1
|
Gramberg S, Puckelwaldt O, Schmitt T, Lu Z, Haeberlein S. Spatial transcriptomics of a parasitic flatworm provides a molecular map of drug targets and drug resistance genes. Nat Commun 2024; 15:8918. [PMID: 39414795 PMCID: PMC11484910 DOI: 10.1038/s41467-024-53215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The spatial organization of gene expression dictates tissue functions in multicellular parasites. Here, we present the spatial transcriptome of a parasitic flatworm, the common liver fluke Fasciola hepatica. We identify gene expression profiles and marker genes for eight distinct tissues and validate the latter by in situ hybridization. To demonstrate the power of our spatial atlas, we focus on genes with substantial medical importance, including vaccine candidates (Ly6 proteins) and drug resistance genes (glutathione S-transferases, ABC transporters). Several of these genes exhibit unique expression patterns, indicating tissue-specific biological functions. Notably, the prioritization of tegumental protein kinases identifies a PKCβ, for which small-molecule targeting causes parasite death. Our comprehensive gene expression map provides unprecedented molecular insights into the organ systems of this complex parasitic organism, serving as a valuable tool for both basic and applied research.
Collapse
Affiliation(s)
- Svenja Gramberg
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Schmitt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhigang Lu
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Manikantan V, Ripley NE, Nielsen MK, Dangoudoubiyam S. Protein profile of extracellular vesicles derived from adult Parascaris spp. Parasit Vectors 2024; 17:426. [PMID: 39390471 PMCID: PMC11468347 DOI: 10.1186/s13071-024-06502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parascaris spp. represent a significant threat to equine health worldwide, particularly in foals. The long-term survival of parasites in the host necessitates persistent modulation of the host immune response. Intercellular communication achieved through the exchange of molecules via extracellular vesicles (EVs) released from the parasite could be a crucial factor in this regard. This study aimed to isolate and characterize EVs released by adult male and female Parascaris worms and conduct a proteomic analysis to identify sex-specific proteins and potential immunomodulatory factors. METHODS Live adult Parascaris worms were collected, and EVs were isolated from spent culture media using differential ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy confirmed the size, concentration, and morphology of the isolated EVs. Proteins within the isolated EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). RESULTS Proteomic analysis revealed a total of 113 proteins in Parascaris EVs, with several proteins showing homology to known helminth exosome proteins and exhibiting immunomodulatory functions. Sex-specific differences in EV protein composition were observed, with a distinct abundance of C-type lectins in female EVs, suggesting potential sex-specific roles or regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed metabolic pathways shared between male and female Parascaris EVs, as well as differences in signal transduction, and cell growth and death pathways, indicating sex-specific variations. CONCLUSIONS These findings imply that Parascaris EVs and their protein cargo are complex. This data potentially opens avenues for discovering innovative approaches to managing and understanding helminth infection.
Collapse
Affiliation(s)
- Vishnu Manikantan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Nichol E Ripley
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Sriveny Dangoudoubiyam
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Bąska P, Majewska A, Zygner W, Długosz E, Wiśniewski M. Fasciola hepatica Excretory-Secretory Products ( Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens 2024; 13:854. [PMID: 39452725 PMCID: PMC11510385 DOI: 10.3390/pathogens13100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is also considered a zoonosis of great significance and a problem for public health affecting 2.4 million people worldwide. Nevertheless, besides the negative aspects of infestation, the antigens released by the fluke, F. hepatica Excretory-Secretory Products (Fh-ES) contain several immunomodulatory molecules that may be beneficial during the course of type I diabetes, multiple sclerosis, ulcerative colitis, or septic shock. This phenomenon is based on the natural abilities of adult F. hepatica to suppress proinflammatory responses. To underline the molecular basis of these mechanisms and determine the role of microRNA (miRNA) in the process, lipopolysaccharide (LPS)-activated THP-1 macrophages were stimulated with Fh-ES, followed by miRNA microarray analyses. Surprisingly, no results indicating changes in the miRNA expression profile were noted (p < 0.05). We discuss potential reasons for these results, which may be due to insufficient sensitivity to detect slight changes in miRNA expression or the possibility that these changes are not regulated by miRNA. Despite the negative data, this work may contribute to the future planning of experiments by other researchers.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159b, 02-776 Warsaw, Poland;
| | - Wojciech Zygner
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Ewa Długosz
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| |
Collapse
|
4
|
Barnadas-Carceller B, Del Portillo HA, Fernandez-Becerra C. Extracellular vesicles as biomarkers in parasitic disease diagnosis. CURRENT TOPICS IN MEMBRANES 2024; 94:187-223. [PMID: 39370207 DOI: 10.1016/bs.ctm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Pinheiro AAS, Torrecilhas AC, Souza BSDF, Cruz FF, Guedes HLDM, Ramos TD, Lopes‐Pacheco M, Caruso‐Neves C, Rocco PRM. Potential of extracellular vesicles in the pathogenesis, diagnosis and therapy for parasitic diseases. J Extracell Vesicles 2024; 13:e12496. [PMID: 39113589 PMCID: PMC11306921 DOI: 10.1002/jev2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.
Collapse
Affiliation(s)
- Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasDiadema Campus, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaSão PauloBrazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell TherapySão Rafael HospitalSalvadorBrazil
- D'Or Institute for Research and Education (IDOR)SalvadorBrazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Tadeu Diniz Ramos
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Miqueias Lopes‐Pacheco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Deparment of PediatricsCenter for Cystic Fibrosis and Airway Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Celso Caruso‐Neves
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| | - Patricia R. M. Rocco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| |
Collapse
|
7
|
O'Kelly E, Cwiklinski K, De Marco Verissimo C, Calvani NED, López Corrales J, Jewhurst H, Flaus A, Lalor R, Serrat J, Dalton JP, González-Miguel J. Moonlighting on the Fasciola hepatica tegument: Enolase, a glycolytic enzyme, interacts with the extracellular matrix and fibrinolytic system of the host. PLoS Negl Trop Dis 2024; 18:e0012069. [PMID: 39213442 PMCID: PMC11392403 DOI: 10.1371/journal.pntd.0012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.
Collapse
Affiliation(s)
- Eve O'Kelly
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | | | | | - Jesús López Corrales
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Natural Science, University of Galway, H91 TK33 Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - John P Dalton
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
8
|
Zhang X, Yu C, Song L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens 2024; 13:623. [PMID: 39204224 PMCID: PMC11357678 DOI: 10.3390/pathogens13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Exosomes are membrane-bound structures released by cells into the external environment that carry a significant amount of important cargo, such as proteins, DNA, RNA, and lipids. They play a crucial role in intercellular communication. Parasites have complex life cycles and can release exosomes at different stages. Exosomes released by parasitic pathogens or infected cells contain parasitic nucleic acids, antigenic molecules, virulence factors, drug-resistant proteins, proteases, lipids, etc. These components can regulate host gene expression across species or modulate signaling pathways, thereby dampening or activating host immune responses, causing pathological damage, and participating in disease progression. This review focuses on the means by which parasitic exosomes modulate host immune responses, elaborates on the pathogenic mechanisms of parasites, clarifies the interactions between parasites and hosts, and provides a theoretical basis and research directions for the prevention and treatment of parasitic diseases.
