1
|
Gao S, Niu YD, Chen L, Chen MF, Bing XL, Hong XY. Transcriptomic landscapes reveal development-related physiological processes in the two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:743-759. [PMID: 39150623 DOI: 10.1007/s10493-024-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae Koch, TSSM) is recognized as one of the most problematic spider mite pests. However, the precise gene expression patterns across its key developmental stages remain elusive. Here, we performed a comprehensive transcriptome analysis of TSSM eggs, nymphs and adult females using publicly available RNA sequencing (RNA-seq) data to elucidate the overarching transcriptomic differences between these developmental stages. Principal component analysis and hierarchical clustering analysis unveiled distinct separations among samples across different developmental stages, regardless of their Wolbachia infection status. Differential expression analysis revealed 4,089,2,762, and 1,282 core genes specifically enriched in eggs, nymphs, and adults, respectively. KEGG and GO enrichment analyses showed upregulation of genes in eggs are associated with proteolysis, Wnt signaling pathway, DNA transcription, RNA biosynthetic and metabolic processes, as well as protein folding, sorting, and degradation pathways. Meanwhile, nymphs exhibited increased abundance of genes related to chitin/amino sugar metabolic processes, G protein-coupled receptor signaling pathways, monoatomic ion transport, and neurotransmitter transport pathways. Pathways involving sphingolipid and carbohydrate metabolic processes, proteolysis, lipid transport, and localization were particularly enriched in older females. Altogether, our findings suggest that the egg stage exhibits higher activity in cell differentiation processes, the nymph stage is more involved in chitin development, and the adult stage shows increased metabolic and reproductive activity. This study enhances our understanding of the molecular mechanisms underlying TSSM development and paves the way for further research into the intricate physiological processes of TSSM.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue-Di Niu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Fei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Cui J, Yao X, Ni Z, Zhao H, Yang Y, Xu H, Lu Z, Zhu P. Identification of salivary proteins in the rice leaf folder Cnaphalocrocis medinalis by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104191. [PMID: 39393440 DOI: 10.1016/j.ibmb.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salivary proteins in the oral secretion (OS) of chewing insects play a crucial role in insect-plant interactions during feeding. The rice leaf folder Cnaphalocrocis medinalis, a notorious pest in global rice production, triggers defense responses during feeding, but little is known about its salivary proteins. In this study, we confirmed that C. medinalis releases OS during feeding. By employing transcriptomic analysis and liquid chromatography-tandem mass spectroscopy (LC-MS/MS), we examined the salivary proteins from labial salivary glands and OS from C. medinalis. A total of 14,397 genes were expressed at the RNA level and 229 salivary proteins were identified. Comparative analysis with other 25 arthropod species revealed that 43 proteins were unique to C. medinalis. Expression pattern analysis revealed that most of the selected genes were highly expressed in the gut and the larval stages (4th-5th instar). These findings provide a comprehensive resource for future functional studies of salivary proteins, offering new insights into the molecular mechanisms by which C. medinalis modulates plant defenses and potential applications in pest management.
Collapse
Affiliation(s)
- Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianjing Yao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihan Ni
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongfeng Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Martinez-Chavez LM, Roberts JM, Karley AJ, Shaw B, Pope TW. The clip cage conundrum: Assessing the interplay of confinement method and aphid genotype in fitness studies. INSECT SCIENCE 2024; 31:1591-1602. [PMID: 38227545 DOI: 10.1111/1744-7917.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Behavior and fitness are important ecological traits frequently measured in insect bioassays. A common method to measure them in soft-bodied herbivorous insects involves confining individuals to plant leaves using clip cages. Although studies have previously highlighted the negative effects of clip cages on leaf physiology, little is known about the impact that using this confinement method has on insect fitness. The responses of different aphid genotypes/clones to different containment methods have not previously been investigated. Here we measured key fitness traits (intrinsic rate of natural increase, mean relative growth rate, time to reach reproductive adulthood and population doubling time) in the potato aphid, Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae), when confined to plants using two methods: (1) clip cages to confine aphids to individual strawberry leaves and (2) a mesh bag to confine aphids to whole strawberry plants. Our study identified a strong negative impact on all the measured aphid fitness traits when using clip cages instead of mesh bags. We also identified genotype-specific differences in response to confinement method, where clip cage confinement differentially affected the fitness of a given aphid genotype compared to the same genotype on whole plants. These results suggest that clip cage use should be carefully considered when experiments seek to quantify insect fitness and that whole plants should be used wherever possible. Given the prevalence of clip cage use in insect bioassays, our results highlight the need for caution when interpreting the existing literature as confinement method significantly impacts aphid fitness depending on their genotype.
