been explored extensively for collision-induced dissociation (CID). Recently, noticeable differences in CID-based fragmentation were reported for native versus denatured proteins, motivating the need for scoring metrics that are tailored specifically to native top-down mass spectrometry (nTDMS). To this end, position and intensity were tracked for 10,252 fragment ions produced by higher-energy collisional dissociation (HCD) of 159 native monomers and 70 complexes. We used published structural data to explore the relationship between fragmentation and protein topology and revealed that fragmentation events occur at a large range of relative residue solvent accessibility. Additionally, our analysis found that fragment ions at sites with an N-terminal aspartic acid or a C-terminal proline make up on average 40 and 27%, respectively, of the total matched fragment ion intensity in nTDMS. Percent intensity contributed by each amino acid was determined and converted into weights to (1) update the previously published C-score and (2) construct a native Fragmentation Propensity Score. Both scoring systems showed an improvement in protein identification or characterization in comparison to traditional methods and overall increased confidence in results with fewer matched fragment ions but with high probability nTDMS fragmentation patterns. Given the rise of nTDMS as a tool for structural mass spectrometry, we forward these scoring metrics as new methods to enhance analysis of nTDMS data.
Collapse
Affiliation(s)
- Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Taojunfeng Su
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| | - Richard D LeDuc
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| |
Collapse
|
35
|
Yang Z, Shen X, Chen D, Sun L. Toward a Universal Sample Preparation Method for Denaturing Top-Down Proteomics of Complex Proteomes. J Proteome Res 2020; 19:3315-3325. [PMID: 32419461 DOI: 10.1021/acs.jproteome.0c00226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A universal and standardized sample preparation method becomes vital for denaturing top-down proteomics (dTDP) to advance the scale and accuracy of proteoform delineation in complex biological systems. It needs to have high protein recovery, minimum bias, good reproducibility, and compatibility with downstream mass spectrometry (MS) analysis. Here, we employed a lysis buffer containing sodium dodecyl sulfate for extracting proteoforms from cells and, for the first time, compared membrane ultrafiltration (MU), chloroform-methanol precipitation (CMP), and single-spot solid-phase sample preparation using magnetic beads (SP3) for proteoform cleanup for dTDP. The MU method outperformed CMP and SP3 methods, resulting in high and reproducible protein recovery from both Escherichia coli cell (59 ± 3%) and human HepG2 cell (86 ± 5%) samples without a significant bias. Single-shot capillary zone electrophoresis (CZE)-MS/MS analyses of the prepared E. coli and HepG2 cell samples using the MU method identified 821 and 516 proteoforms, respectively. Nearly 30 and 50% of the identified E. coli and HepG2 proteins are membrane proteins. CZE-MS/MS identified 94 histone proteoforms from the HepG2 sample with various post-translational modifications, including acetylation, methylation, and phosphorylation. Our results suggest that combining the SDS-based protein extraction and the MU-based protein cleanup could be a universal sample preparation method for dTDP. The MS raw data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD018248.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824 United States
| |
Collapse
|
36
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt Chem 2019; 120:115644. [PMID: 31537953 PMCID: PMC6752746 DOI: 10.1016/j.trac.2019.115644] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
38
|
Ugrin SA, English AM, Syka JEP, Bai DL, Anderson LC, Shabanowitz J, Hunt DF. Ion-Ion Proton Transfer and Parallel Ion Parking for the Analysis of Mixtures of Intact Proteins on a Modified Orbitrap Mass Analyzer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2163-2173. [PMID: 31392699 PMCID: PMC6805958 DOI: 10.1007/s13361-019-02290-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 05/09/2023]
Abstract
We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E. coli ribosomal proteins with HCD fragmentation. With one injection, all but two ribosomal proteins were selected for fragmentation and subsequently identified. The techniques described facilitate rapid identification of intact proteins in complex mixtures and an enhanced ability to observe proteins of low abundance.