Collapse
Affiliation(s)
| | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| |
Collapse
|
9
|
Rojas A, Regev-Rudzki N. Biogenesis of extracellular vesicles from the pathogen perspective: Transkingdom strategies for delivering messages. Curr Opin Cell Biol 2024; 88:102366. [PMID: 38705049 DOI: 10.1016/j.ceb.2024.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
EVs are nanoparticles enclosing proteins, nucleic acids and lipids released by cells and are essential for their metabolism and useful for intercellular communication. The importance of EVs has been highlighted by their use as biomarkers or as vaccine antigens. The release of vesicles is exploited by a wide range of organisms: from unicellular bacteria or protozoa to multicellular prokaryotes like fungi, helminths and arthropods. The mechanisms elucidated to date in each biological group are presented, as well as a discussion of interesting directions for future EV studies.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San José, 11501-2060, Costa Rica; Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, 11501-2060, Costa Rica.
| | - Neta Regev-Rudzki
- Department of Biochemical Sciences, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
10
|
Riera-Ferrer E, Mazanec H, Mladineo I, Konik P, Piazzon MC, Kuchta R, Palenzuela O, Estensoro I, Sotillo J, Sitjà-Bobadilla A. An inside out journey: biogenesis, ultrastructure and proteomic characterisation of the ectoparasitic flatworm Sparicotyle chrysophrii extracellular vesicles. Parasit Vectors 2024; 17:175. [PMID: 38570784 PMCID: PMC10993521 DOI: 10.1186/s13071-024-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.
Collapse
Affiliation(s)
- Enrique Riera-Ferrer
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Hynek Mazanec
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre Czech Academy of Sciences (BC CAS), České Budějovice, Czech Republic
| | - Peter Konik
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Roman Kuchta
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Oswaldo Palenzuela
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| |
Collapse
|
11
|
Chowdhury S, Sais D, Donnelly S, Tran N. The knowns and unknowns of helminth-host miRNA cross-kingdom communication. Trends Parasitol 2024; 40:176-191. [PMID: 38151361 DOI: 10.1016/j.pt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
12
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
13
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
14
|
Sais D, Chowdhury S, Dalton JP, Tran N, Donnelly S. Both host and parasite non-coding RNAs co-ordinate the regulation of macrophage gene expression to reduce pro-inflammatory immune responses and promote tissue repair pathways during infection with fasciola hepatica. RNA Biol 2024; 21:62-77. [PMID: 39344634 PMCID: PMC11445894 DOI: 10.1080/15476286.2024.2408706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Parasitic worms (helminths) establish chronic infection within mammalian hosts by strategically regulating their host's immune responses. Deciphering the mechanisms by which host non-coding RNAs (ncRNA) co-ordinate the activation and regulation of immune cells is essential to understanding host immunity and immune-related pathology. It is also important to comprehend how pathogens secrete specific ncRNAs to manipulate gene expression of host immune cells and influence their response to infection. To investigate the contribution of both host and helminth derived ncRNAs to the activation and/or regulation of innate immune responses during a parasite infection, we examined ncRNA expression in the peritoneal macrophages from mice infected with Fasciola hepatica. We discovered the presence of several parasitic-derived miRNAs within host macrophages at 6 hrs and 18 hrs post infection. Target prediction analysis showed that these Fasciola miRNAs regulate host genes associated with the activation of host pro-inflammatory macrophages. Concomitantly, there was a distinct shift in host ncRNA expression, which was significant at 5 days post-infection. Prediction analysis suggested that these host ncRNAs target a different cohort of host genes compared to the parasite miRNAs, although the functional outcome was predicted to be similar i.e. reduced pro-inflammatory response and the promotion of a reparative/tolerant phenotype. Taken together, these observations uncover the interplay between host and parasitic ncRNAs and reveal a complementary regulation of the immune response that allows the parasite to evade immune detection and promote tissue repair for the host. These findings will provide a new understanding of the molecular interaction between parasites and host.
Collapse
Affiliation(s)
- Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sumaiya Chowdhury
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - John. P. Dalton
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
De Marco Verissimo C, Cwiklinski K, Nilsson J, Mirgorodskaya E, Jin C, Karlsson NG, Dalton JP. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol Cell Proteomics 2023; 22:100684. [PMID: 37993102 PMCID: PMC10755494 DOI: 10.1016/j.mcpro.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland.
| | - Krystyna Cwiklinski
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - John P Dalton
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
16
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
17
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
18
|
Khosravi M, Mohammad Rahimi H, Nazari A, Baghaei K, Asadzadeh Aghdaei H, Shahrokh S, Sharifdini M, Torrecilhas AC, Mehryab F, Mirjalali H, Shekari F, Zali MR. Characterisation of extracellular vesicles isolated from hydatid cyst fluid and evaluation of immunomodulatory effects on human monocytes. J Cell Mol Med 2023; 27:2614-2625. [PMID: 37530547 PMCID: PMC10468670 DOI: 10.1111/jcmm.17894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Hydatidosis is a disease caused by the larval stage of Echinococcus granulosus, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (IL1Β, IL15 and IL8) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and IL13 gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.
Collapse
Affiliation(s)
- Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Abdoreza Nazari
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil
| | - Fatemeh Mehryab
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Di Maggio LS, Fischer K, Yates D, Curtis KC, Rosa BA, Martin J, Erdmann-Gilmore P, Sprung RSW, Mitreva M, Townsend RR, Weil GJ, Fischer PU. The proteome of extracellular vesicles of the lung fluke Paragonimus kellicotti produced in vitro and in the lung cyst. Sci Rep 2023; 13:13726. [PMID: 37608002 PMCID: PMC10444896 DOI: 10.1038/s41598-023-39966-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Paragonimiasis is a zoonotic, food-borne trematode infection that affects 21 million people globally. Trematodes interact with their hosts via extracellular vesicles (EV) that carry protein and RNA cargo. We analyzed EV in excretory-secretory products (ESP) released by Paragonimus kellicotti adult worms cultured in vitro (EV ESP) and EV isolated from lung cyst fluid (EV CFP) recovered from infected gerbils. The majority of EV were approximately 30-50 nm in diameter. We identified 548 P. kellicotti-derived proteins in EV ESP by mass spectrometry and 8 proteins in EV CFP of which 7 were also present in EV ESP. No parasite-derived proteins were reliably detected in EV isolated from plasma samples. A cysteine protease (MK050848, CP-6) was the most abundant protein found in EV CFP in all technical and biological replicates. Immunolocalization of CP-6 showed strong labeling in the tegument of P. kellicotti and in the adjacent cyst and lung tissue that contained worm eggs. It is likely that CP-6 present in EV is involved in parasite-host interactions. These results provide new insights into interactions between Paragonimus and their mammalian hosts, and they provide potential clues for development of novel diagnostic tools and treatments.