Collapse
Affiliation(s)
- Laura Marcela Martinez-Chavez
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| | - Joe M Roberts
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| | - Alison J Karley
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Bethan Shaw
- Pest and Pathogen Ecology, NIAB, East Malling, Kent, UK
| | - Tom W Pope
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| |
Collapse
|
4
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
5
|
Becchimanzi A, Cacace A, Parziale M, De Leva G, Iacopino S, Jesu G, Di Lelio I, Stillittano V, Caprio E, Pennacchio F. The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi-based mite control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39039817 DOI: 10.1111/imb.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dramatic impact on beekeeping and is one of the main causes of honey bee colony losses. This ectoparasite feeds on honey bees' liquid tissues, through a wound created on the host integument, determining weight loss and a reduction of lifespan, as well as the transmission of viral pathogens. However, despite its importance, the mite feeding strategy and the host regulation role by the salivary secretions have been poorly explored. Here, we contribute to fill this gap by identifying the salivary components of V. destructor, to study their functional importance for mite feeding and survival. The differential expression analysis identified 30 salivary gland genes encoding putatively secreted proteins, among which only 15 were found to be functionally annotated. These latter include proteins with putative anti-bacterial, anti-fungal, cytolytic, digestive and immunosuppressive function. The three most highly transcribed genes, coding for a chitin-binding domain protein, a Kazal domain serine protease inhibitor and a papain-like cysteine protease were selected to study their functional importance by reverse genetics. Knockdown (90%-99%) by RNA interference (RNAi) of the transcript of a chitin-binding domain protein, likely interfering with the immune reaction to facilitate mite feeding, was associated with a 40%-50% decrease of mite survival. This work expands our knowledge of the host regulation and nutritional exploitation strategies adopted by ectoparasites of arthropods and allows the identification of potential targets for RNAi, paving the way towards the development of new strategies for Varroa mite control.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| | - Alfonso Cacace
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Martina Parziale
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- Arterra Bioscience, Naples, Italy
| | - Giovanna De Leva
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | | | - Giovanni Jesu
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, Italy
- School of Specialization in Food Science, University of Rome Tor Vergata, Rome, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples 'Federico II', Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
6
|
Manresa-Grao M, Pastor V, Sánchez-Bel P, Cruz A, Cerezo M, Jaques JA, Flors V. Mycorrhiza-induced resistance in citrus against Tetranychus urticae is plant species dependent and inversely correlated to basal immunity. PEST MANAGEMENT SCIENCE 2024; 80:3553-3566. [PMID: 38446401 DOI: 10.1002/ps.8059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae. Although both mycorrhizal species are protected in locally infested leaves, they show very distinct responses to MIR. RESULTS Previous studies have indicated that C. aurantium is insensitive to MIR in systemic tissues and MIR-triggered antixenosis. Conversely, C. reshni is highly responsive to MIR which triggers local, systemic and indirect defense, and antixenosis against the pest. Transcriptional, hormonal and inhibition assays in C. reshni indicated the regulation of jasmonic acid (JA)- and abscisic acid-dependent responses in MIR. The phytohormone jasmonic acid isoleucine (JA-Ile) and the JA biosynthesis gene LOX2 are primed at early timepoints. Evidence indicates a metabolic flux from phenylpropanoids to specific flavones that are primed at 24 h post infestation (hpi). MIR also triggers the priming of naringenin in mycorrhizal C. reshni, which shows a strong correlation with several flavones and JA-Ile that over-accumulate in mycorrhizal plants. Treatment with an inhibitor of phenylpropanoid biosynthesis C4H enzyme impaired resistance and reduced the symbiosis, demonstrating that phenylpropanoids and derivatives mediate MIR in C. reshni. CONCLUSION MIR's effectiveness is inversely correlated to basal immunity in different citrus species, and provides multifaceted protection against T. urticae in susceptible C. reshni, activating rapid local and systemic defenses that are mainly regulated by the accumulation of specific flavones and priming of JA-dependent responses. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Victoria Pastor
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Ana Cruz
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Josep A Jaques
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| | - Víctor Flors
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
7
|
Liang J, Lu H, Hao H, Zhang Q, Chen K, Xiang Z, He N. Post-ingestive stability of a mulberry Kunitz-type protease inhibitor MnKTI-1 in the digestive lumen of silkworm: dual inhibition towards α-amylase and serine protease. PEST MANAGEMENT SCIENCE 2024; 80:2860-2873. [PMID: 38375972 DOI: 10.1002/ps.7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hulin Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Haiye Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Kaiying Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
9
|
Wang XJ, Li Q, Ye ZX, Huang HJ. A pipeline contributes to efficient identification of salivary proteins in short-headed planthopper, Epeurysa nawaii. Sci Rep 2024; 14:6225. [PMID: 38486094 PMCID: PMC10940699 DOI: 10.1038/s41598-024-56896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiao Li
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China.