Collapse
Affiliation(s)
- Scott A Ugrin
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - A Michelle English
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
39
|
Dai Y, Buxton KE, Schaffer LV, Miller RM, Millikin RJ, Scalf M, Frey BL, Shortreed MR, Smith LM. Constructing Human Proteoform Families Using Intact-Mass and Top-Down Proteomics with a Multi-Protease Global Post-Translational Modification Discovery Database. J Proteome Res 2019; 18:3671-3680. [PMID: 31479276 DOI: 10.1021/acs.jproteome.9b00339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Complex human biomolecular processes are made possible by the diversity of human proteoforms. Constructing proteoform families, groups of proteoforms derived from the same gene, is one way to represent this diversity. Comprehensive, high-confidence identification of human proteoforms remains a central challenge in mass spectrometry-based proteomics. We have previously reported a strategy for proteoform identification using intact-mass measurements, and we have since improved that strategy by mass calibration based on search results, the use of a global post-translational modification discovery database, and the integration of top-down proteomics results with intact-mass analysis. In the present study, we combine these strategies for enhanced proteoform identification in total cell lysate from the Jurkat human T lymphocyte cell line. We collected, processed, and integrated three types of proteomics data (NeuCode-labeled intact-mass, label-free top-down, and multi-protease bottom-up) to maximize the number of confident proteoform identifications. The integrated analysis revealed 5950 unique experimentally observed proteoforms, which were assembled into 848 proteoform families. Twenty percent of the observed proteoforms were confidently identified at a 3.9% false discovery rate, representing 1207 unique proteoforms derived from 484 genes.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States.,Biophysics Graduate Program , University of Wisconsin , 413 Bock Laboratories, 1525 Linden Drive , Madison , Wisconsin 53706 , United States
| | - Katherine E Buxton
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Leah V Schaffer
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Rachel M Miller
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Robert J Millikin
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Mark Scalf
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Brian L Frey
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
40
|
Zhao B, Reilly CP, Reilly JP. ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1631-1642. [PMID: 31098958 DOI: 10.1007/s13361-019-02227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2• and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
41
|
Top-Down Proteomics Applied to Human Cerebrospinal Fluid. Methods Mol Biol 2019. [PMID: 31432414 DOI: 10.1007/978-1-4939-9706-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins' primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.
Collapse
|
42
|
[Comparing nanoflow reversed-phase liquid chromatography-tandem mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics]. Se Pu 2019; 37:878-886. [PMID: 31642259 DOI: 10.3724/sp.j.1123.2019.05001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One of the major shortcomings in top-down proteomics is the lack of efficient separations for intact proteins that can be effectively coupled to mass spectrometry. Capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (nanoRPLC) are two methods that can be coupled to mass spectrometry directly and have been recently advanced in terms of their ability to separate intact proteins in complex biological mixtures. In this work, for the first time, we compared the state-of-the-art nanoRPLC-MS/MS and CZE-MS/MS platforms for top-down characterization of a standard protein mixture and an Escherichia coli (E. coli) proteome sample. CZE-MS produced comparable signals of standard proteins to RPLC-MS with 10-times less sample consumption. Interestingly, the proteins in RPLC-MS tended to have higher charge states than in CZE-MS, most likely due to the high acetonitrile concentration in RPLC mobile phase, leading to the more extensive unfolding of proteins in RPLC compared to in CZE. CZE-MS/MS identified 159 proteins and 513 proteoforms using 1-μg E. coli proteins in a single run and outperformed RPLC-MS/MS using 1-μg E. coli proteins in terms of protein and proteoform identifications (159 vs. 105 proteins and 513 vs. 277 proteoforms). The RPLC-MS/MS using 8-μg E. coli proteins identified 245 proteins and 1004 proteoforms in a single run, and the data was much better than that from CZE-MS/MS (1-μg E. coli proteins) regarding the number of identifications because of the 8-times higher sample loading amount and significantly wider separation window of RPLC-MS/MS compared to CZE-MS/MS.
Collapse
|
43
|
Ghezellou P, Garikapati V, Kazemi SM, Strupat K, Ghassempour A, Spengler B. A perspective view of top-down proteomics in snake venom research. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:20-27. [PMID: 30076652 DOI: 10.1002/rcm.8255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The venom produced by snakes contains complex mixtures of pharmacologically active proteins and peptides which play a crucial role in the pathophysiology of snakebite diseases. The deep understanding of venom proteomes can help to improve the treatment of this "neglected tropical disease" (as expressed by the World Health Organization [WHO]) and to develop new drugs. The most widely used technique for venom analysis is liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based bottom-up (BU) proteomics. Considering the fact that multiple multi-locus gene families encode snake venom proteins, the major challenge for the BU proteomics is the limited sequence coverage and also the "protein inference problem" which result in a loss of information for the identification and characterization of toxin proteoforms (genetic variation, alternative mRNA splicing, single nucleotide polymorphism [SNP] and post-translational modifications [PTMs]). In contrast, intact protein measurements with top-down (TD) MS strategies cover almost complete protein sequences, and prove the ability to identify venom proteoforms and to localize their modifications and sequence variations.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Seyed Mahdi Kazemi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany
| |
Collapse
|
44
|
LeDuc RD, Fellers RT, Early BP, Greer JB, Shams DP, Thomas PM, Kelleher NL. Accurate Estimation of Context-Dependent False Discovery Rates in Top-Down Proteomics. Mol Cell Proteomics 2019; 18:796-805. [PMID: 30647073 PMCID: PMC6442365 DOI: 10.1074/mcp.ra118.000993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
Within the last several years, top-down proteomics has emerged as a high throughput technique for protein and proteoform identification. This technique has the potential to identify and characterize thousands of proteoforms within a single study, but the absence of accurate false discovery rate (FDR) estimation could hinder the adoption and consistency of top-down proteomics in the future. In automated identification and characterization of proteoforms, FDR calculation strongly depends on the context of the search. The context includes MS data quality, the database being interrogated, the search engine, and the parameters of the search. Particular to top-down proteomics-there are four molecular levels of study: proteoform spectral match (PrSM), protein, isoform, and proteoform. Here, a context-dependent framework for calculating an accurate FDR at each level was designed, implemented, and validated against a manually curated training set with 546 confirmed proteoforms. We examined several search contexts and found that an FDR calculated at the PrSM level under-reported the true FDR at the protein level by an average of 24-fold. We present a new open-source tool, the TDCD_FDR_Calculator, which provides a scalable, context-dependent FDR calculation that can be applied post-search to enhance the quality of results in top-down proteomics from any search engine.