Collapse
Affiliation(s)
- Lucia S Di Maggio
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devyn Yates
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kurt C Curtis
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce A Rosa
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, USA
| | - John Martin
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, USA
| | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert S W Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University of St. Louis School of Medicine, St. Louis, MO, USA
| | - R Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary J Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Becerro-Recio D, Serrat J, López-García M, Torres-Valle M, Colina F, Fernández IM, González-Miguel J, Siles-Lucas M. Study of the cross-talk between Fasciola hepatica juveniles and the intestinal epithelial cells of the host by transcriptomics in an in vitro model. Vet Parasitol 2023; 320:109981. [PMID: 37450963 DOI: 10.1016/j.vetpar.2023.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Fasciolosis is a globally widespread trematodiasis with a major economic and veterinary impact. Therefore, this disease is responsible for millions of dollars in losses to the livestock industry, and also constitutes an emerging human health problem in endemic areas. The ubiquitous nature of Fasciola hepatica, the main causative agent, is one of the key factors for the success of fasciolosis. Accordingly, this parasite is able to subsist in a wide variety of ecosystems and hosts, thanks to the development of a plethora of strategies for adaption and immune evasion. Fasciolosis comprises a growing concern due to its high prevalence rates, together with the emergence of strains of the parasite resistant to the treatment of choice (triclabendazole). These facts highlight the importance of developing novel control measures which allow for an effective protection against the disease before F. hepatica settles in a niche inaccessible to the immune system. However, knowledge about the initial phases of the infection, including the migration mechanisms of the parasite and the early innate host response, is still scarce. Recently, our group developed an in vitro host-parasite interaction model that allowed the early events to be unveiled after the first contact between the both actors. This occurs shortly upon ingestion of F. hepatica metacercariae and the emergence of the newly excysted juveniles (FhNEJ) in the host duodenum. Here, we present a transcriptomic analysis of such model using an approach based on RNA sequencing (RNA-Seq), which reveals changes in gene expression related to proteolysis and uptake of metabolites in FhNEJ. Additionally, contact with the parasite triggered changes in host intestinal cells related to pseudogenes expression and host defence mechanisms, including immune response, among others. In sum, these results provide a better understanding of the early stages of fasciolosis at molecular level, and a pool of targets that could be used in future therapeutic strategies against the disease.
Collapse
Affiliation(s)
- David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Marta López-García
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Francisco Colina
- Institute of Plant Molecular Biology, Centre for Biology, Academy of Sciences of the Czech Republic (ASCR), České Budějovice, Czechia
| | - Iván M Fernández
- Plant-Microorganism Interactions Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| |
Collapse
|
21
|
Wang T, Koukoulis TF, Vella LJ, Su H, Purnianto A, Nie S, Ang CS, Ma G, Korhonen PK, Taki AC, Williamson NA, Reid GE, Gasser RB. The Proteome and Lipidome of Extracellular Vesicles from Haemonchus contortus to Underpin Explorations of Host-Parasite Cross-Talk. Int J Mol Sci 2023; 24:10955. [PMID: 37446130 DOI: 10.3390/ijms241310955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.
Collapse
Affiliation(s)
- Tao Wang
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiana F Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura J Vella
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Guangxu Ma
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pasi K Korhonen
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Aya C Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Pakharukova MY, Savina E, Ponomarev DV, Gubanova NV, Zaparina O, Zakirova EG, Cheng G, Tikhonova OV, Mordvinov VA. Proteomic characterization of Opisthorchis felineus exosome-like vesicles and their uptake by human cholangiocytes. J Proteomics 2023; 283-284:104927. [PMID: 37225040 DOI: 10.1016/j.jprot.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/18/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The epidemiologically important food-borne trematode Opisthorchis felineus infests the liver biliary tract of fish-eating mammals and causes disorders, including bile duct neoplasia. Many parasitic species release extracellular vesicles (EVs) that mediate host-parasite interaction. Currently, there is no information on O. felineus EVs. Using gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry, we aimed to characterize the proteome of EVs released by the adult O. felineus liver fluke. Differential abundance of proteins between whole adult worms and EVs was assessed by semiquantitative iBAQ (intensity-based absolute quantification). Imaging, flow cytometry, inhibitor assays, and colocalization assays were performed to monitor the uptake of the EVs by H69 human cholangiocytes. The proteomic analysis reliably identified 168 proteins (at least two peptides matched a protein). Among major proteins of EVs were ferritin, tetraspanin CD63, helminth defense molecule 1, globin 3, saposin B type domain-containing protein, 60S ribosomal protein, glutathione S-transferase GST28, tubulin, and thioredoxin peroxidase. Moreover, as compared to the whole adult worm, EVs proved to be enriched with tetraspanin CD63, saposin B, helminth defense molecule 1, and Golgi-associated plant pathogenesis-related protein 1 (GAPR1). We showed that EVs are internalized by human H69 cholangiocytes via clathrin-dependent endocytosis, whereas phagocytosis and caveolin-dependent endocytosis do not play a substantial role in this process. Our study describes for the first time proteomes and differential abundance of proteins in whole adult O. felineus worms and EVs released by this food-borne trematode. Studies elucidating the regulatory role of individual components of EVs of liver flukes should be continued to determine which components of EV cargo play the most important part in the pathogenesis of fluke infection and in a closely linked pathology: bile duct neoplasia. SIGNIFICANCE: The food-borne trematode Opisthorchis felineus is a pathogen that causes hepatobiliary disorders in humans and animals. Our study describes for the first time the release of EVs by the liver fluke O. felineus, their microscopic and proteomic characterization, and internalization pathways by human cholangiocytes. Differential abundance of proteins between whole adult worms and EVs was assessed. EVs are enriched with canonical EV markers as well as parasite specific proteins, i.e. tetraspanin CD63, saposin B, helminth defense molecule 1, and others. Our findings will form the basis of the search for potential immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases, as well as novel vaccine candidates.
Collapse
Affiliation(s)
- Maria Y Pakharukova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| | - Ekaterina Savina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry V Ponomarev
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Natalya V Gubanova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Elvira G Zakirova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Genetic Technologies, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Chaiyadet S, Sotillo J, Smout M, Cooper M, Doolan DL, Waardenberg A, Eichenberger RM, Field M, Brindley PJ, Laha T, Loukas A. Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540805. [PMID: 37292777 PMCID: PMC10245807 DOI: 10.1101/2023.05.22.540805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Ashley Waardenberg
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Current affiliation: i-Synapse, Cairns, QLD, Australia
| | - Ramon M Eichenberger
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matt Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
24
|
Serrat J, Becerro-Recio D, Torres-Valle M, Simón F, Valero MA, Bargues MD, Mas-Coma S, Siles-Lucas M, González-Miguel J. Fasciola hepatica juveniles interact with the host fibrinolytic system as a potential early-stage invasion mechanism. PLoS Negl Trop Dis 2023; 17:e0010936. [PMID: 37083884 PMCID: PMC10155961 DOI: 10.1371/journal.pntd.0010936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The trematode Fasciola hepatica is the most widespread causative agent of fasciolosis, a parasitic disease that mainly affects humans and ruminants worldwide. During F. hepatica infection, newly excysted juveniles (FhNEJ) emerge in the duodenum of the mammalian host and migrate towards their definitive location, the intra-hepatic biliary ducts. Understanding how F. hepatica traverses the intestinal wall and migrates towards the liver is pivotal for the development of more successful strategies against fasciolosis. The central enzyme of the mammalian fibrinolytic system is plasmin, a serine protease whose functions are exploited by a number of parasite species owing to its broad spectrum of substrates, including components of tissue extracellular matrices. The aim of the present work is to understand whether FhNEJ co-opt the functions of their host fibrinolytic system as a mechanism to facilitate trans-intestinal migration. METHODOLOGY/PRINCIPAL FINDINGS A tegument-enriched antigenic extract of FhNEJ (FhNEJ-Teg) was obtained in vitro, and its capability to bind the zymogen plasminogen (PLG) and enhance its conversion to the active protease, plasmin, were analyzed by a combination of enzyme-linked immunosorbent, chromogenic and immunofluorescence assays. Additionally, PLG-binding proteins in FhNEJ-Teg were identified by bidimensional electrophoresis coupled to mass spectrometry analysis, and the interactions were validated using FhNEJ recombinant proteins. CONCLUSIONS/SIGNIFICANCE Our results show that FhNEJ-Teg contains proteins that bind PLG and stimulate its activation to plasmin, which could facilitate the traversal of the intestinal wall by FhNEJ and contribute to the successful establishment of the parasite within its mammalian host. Altogether, our findings contribute to a better understanding of host-parasite relationships during early fasciolosis and may be exploited from a pharmacological and/or immunological perspective for the development of treatment and control strategies against this global disease.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - María Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - María Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
25
|
Sheng ZA, Wu CL, Wang DY, Zhong SH, Yang X, Rao GS, Peng H, Feng SW, Li J, Huang WY, Luo HL. Proteomic analysis of exosome-like vesicles from Fasciola gigantica adult worm provides support for new vaccine targets against fascioliasis. Parasit Vectors 2023; 16:62. [PMID: 36765398 PMCID: PMC9921414 DOI: 10.1186/s13071-023-05659-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) released by helminths play an important role in parasite-host communication. However, little is known about the characteristics and contents of the EVs of Fasciola gigantica, a parasitic flatworm that causes tropical fascioliasis. A better understanding of EVs released by F. gigantica will help elucidate the mechanism of F. gigantica-host interaction and facilitate the search for new vaccine candidates for the control and treatment of fascioliasis. METHODS Two different populations of EVs (15k EVs and 100k EVs) were purified from adult F. gigantica culture media by ultracentrifugation. The morphology and size of the purified EVs were determined by transmission electron microscopy (TEM) and by the Zetasizer Nano ZSP high performance particle characterization system. With the aim of identifying diagnostic markers or potential vaccine candidates, proteins within the isolated 100k EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). Mice were then vaccinated with excretory/secretory products (ESPs; depleted of EVs), 15k EVs, 100k EVs and recombinant F. gigantica heat shock protein 70 (rFg-HSP70) combined with alum adjuvant followed by challenge infection with F. gigantica metacercariae. Fluke recovery and antibody levels were used as measures of vaccine protection. RESULTS TEM analysis and nanoparticle tracking analysis indicated the successful isolation of two subpopulations of EVs (15k EVs and 100k EVs) from adult F. gigantica culture supernatants using differential centrifugation. A total of 755 proteins were identified in the 100k EVs. Exosome biogenesis or vesicle trafficking proteins, ESCRT (endosomal sorting complex required for transport) pathway proteins and exosome markers, heat shock proteins and 14-3-3 proteins were identified in the 100k EVs. These results indicate that the isolated 100k EVs were exosome-like vesicles. The functions of the identified proteins may be associated with immune regulation, immune evasion and virulence. Mice immunized with F. gigantica ESPs, 15k EVs, 100k EVs and rFg-HSP70 exhibited a reduction in fluke burden of 67.90%, 60.38%, 37.73% and 56.6%, respectively, compared with the adjuvant control group. The vaccination of mice with F. gigantica 100k EVs, 15k EVs, ESP and rFg-HSP70 induced significant production of specific immunoglobulins in sera, namely IgG, IgG1 and IgG2a. CONCLUSION The results of this study suggest that proteins within the exosome-like vesicles of F. gigantica have immunomodulatory, immune evasion and virulence functions. This knowledge may lead to new strategies for immunotherapy, vaccination and the diagnosis of fascioliasis.
Collapse
Affiliation(s)
- Zhao-An Sheng
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China ,grid.449428.70000 0004 1797 7280Department of Pathogenic Biology, Jining Medical University, Shandong, People’s Republic of China
| | - Cui-Lan Wu
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Dong-Ying Wang
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Shu-Hong Zhong
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Xi Yang
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China ,Yuxi Animal Disease Prevention and Control Center, Yuxi, People’s Republic of China
| | - Guo-Shun Rao
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Hao Peng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Shi-Wen Feng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, People's Republic of China. .,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, People's Republic of China.
| | - Wei-Yi Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| | - Hong-Lin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| |
Collapse
|
26
|
Cwiklinski K, Dalton JP. Omics tools enabling vaccine discovery against fasciolosis. Trends Parasitol 2022; 38:1068-1079. [PMID: 36270885 DOI: 10.1016/j.pt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health (MPL), Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
27
|
Cathepsin L-containing exosomes from α-synuclein-activated microglia induce neurotoxicity through the P2X7 receptor. NPJ Parkinsons Dis 2022; 8:127. [PMID: 36202834 PMCID: PMC9537534 DOI: 10.1038/s41531-022-00394-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Uncontrolled microglial activation is pivotal to the pathogenesis of Parkinson's disease (PD), which can secrete Cathepsin L (CTSL) to affect the survival of neurons in the PD patients; however, the precise mechanism has yet to be determined. We demonstrated for the first time that CTSL was mostly released by exosomes derived from α-Syn-activated microglia, resulting in neuronal damage and death. The elevation of CTSL activity was blocked by GW4869, suggesting a critical role for exosomes in mediating CTSL release. Furthermore, the P2X7R/PI3K/AKT signalling pathway was identified as the underlying molecular mechanism since specific antagonists of this signalling pathway, P2X7R knockdown and exosome release inhibitors significantly reduced the injury to cultured mouse cortical neurons. Our study suggests that increased extracellular release of CTSL from α-Syn-activated microglia through exosomes amplifies and aggravates of the neurotoxic effect of microglia, implying that CTSL may be involved in a fresh mechanism of PD pathogenesis, and serve as a potential biomarker and a target for PD drug development.
Collapse
|
28
|
Two Distinct Superoxidase Dismutases (SOD) Secreted by the Helminth Parasite Fasciola hepatica Play Roles in Defence against Metabolic and Host Immune Cell-Derived Reactive Oxygen Species (ROS) during Growth and Development. Antioxidants (Basel) 2022; 11:antiox11101968. [PMID: 36290692 PMCID: PMC9598480 DOI: 10.3390/antiox11101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory–secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host’s immune response to benefit its survival.
Collapse
|
29
|
Robinson MW, Sotillo J. Foodborne trematodes: old foes, new kids on the block and research perspectives for control and understanding host-parasite interactions. Parasitology 2022; 149:1257-1261. [PMID: 35734871 PMCID: PMC11010571 DOI: 10.1017/s0031182022000877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Foodborne trematodes (FBTs) have a worldwide distribution (with particular prevalence in south-east Asia) and are believed to infect almost 75 million people, with millions more living at risk of infection. Although mortality due to trematodiasis is low, these infections cause considerable morbidity and some species are associated with the development of cancer in hyperendemic regions. Despite this, FBTs are often side-lined in terms of research funding and have been dubbed neglected tropical diseases by the World Health Organisation. Thus, the aim of this special issue was to provide an update of our understanding of FBT infections, to shine a light on current work in the field and to highlight some research priorities for the future. With contributions from leading researchers, many from endemic regions, we review the major FBT species. In doing so we revisit some old foes, uncover emerging infections and discover how outbreaks are being dealt with as a result of new approaches to parasite control. We also report advances in our understanding of the interactions of FBTs with their mammalian hosts and uncover new interplay between trematodes and host microbiome components. We hope that this article collection will stimulate discussion and further research on the FBTs and help raise them from their neglected status.