Collapse
Affiliation(s)
- Richard D LeDuc
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois;.
| | - Ryan T Fellers
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Bryan P Early
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois;; §Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Joseph B Greer
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Daniel P Shams
- ¶Interdisciplinary Biological Sciences, Northwestern University, Evanston, Illinois
| | - Paul M Thomas
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois;; §Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Neil L Kelleher
- From the ‡Proteomics Center of Excellence, Northwestern University, Evanston, Illinois;; §Department of Molecular Biosciences, Northwestern University, Evanston, Illinois;; Department of Chemistry and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| |
Collapse
|
45
|
Arnold RJ, Saraswat S, Reilly JP. Analysis of Methylation, Acetylation, and Other Modifications in Bacterial Ribosomal Proteins. Methods Mol Biol 2019; 1934:293-307. [PMID: 31256386 DOI: 10.1007/978-1-4939-9055-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide variety of posttranslational modifications of expressed proteins are known to occur in living organisms (Krishna R, Wold F. Post-translational modification of proteins. In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, 1993, pp 265-296). Although their presence in an organism cannot be predicted from the genome, these modifications can play critical roles in protein structure and function. The identification of posttranslational modifications is critical to our understanding of the functions of proteins involved in important biological pathways and mass spectrometry offers a fast, accurate method for observing them. A combined top-down/bottom-up approach can be used for identification and localization of posttranslational modifications of ribosomal proteins. This chapter describes procedures for analyzing Escherichia coli ribosomal proteins and their modifications by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. It also covers the analysis of gram-negative Caulobacter crescentus and gram-positive Bacillus subtilis ribosomal proteins by electrospray quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Confirmation of the occurrence and localization of PTMs is obtained through mass spectrometric analysis of tryptic peptides.
Collapse
Affiliation(s)
- Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Suraj Saraswat
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
46
|
Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J Proteomics 2019; 191:22-28. [DOI: 10.1016/j.jprot.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
|
47
|
Abstract
The mechanism underlying many biological phenotypes remains unknown despite the increasing availability of whole genome and transcriptome sequencing. Direct measurement of changes in protein expression is an attractive alternative and has the potential to reveal novel processes. Mass spectrometry has become the standard method for proteomics, allowing both the confident identification and quantification of thousands of proteins from biological samples. In this review, mass spectrometry-based proteomic methods and their applications are described.
Collapse
Affiliation(s)
- J Robert O'Neill
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK. Robert.o'.,Department of Clinical Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK. Robert.o'
| |
Collapse
|
48
|
McCool EN, Lubeckyj R, Shen X, Kou Q, Liu X, Sun L. Large-scale Top-down Proteomics Using Capillary Zone Electrophoresis Tandem Mass Spectrometry. J Vis Exp 2018. [PMID: 30417888 DOI: 10.3791/58644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has been recognized as a useful tool for top-down proteomics that aims to characterize proteoforms in complex proteomes. However, the application of CZE-MS/MS for large-scale top-down proteomics has been impeded by the low sample-loading capacity and narrow separation window of CZE. Here, a protocol is described using CZE-MS/MS with a microliter-scale sample-loading volume and a 90-min separation window for large-scale top-down proteomics. The CZE-MS/MS platform is based on a linear polyacrylamide (LPA)-coated separation capillary with extremely low electroosmotic flow, a dynamic pH-junction-based online sample concentration method with a high efficiency for protein stacking, an electro-kinetically pumped sheath flow CE-MS interface with extremely high sensitivity, and an ion trap mass spectrometer with high mass resolution and scan speed. The platform can be used for the high-resolution characterization of simple intact protein samples and the large-scale characterization of proteoforms in various complex proteomes. As an example, a highly efficient separation of a standard protein mixture and a highly sensitive detection of many impurities using the platform is demonstrated. As another example, this platform can produce over 500 proteoform and 190 protein identifications from an Escherichia coli proteome in a single CZE-MS/MS run.