Collapse
Affiliation(s)
- Mark W. Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
30
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
31
|
Di Maggio LS, Curtis KC, Erdmann-Gilmore P, Sprung RSW, Townsend RR, Weil GJ, Fischer PU. Comparative proteomics of adult Paragonimus kellicotti excretion/secretion products released in vitro or present in the lung cyst nodule. PLoS Negl Trop Dis 2022; 16:e0010679. [PMID: 35976975 PMCID: PMC9423667 DOI: 10.1371/journal.pntd.0010679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Paragonimus kellicotti is a zoonotic lung fluke infection, the agent of North American paragonimiasis, and an excellent model for other Paragonimus infections. The excretory/secretory proteins (ESP) released by parasites and presented at the parasite-host interface are frequently proposed to be useful targets for drugs and/or vaccines In vitro culture conditions may alter ESP compared to those produced in vivo. In order to investigate ESPs produced in vivo we took advantage of the fact that adult P. kellicotti reproduce in the lungs of experimentally infected gerbils in tissue cysts. We performed a mass-spectrometric analysis of adult P. kellicotti soluble somatic protein (SSPs) extracts, excreted/secreted proteins (ESPs) produced by adult worms during in vitro culture, and lung cyst fluid proteins (CFPs) from experimentally infected gerbils. We identified 2,137 P. kellicotti proteins that were present in at least two of three biological replicates and supported by at least two peptides. Among those were 1,914 proteins found in SSP, 947 in ESP and 37 in CFP. In silico analysis predicted that only 141 of the total 2,137 proteins were secreted via classical or non-classical pathways. The most abundant functional categories in SSP were storage and oxidative metabolism. The most abundant categories in ESP were proteins related to metabolism and signal transduction. The 37 parasite-related proteins in CFP belonged to 11 functional categories. The largest groups were proteins with unknown function, cytoskeletal proteins and proteasome machinery. 29 of these 37 proteins were shared among all three sample types. To our knowledge, this is the first study that compares in vitro and in vivo ESP for any Paragonimus species. This study has provided new insights into ESPs of food-borne trematodes that are produced and released in vivo. Proteins released at the host-parasite interface may help the parasite evade host immunity and may represent new targets for novel treatments or diagnostic tests for paragonimiasis.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt C. Curtis
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert S. W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
32
|
Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol 2022; 101:151229. [DOI: 10.1016/j.ejcb.2022.151229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 12/19/2022] Open
|
33
|
Attia MM, Saad MF, Khalf MA. Milk tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interferon (IFN-γ) and oxidative stress markers as new indicators for fascioliasis in dairy water buffaloes. Microb Pathog 2022; 169:105672. [PMID: 35817281 DOI: 10.1016/j.micpath.2022.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Sixty Bubaline milk samples with corresponding blood samples were obtained from flocks at random in Cairo and Giza Governorates. The aerobic bacteria & somatic cells were counted and evaluated the physicochemical parameters of milk. Both milk and serum of buffaloes' were evaluated for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interferon (IFN-ɤ) by quantitative real-time PCR protocol, and oxidative stress markers were measured spectrophotometrically. There was a significant difference (p < 0.05) between the mean values of whole milk physicochemical aspects except the moisture % & pH values were recorded for infested and non-infested animals. For F. gigantica infested animals, the milk TNF-α, IL-1β, interferon IFN-γ, malondialdehyde (MDA), and total antioxidant capacity (TAC) values were 17.5 ± 0.67, 18.5 ± 0.71, 19.25 ± 0.74, 7.75 ± 0.29, and 1.1 ± 0.04, respectively (lesser than serum values) with a significant difference (p < 0.05) between positive and negative samples for both examined serum and milk samples. There was also a significant (p < 0.05) negative relationship between MSCC & fat% and protein%, while a significant (p < 0.05) positive relationship between MSCC and the investigated milk cytokines in F. gigantica infested animals. This study is considered one of the fewest investigations of milk cytokines and oxidative stress markers in buffaloes fascioliasis diagnosis. Meanwhile, monitoring these genes modification that is active in the milk-producing gland is significant to typify the act technicality of the inherited immunity that helps the progress of schemes to retain the udder health.
Collapse
Affiliation(s)
| | | | - Mahmoud A Khalf
- Veterinary Hygiene and Management department, Faculty of Veterinary Medicine, Cairo University, Giza, P.O Box 12211, Egypt
| |
Collapse
|
34
|
Rooney J, Northcote HM, Williams TL, Cortés A, Cantacessi C, Morphew RM. Parasitic helminths and the host microbiome - a missing 'extracellular vesicle-sized' link? Trends Parasitol 2022; 38:737-747. [PMID: 35820945 DOI: 10.1016/j.pt.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Infections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk. Here, we explore knowledge of helminth EVs with an emphasis on their putative antimicrobial properties, and we argue that (i) an enhanced understanding of the mechanisms governing such interactions might assist the discovery and development of novel strategies of parasite control, and that (ii) the identification and characterisation of helminth molecules with antimicrobial properties might pave the way towards the discovery of novel antibiotics, thus aiding the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Holly M Northcote
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot 46100, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK.
| |
Collapse
|
35
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
36
|
Gao X, Yang Y, Liu X, Xu F, Wang Y, Liu L, Yang Y, Liu M, Bai X. Extracellular vesicles from Trichinella spiralis: Proteomic analysis and protective immunity. PLoS Negl Trop Dis 2022; 16:e0010528. [PMID: 35737719 PMCID: PMC9258885 DOI: 10.1371/journal.pntd.0010528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/06/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Trichinella spiralis (T. spiralis) derived extracellular vesicles (EVs) have been proposed to play a key role in regulating the host immune responses. In this study, we provided the first investigation of EVs proteomics released by T. spiralis muscle larvae (ML). T. spiralis ML EVs (Ts-ML-EVs) were successfully isolated and characterized by transmission electron microscopy (TEM) and western blotting. Using liquid chromatograph mass spectrometer (LC-MS/MS) analysis, we identified 753 proteins in the Ts-ML-EVs proteome and annotated by gene ontology (GO). These proteins were enriched in different categories by GO, kyoto encyclopedia of genes and genomes (KEGG) and domain analysis. GO enrichment analysis indicated association of protein deglutathionylation, lysosomal lumen and serine-type endopeptidase inhibitor activity with proteins which may be helpful during parasite-host interaction. Moreover, KEGG enrichment analysis revealed involvement of Ts-ML-EVs proteins in other glycan degradation, complement and coagulation cascades, proteasome and various metabolism pathways. In addition, BALB/c mice were immunized by subcutaneous injection of purified Ts-ML-EVs. Ts-ML-EVs group demonstrated a 23.4% reduction in adult worms and a 43.7% reduction in ML after parasite challenge. Cellular and humoral immune responses induced by Ts-ML-EVs were detected, including the levels of specific antibodies (IgG, IgM, IgE, IgG1 and IgG2a) as well as cytokines (IL-12, IFN-γ, IL-4 and IL-10) in serum. The results showed that Ts-ML-EVs could induce a Th1/Th2 mixed immune response with Th2 predominant. This study revealed a potential role of Ts-ML-EVs in T. spiralis biology, particularly in the interaction with host. This work provided a critical step to against T. spiralis infection based on Ts-ML-EVs. Extracellular vesicles (EVs) play an important role in cell-cell communication. They can transport functional molecules to target tissues and cells. During parasite infection, EVs provide suitable diagnostic makers and vaccine antigens for as well as inducing host immune responses. In Trichinella spiralis (T. spiralis), we previous proved that Ts-ML-EVs exerted immunomodulatory effect that inhibited experimental colitis in mice. Based on these results, we tested the protein composition of Ts-ML-EVs and the immune protective effect of Ts-ML-EVs. Our study showed that Ts-ML-EVs contained a number of immune-related proteins and it could be potential vaccine antigen for preventing T. spiralis infection.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fengyan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer, Yunnan, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (ML); (XB)
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (ML); (XB)
| |
Collapse
|
37
|
Trelis M, Sánchez-López CM, Sánchez-Palencia LF, Ramírez-Toledo V, Marcilla A, Bernal D. Proteomic Analysis of Extracellular Vesicles From Fasciola hepatica Hatching Eggs and Juveniles in Culture. Front Cell Infect Microbiol 2022; 12:903602. [PMID: 35719328 PMCID: PMC9203882 DOI: 10.3389/fcimb.2022.903602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023] Open
Abstract
The identification of extracellular vesicles (EVs) in Fasciola hepatica has provided a new way to understand parasite-host communication. Most of the studies on EVs have focused on the adult stage of F. hepatica, but recently, the presence of EVs from different developmental stages has been reported. To better understand the potential role of EVs in the biology of the parasite and in the infection process, the protein cargo of EVs from embryonated eggs and newly-excysted juvenile (NEJs) flukes cultured up to 28 days, has been analyzed. EVs were isolated by size exclusion chromatography and evaluated by nanoparticle tracking analysis and transmission electron microscopy. LC-MS/MS proteomic analysis of EVs revealed the presence of 23 different proteins from embryonated egg-derived EVs and 29 different proteins from NEJ-derived EVs. Most of the identified proteins had been previously described in EVs from F. hepatica adults, including cytoskeletal proteins, glycolytic enzymes, stress-related proteins and tetraspanins. Nevertheless, EVs from hatching eggs and NEJs exhibited qualitative differences in composition, when compared to EVs form adults, including the absence of cathepsin cysteine peptidases. The differential content of the EVs released by the different developmental stages of the parasite reflect the intense activity of NEJs at this early stage, with several proteins involved in membrane traffic and cell physiology. This new set of identified proteins could help to understand key metabolic, biochemical and molecular mechanisms mediated by EVs that take place upon egg hatching and after parasite excystment.
Collapse
Affiliation(s)
- María Trelis
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Christian M. Sánchez-López
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Liz F. Sánchez-Palencia
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
| | | | - Antonio Marcilla
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Valencia, Spain
- *Correspondence: Dolores Bernal,
| |
Collapse
|
38
|
Bennett APS, de la Torre-Escudero E, Dermott SSE, Threadgold LT, Hanna REB, Robinson MW. Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism. Int J Mol Sci 2022; 23:ijms23105525. [PMID: 35628335 PMCID: PMC9143473 DOI: 10.3390/ijms23105525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke, Fasciola hepatica, is an obligate blood-feeder, and the gastrodermal cells of the parasite form the interface with the host’s blood. Despite their importance in the host–parasite interaction, in-depth proteomic analysis of the gastrodermal cells is lacking. Here, we used laser microdissection of F. hepatica tissue sections to generate unique and biologically exclusive tissue fractions of the gastrodermal cells and tegument for analysis by mass spectrometry. A total of 226 gastrodermal cell proteins were identified, with proteases that degrade haemoglobin being the most abundant. Other detected proteins included those such as proton pumps and anticoagulants which maintain a microenvironment that facilitates digestion. By comparing the gastrodermal cell proteome and the 102 proteins identified in the laser microdissected tegument with previously published tegument proteomic datasets, we showed that one-quarter of proteins (removed by freeze–thaw extraction) or one-third of proteins (removed by detergent extraction) previously identified as tegumental were instead derived from the gastrodermal cells. Comparative analysis of the laser microdissected gastrodermal cells, tegument, and F. hepatica secretome revealed that the gastrodermal cells are the principal source of secreted proteins, as well as showed that both the gastrodermal cells and the tegument are likely to release subpopulations of extracellular vesicles (EVs). Microscopical examination of the gut caeca from flukes fixed immediately after their removal from the host bile ducts showed that selected gastrodermal cells underwent a progressive thinning of the apical plasma membrane which ruptured to release secretory vesicles en masse into the gut lumen. Our findings suggest that gut-derived EVs are released via a novel atypical secretory route and highlight the importance of the gastrodermal cells in nutrient acquisition and possible immunomodulation by the parasite.
Collapse
Affiliation(s)
- Adam P. S. Bennett
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Eduardo de la Torre-Escudero
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Susan S. E. Dermott
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Lawrence T. Threadgold
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Robert E. B. Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, UK;
| | - Mark W. Robinson
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
- Correspondence: ; Tel.: +44-(0)28-9097-2120
| |
Collapse
|
39
|
Bağcı C, Sever-Bahcekapili M, Belder N, Bennett APS, Erdener ŞE, Dalkara T. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. NEUROPHOTONICS 2022; 9:021903. [PMID: 35386596 PMCID: PMC8978261 DOI: 10.1117/1.nph.9.2.021903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are nanoparticles (30 to 1000 nm in diameter) surrounded by a lipid-bilayer which carry bioactive molecules between local and distal cells and participate in intercellular communication. Because of their small size and heterogenous nature they are challenging to characterize. Here, we discuss commonly used techniques that have been employed to yield information about EV size, concentration, mechanical properties, and protein content. These include dynamic light scattering, nanoparticle tracking analysis, flow cytometry, transmission electron microscopy, atomic force microscopy, western blotting, and optical methods including super-resolution microscopy. We also introduce an innovative technique for EV characterization which involves immobilizing EVs on a microscope slide before staining them with antibodies targeting EV proteins, then using the reflectance mode on a confocal microscope to locate the EV plane. By then switching to the microscope's fluorescence mode, immunostained EVs bearing specific proteins can be identified and the heterogeneity of an EV preparation can be determined. This approach does not require specialist equipment beyond the confocal microscopes that are available in many cell biology laboratories, and because of this, it could become a complementary approach alongside the aforementioned techniques to identify molecular heterogeneity in an EV preparation before subsequent analysis requiring specialist apparatus.