Collapse
Affiliation(s)
| | | | | | - Qiang Kou
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
| | | |
Collapse
|
49
|
Schaffer LV, Rensvold JW, Shortreed MR, Cesnik AJ, Jochem A, Scalf M, Frey BL, Pagliarini DJ, Smith LM. Identification and Quantification of Murine Mitochondrial Proteoforms Using an Integrated Top-Down and Intact-Mass Strategy. J Proteome Res 2018; 17:3526-3536. [PMID: 30180576 PMCID: PMC6201694 DOI: 10.1021/acs.jproteome.8b00469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of effective strategies for the comprehensive identification and quantification of proteoforms in complex systems is a critical challenge in proteomics. Proteoforms, the specific molecular forms in which proteins are present in biological systems, are the key effectors of biological function. Thus, knowledge of proteoform identities and abundances is essential to unraveling the mechanisms that underlie protein function. We recently reported a strategy that integrates conventional top-down mass spectrometry with intact-mass determinations for enhanced proteoform identifications and the elucidation of proteoform families and applied it to the analysis of yeast cell lysate. In the present work, we extend this strategy to enable quantification of proteoforms, and we examine changes in the abundance of murine mitochondrial proteoforms upon differentiation of mouse myoblasts to myotubes. The integrated top-down and intact-mass strategy provided an increase of ∼37% in the number of identified proteoforms compared to top-down alone, which is in agreement with our previous work in yeast; 1779 unique proteoforms were identified using the integrated strategy compared to 1301 using top-down analysis alone. Quantitative comparison of proteoform differences between the myoblast and myotube cell types showed 129 observed proteoforms exhibiting statistically significant abundance changes (fold change >2 and false discovery rate <5%).
Collapse
Affiliation(s)
- Leah V. Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anthony J. Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
50
|
Riley NM, Sikora JW, Seckler HS, Greer JB, Fellers RT, LeDuc RD, Westphall MS, Thomas PM, Kelleher NL, Coon JJ. The Value of Activated Ion Electron Transfer Dissociation for High-Throughput Top-Down Characterization of Intact Proteins. Anal Chem 2018; 90:8553-8560. [PMID: 29924586 DOI: 10.1021/acs.analchem.8b01638] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-throughput top-down proteomic experiments directly identify proteoforms in complex mixtures, making high quality tandem mass spectra necessary to deeply characterize proteins with many sources of variation. Collision-based dissociation methods offer expedient data acquisition but often fail to extensively fragment proteoforms for thorough analysis. Electron-driven dissociation methods are a popular alternative approach, especially for precursor ions with high charge density. Combining infrared photoactivation concurrent with electron transfer dissociation (ETD) reactions, i.e., activated ion ETD (AI-ETD), can significantly improve ETD characterization of intact proteins, but benefits of AI-ETD have yet to be quantified in high-throughput top-down proteomics. Here, we report the first application of AI-ETD to LC-MS/MS characterization of intact proteins (<20 kDa), highlighting improved proteoform identification the method offers over higher energy-collisional dissociation (HCD), standard ETD, and ETD followed by supplemental HCD activation (EThcD). We identified 935 proteoforms from 295 proteins from human colorectal cancer cell line HCT116 using AI-ETD compared to 1014 proteoforms, 915 proteoforms, and 871 proteoforms with HCD, ETD, and EThcD, respectively. Importantly, AI-ETD outperformed each of the three other methods in MS/MS success rates and spectral quality metrics (e.g., sequence coverage achieved and proteoform characterization scores). In all, this four-method analysis offers the most extensive comparisons to date and demonstrates that AI-ETD both increases identifications over other ETD methods and improves proteoform characterization via higher sequence coverage, positioning it as a premier method for high-throughput top-down proteomics.
Collapse
Affiliation(s)
| | - Jacek W Sikora
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Henrique S Seckler
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Joseph B Greer
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | | | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Joshua J Coon
- Morgridge Institute for Research , Madison , Wisconsin 53706 , United States
| |
Collapse
|