Collapse
Affiliation(s)
- Canan Bağcı
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Bahçeşehir University, Department of Biomedical Engineering, İstanbul, Turkey
| | | | - Nevin Belder
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Ankara University, Institute of Biotechnology, Ankara, Turkey
| | - Adam P. S. Bennett
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Şefik Evren Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Address all correspondence to Şefik Evren Erdener, ; Turgay Dalkara,
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Address all correspondence to Şefik Evren Erdener, ; Turgay Dalkara,
| |
Collapse
|
40
|
Wang X, Zhao C, Zhang G, Zhang K, Li Z, Shang Y, Ning C, Ji C, Xia X, Cai X, Qiao J, Meng Q. Molecular characterization of a novel GSTO2 of Fasciola hepatica and its roles in modulating murine macrophages. Parasite 2022; 29:16. [PMID: 35315767 PMCID: PMC8939299 DOI: 10.1051/parasite/2022016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Fascioliasis is an important zoonotic helminthic disease caused by Fasciola hepatica and poses a serious threat to global public health. To evade the immune response of its host (humans or animals), F. hepatica secretes various antioxidant enzymes such as glutathione transferase (GST) to facilitate its invasion, migration and parasitism in vivo. To investigate the biological functions of a novel omega-class GST (GSTO), the molecular features of GSTO2 of F. hepatica were analyzed by online software, and the biochemical properties in vitro of recombinant GSTO2 (rGSTO2) were dissected. Then, the regulatory roles of rGSTO2 protein in murine macrophages in vitro were further explored. The results revealed that the GSTO2 gene encodes 254 amino acids, which harbor the characteristic N-terminal domain (βαβαββα) and C-terminal domain (α-helical) of the cytoplasmic GST superfamily. GSTO2 was mainly expressed in F. hepatica vitelline follicles, intestinal tract, excretory pores and vitelline cells, with thioltransferase and dehydroascorbate reductase activities. Moreover, rGSTO2 protein could be taken up by murine macrophages and significantly inhibit the viability of macrophages. In addition, rGSTO2 protein could significantly promote apoptosis and modulate the expression of cytokines in macrophages. These findings suggested that F. hepatica GSTO2 plays an important role in modulating the physiological functions of macrophages, whereby this protein might be involved in immunomodulatory and anti-inflammatory roles during infection. This study provided new insights into the immune-evasion mechanism of F. hepatica and may contribute to the development of a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunguang Zhao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
41
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
42
|
Chaiyadet S, Sotillo J, Krueajampa W, Thongsen S, Smout M, Brindley PJ, Laha T, Loukas A. Silencing of Opisthorchis viverrini Tetraspanin Gene Expression Results in Reduced Secretion of Extracellular Vesicles. Front Cell Infect Microbiol 2022; 12:827521. [PMID: 35223551 PMCID: PMC8875506 DOI: 10.3389/fcimb.2022.827521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Inter-phylum transfer of molecular information is exquisitely exemplified in the uptake of parasite extracellular vesicles (EVs) by their target mammalian host tissues. The oriental liver fluke, Opisthorchis viverrini is the major cause of bile duct cancer in people in Southeast Asia. A major mechanism by which O. viverrini promotes cancer is through the secretion of excretory/secretory products which contain extracellular vesicles (OvEVs). OvEVs contain microRNAs that are predicted to impact various mammalian cell proliferation pathways, and are internalized by cholangiocytes that line the bile ducts. Upon uptake, OvEVs drive relentless proliferation of cholangiocytes and promote a tumorigenic environment, but the underlying mechanisms of this process are unknown. Moreover, purification and characterization methods for helminth EVs in general are ill defined. We therefore compared different purification methods for OvEVs and characterized the sub-vesicular compartment proteomes. Two CD63-like tetraspanins (Ov-TSP-2 and TSP-3) are abundant on the surface of OvEVs, and could serve as biomarkers for these parasite vesicles. Anti-TSP-2 and -TSP-3 IgG, as well as different endocytosis pathway inhibitors significantly reduced OvEV uptake and subsequent proliferation of cholangiocytes in vitro. Silencing of Ov-tsp-2 and tsp-3 gene expression in adult flukes using RNA interference resulted in substantial reductions in OvEV secretion, and those vesicles that were secreted were deficient in their respective TSP proteins. Our findings shed light on the importance of tetraspanins in fluke EV biogenesis and/or stability, and provide a conceivable mechanism for the efficacy of anti-tetraspanin subunit vaccines against a range of parasitic helminth infections.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Watchara Krueajampa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sophita Thongsen
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, United States
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Alex Loukas, ; Thewarach Laha,
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- *Correspondence: Alex Loukas, ; Thewarach Laha,
| |
Collapse
|
43
|
Herron CM, O’Connor A, Robb E, McCammick E, Hill C, Marks NJ, Robinson MW, Maule AG, McVeigh P. Developmental Regulation and Functional Prediction of microRNAs in an Expanded Fasciola hepatica miRNome. Front Cell Infect Microbiol 2022; 12:811123. [PMID: 35223544 PMCID: PMC8867070 DOI: 10.3389/fcimb.2022.811123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The liver fluke, Fasciola hepatica, is a global burden on the wellbeing and productivity of farmed ruminants, and a zoonotic threat to human health. Despite the clear need for accelerated discovery of new drug and vaccine treatments for this pathogen, we still have a relatively limited understanding of liver fluke biology and host interactions. Noncoding RNAs, including micro (mi)RNAs, are key to transcriptional regulation in all eukaryotes, such that an understanding of miRNA biology can shed light on organismal function at a systems level. Four previous publications have reported up to 89 mature miRNA sequences from F. hepatica, but our data show that this does not represent a full account of this species miRNome. We have expanded on previous studies by sequencing, for the first time, miRNAs from multiple life stages (adult, newly excysted juvenile (NEJ), metacercariae and adult-derived extracellular vesicles (EVs)). These experiments detected an additional 61 high-confidence miRNAs, most of which have not been described in any other species, expanding the F. hepatica miRNome to 150 mature sequences. We used quantitative (q)PCR assays to provide the first developmental profile of miRNA expression across metacercariae, NEJ, adult and adult-derived Evs. The majority of miRNAs were expressed most highly in metacercariae, with at least six distinct expression clusters apparent across life stages. Intracellular miRNAs were functionally analyzed to identify target mRNAs with inversely correlated expression in F. hepatica tissue transcriptomes, highlighting regulatory interactions with key virulence transcripts including cathepsin proteases, and neuromuscular genes that control parasite growth, development and motility. We also linked 28 adult-derived EV miRNAs with downregulation of 397 host genes in F. hepatica-infected transcriptomes from ruminant lymph node, peripheral blood mononuclear cell (PBMC) and liver tissue transcriptomes. These included genes involved in signal transduction, immune and metabolic pathways, adding to the evidence for miRNA-based immunosuppression during fasciolosis. These data expand our understanding of the F. hepatica miRNome, provide the first data on developmental miRNA regulation in this species, and provide a set of testable hypotheses for functional genomics interrogations of liver fluke miRNA biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul McVeigh
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
44
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
45
|
Zhang H, Tian M, Qi W, Wu J, Zheng H, Guo G, Zhang L, Ranasinghe SL, McManus DP, Li J, Zhang W. Bioinformatic comparison of Kunitz protease inhibitors in Echinococcus granulosus sensu stricto and E. multilocularis and the genes expressed in different developmental stages of E. granulosus s.s. BMC Genomics 2021; 22:907. [PMID: 34922456 PMCID: PMC8684439 DOI: 10.1186/s12864-021-08219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background
Cystic and alveolar echinococcosis caused by the tapeworms Echinococcus granulosus sensu stricto (s.s.) and E. multilocularis, respectively, are important zoonotic diseases. Protease inhibitors are crucial for the survival of both Echinococcus spp. Kunitz-type inhibitors play a regulatory role in the control of protease activity. In this study,we identified Kunitz-type domain protease inhibitors(KDPIs) present in the genomes of these two tapeworms and analyzed the gene sequences using computational, structural bioinformatics and phylogenetic approaches to evaluate the evolutionary relationships of these genes. Hi-seq transcriptome analysis showed that E. granulosuss.s. KDPIs were differentially expressed in the different developmental stages. We validated some of the genes expressed in adult worm, protoscolex and cyst germinal membrane of E. granulosuss.s. and E. multilocularis by quantitative PCR. Results A total of 19 genes from E. multilocularis and 23 genes from E. granulosuss.s. were predicted to be KDPIs with the most containing a single Kunitz-domain. A maximum likelihood method phylogenetic tree indicated that the E. granulosuss.s. and E. multilocularis Kunitz domain peptides were divided into three branches containing 9 clusters. The ratio of positively charged residues and neutral residues are different between E. multilocularis and E. granulosuss.s. KDPIs. We also found that E. multilocularis had higher percentage of sequences containing signal peptides (17/19, 89.47%) than that of E. granulosuss.s. (14/23, 60.87%). Transcript analysis showed all the E. granulosuss.s. KDPI genes were expressed differentially in four developmental stages of the worm. Transcription analysis showed that 9 KDPIs (including EG_07244,EGR_08716 and EGR_10096) were highly upregulated in adult worm, and 2 KDPIs (EG_09268 and EG_09490) were highly expressed in the cyst germinal membrane. Quantitative gene expression analysis(qPCR) of four genes confirmed the expression of these genes. EGR_08716 and its homologous gene (EmuJ_001137000) were highly and specifically expressed in adult worms of the two worms. Conclusions A total 19 and 23 KDPIs were identified in the genomes of E. multilocularis and E. granulosus s.s. , respectively. The differential expression of these KDPIs in different stages may indicate their different roles in the different hosts. The difference in characterization of KDPIs may be associated with the different pathology of metacestode stage of these two parasites. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08219-4.
Collapse
|
46
|
Sotillo J. MS-Based Extracellular Vesicle (EVs) Analysis: An Application to Helminth-Secreted EVs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:11-20. [PMID: 34905162 DOI: 10.1007/978-1-0716-1936-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parasite infections caused by helminths affect hundreds of millions worldwide. Despite their socioeconomic importance and impact on health, there is still an urgent need to develop appropriate control approaches. The recent discovery that helminths, as most eukaryotic organisms, secrete extracellular vesicles (EVs) of different type has opened new avenues for the characterization of novel diagnostic and vaccine candidates that could serve for this purpose. Herein, we describe a method for the isolation of highly pure microvesicles and exosomes, two of the most relevant populations of EVs secreted by helminths, and describe a validated approach to characterize the proteins from different compartments of EVs. These proteins could be further developed into suitable diagnostic and vaccine candidates against these devastating infections.
Collapse
Affiliation(s)
- Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
47
|
Davey SD, Chalmers IW, Fernandez-Fuentes N, Swain MT, Smith D, Abbas Abidi SM, Saifullah MK, Raman M, Ravikumar G, McVeigh P, Maule AG, Brophy PM, Morphew RM. In silico characterisation of the complete Ly6 protein family in Fasciola gigantica supported through transcriptomics of the newly-excysted juveniles. Mol Omics 2021; 18:45-56. [PMID: 34781332 PMCID: PMC8763315 DOI: 10.1039/d1mo00254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fasciola gigantica is one of the aetiological trematodes associated with fascioliasis, which heavily impacts food-production systems and human and animal welfare on a global scale. In the absence of a vaccine, fascioliasis control and treatment is restricted to pasture management, such as clean grazing, and a limited array of chemotherapies, to which signs of resistance are beginning to appear. Research into novel control strategies is therefore urgently required and the advent of ‘omics technologies presents considerable opportunity for novel drug and vaccine target discovery. Here, interrogation of the first available F. gigantica newly excysted juvenile (NEJ) transcriptome revealed several protein families of current interest to parasitic flatworm vaccine research, including orthologues of mammalian complement regulator CD59 of the Ly6 family. Ly6 proteins have previously been identified on the tegument of Schistosoma mansoni and induced protective immunity in vaccination trials. Incorporating the recently available F. gigantica genome, the current work revealed 20 novel Ly6 family members in F. gigantica and, in parallel, significantly extended the F. hepatica complement from 3 to 18 members. Phylogenetic analysis revealed several distinct clades within the family, some of which are unique to Fasciola spp. trematodes. Analysis of available proteomic databases also revealed three of the newly discovered FhLy6s were present in extracellular vesicles, which have previously been prioritised in studying the host-parasite interface. The presentation of this new transcriptomic resource, in addition to the Ly6 family proteins here identified, represents a wealth of opportunity for future vaccine research. Incorporating the recently available F. gigantica genome, the current work revealed 20 novel Ly6 family members in F. gigantica and, in parallel, significantly extended the F. hepatica complement from 3 to 18 members.![]()
Collapse
Affiliation(s)
- Sarah D Davey
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth, Ceredigion, UK.
| | - Iain W Chalmers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth, Ceredigion, UK.
| | | | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth, Ceredigion, UK.
| | - Dan Smith
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Syed M Abbas Abidi
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202001, India
| | - Mohammad K Saifullah
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202001, India
| | - Muthusamy Raman
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600051, India
| | | | - Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Aaron G Maule
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Peter M Brophy
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth, Ceredigion, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth, Ceredigion, UK.
| |
Collapse
|
48
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
49
|
Alizadeh Z, Mahami-Oskouei M, Spotin A, Ahmadpour E, Cai P, Sandoghchian Shotorbani S, Pashazadeh F, Ansari F, Mohammadi H. MicroRNAs in helminth parasites: a systematic review. Curr Mol Med 2021; 22:779-808. [PMID: 34749620 DOI: 10.2174/1566524021666211108114009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are about 22-nucleotide, small, non-coding RNAs that control gene expression post-transcriptionally. Helminth parasites usually express a unique repertoire of genes, including miRNAs, across different developmental stages with subtle regulatory mechanisms. OBJECTIVE There is a necessity to investigate the involvement of miRNAs in the development of parasites, host-parasite interaction, immune evasion and their abilities to govern infection in hosts. miRNAs present in helminth parasites have been summarized in the current systematic review (SR). METHODS Electronic databases, including PubMed, Scopus, ProQuest, Embase, and Google Scholar search engine, were searched to identify helminth miRNA studies published from February 1993 till December 2019. Only the published articles in English were included in the study. RESULTS A total of 1769 articles were preliminarily recorded. Following the strict inclusion and exclusion criteria, 105 studies were included in this SR. Most of these studies focused on the identification of miRNAs in helminth parasites and/or probing of differentially expressed host miRNA profiles in specific relevant tissues, while 12 studies aimed to detect parasite-derived miRNAs in host circulating system and 15 studies characterized extracellular vesicles (EV)-derived miRNAs secreted by parasites. CONCLUSION In the current SR, information regarding all miRNAs expressed in helminth parasites has been comprehensively provided and the utility of helminth parasites-derived miRNAs in diagnosis and control of parasitic infections has been discussed. Furthermore, functional studies on helminth-derived miRNAs have also been presented.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane. Australia
| | | | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Science, Karaj. Iran
| |
Collapse
|
50
|
Guo A, Wang L, Meng X, Zhang S, Sheng Z, Luo X, Huang W, Wang S, Cai X. Extracellular vesicles from Fasciola gigantica induce cellular response to stress of host cells. Exp Parasitol 2021; 231:108173. [PMID: 34742714 DOI: 10.1016/j.exppara.2021.108173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/14/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
Extracellular vesicles (EVs) from parasitic helminths play an important role in immunomodulation. However, EVs are little studied in the important parasite Fasciola gigantica. Here the ability of EVs from F. gigantica to induce cellular response to stress (reactive oxygen species generation, autophage and DNA damage response) in human intrahepatic biliary epithelial cells (HIBEC) was investigated. F. gigantica-derived EVs were isolated by ultracentrifugation, and identified with transmission electron microscopy, nanoparticle size analysis and parasite-derived EV markers. Internalization of EVs by HIBEC was determined by confocal immunofluorescence microscopy and flow cytometry. ROS levels in HIBEC were detected by molecular probing. EVs-induced autophagy and DNA-damaging effects were determined by evaluating expression levels of light chain 3B protein (LC3B), phosphor- H2A.X and phosphor-Chk1, respectively. Results revealed that EVs with sizes predominately ranging from 39 to 110 nm in diameter were abundant in adult F. gigantica and contained the parasite-derived marker proteins enolase and 14-3-3, and EVs were internalized by HIBEC. Further, uptake of EVs into HIBEC was associated with increased levels of reactive oxygen species, LC3Ⅱ, phosphor-H2A.X and phosphor-Chk1, suggesting EVs are likely to induce autophagy and DNA damage & repair processes. These results indicate F. gigantica EVs are associated with modulations of host cell responses and have a potential important role in the host-parasite interactions.
Collapse
Affiliation(s)
- Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Li Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; Shandong New Hope Liuhe Group Co., Ltd. Qingdao, China
| | - Xuelian Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhaoan Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China
| | - Weiyi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|