| |
Collapse
|
10
|
Zhu Y, Wu T, Hu Q, He W, Zheng Y, Xie Y, Rao Q, Liu X. Plant Essential Oils: Dual Action of Toxicity and Egg-Laying Inhibition on Tetranychus urticae (Acari: Tetranychidae), Unveiling Their Potential as Botanical Pesticides. PLANTS (BASEL, SWITZERLAND) 2024; 13:763. [PMID: 38592755 PMCID: PMC10975855 DOI: 10.3390/plants13060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Rao
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| | - Xunyue Liu
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| |
Collapse
|
11
|
Naalden D, Dermauw W, Ilias A, Baggerman G, Mastop M, Silven JJM, van Kleeff PJM, Dangol S, Gaertner NF, Roseboom W, Kwaaitaal M, Kramer G, van den Burg HA, Vontas J, Van Leeuwen T, Kant MR, Schuurink RC. Interaction of Whitefly Effector G4 with Tomato Proteins Impacts Whitefly Performance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:98-111. [PMID: 38051229 DOI: 10.1094/mpmi-04-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicolas Frédéric Gaertner
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mark Kwaaitaal
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bruinsma K, Rioja C, Zhurov V, Santamaria ME, Arbona V, Navarro M, Cazaux M, Auger P, Migeon A, Wybouw N, Van Leeuwen T, Diaz I, Gómez-Cadenas A, Grbic M, Navajas M, Grbic V. Host adaptation and specialization in Tetranychidae mites. PLANT PHYSIOLOGY 2023; 193:2605-2621. [PMID: 37437113 DOI: 10.1093/plphys/kiad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.
Collapse
Affiliation(s)
- Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Maria Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Vicent Arbona
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Marie Navarro
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Marc Cazaux
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Philippe Auger
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Alain Migeon
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Nicky Wybouw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
- Department of Agriculture and Food, University of La Rioja, Logroño, La Rioja 26006, Spain
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Navajas
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
13
|
Maglov J, Feng MY, Lin D, Barkhouse K, Alexander A, Grbic M, Zhurov V, Grbic V, Tudzarova S. A link between energy metabolism and plant host adaptation states in the two-spotted spider mite, Tetranychus urticae (Koch). Sci Rep 2023; 13:19343. [PMID: 37935795 PMCID: PMC10630510 DOI: 10.1038/s41598-023-46589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Energy metabolism is a highly conserved process that balances generation of cellular energy and maintenance of redox homeostasis. It consists of five interconnected pathways: glycolysis, tricarboxylic acid cycle, pentose phosphate, trans-sulfuration, and NAD+ biosynthesis pathways. Environmental stress rewires cellular energy metabolism. Type-2 diabetes is a well-studied energy metabolism rewiring state in human pancreatic β-cells where glucose metabolism is uncoupled from insulin secretion. The two-spotted spider mite, Tetranychus urticae (Koch), exhibits a remarkable ability to adapt to environmental stress. Upon transfer to unfavourable plant hosts, mites experience extreme xenobiotic stress that dramatically affects their survivorship and fecundity. However, within 25 generations, mites adapt to the xenobiotic stress and restore their fitness. Mites' ability to withstand long-term xenobiotic stress raises a question of their energy metabolism states during host adaptation. Here, we compared the transcriptional responses of five energy metabolism pathways between host-adapted and non-adapted mites while using responses in human pancreatic islet donors to model these pathways under stress. We found that non-adapted mites and human pancreatic β-cells responded in a similar manner to host plant transfer and diabetogenic stress respectively, where redox homeostasis maintenance was favoured over energy generation. Remarkably, we found that upon host-adaptation, mite energy metabolic states were restored to normal. These findings suggest that genes involved in energy metabolism can serve as molecular markers for mite host-adaptation.
Collapse
Affiliation(s)
- Jorden Maglov
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Min Yi Feng
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Dorothy Lin
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Kennedy Barkhouse
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Anton Alexander
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Njiru C, Vandenhole M, Jonckheere W, Wybouw N, Van Leeuwen T. The host plant strongly modulates acaricide resistance levels to mitochondrial complex II inhibitors in a multi-resistant field population of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105591. [PMID: 37945242 DOI: 10.1016/j.pestbp.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.
Collapse
Affiliation(s)
- Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Wang YZ, Ye YX, Lu JB, Wang X, Lu HB, Zhang ZL, Ye ZX, Lu YW, Sun ZT, Chen JP, Li JM, Zhang CX, Huang HJ. Horizontally Transferred Salivary Protein Promotes Insect Feeding by Suppressing Ferredoxin-Mediated Plant Defenses. Mol Biol Evol 2023; 40:msad221. [PMID: 37804524 PMCID: PMC10583550 DOI: 10.1093/molbev/msad221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.
Collapse
Affiliation(s)
- Yi-Zhe Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ze-Long Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Wen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Sun QZ, Li XL, Shi YF, Zhang YC, Chai WJ, Chen RY, Niu J, Wang JJ. GARP: A family of glycine and alanine-rich proteins that helps spider mites feed on plants. INSECT SCIENCE 2023; 30:1337-1351. [PMID: 36479917 DOI: 10.1111/1744-7917.13159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Spider mites (Tetranychidae) are destructive agricultural pests which have evolved strategies to overcome plant defenses, such as the ability to puncture the leaves of their hosts to feed. The expression of many genes with unknown functions is altered during feeding, but little is known about the role of these genes in plant-mite interactions. Here, we identified 3 novel gene families through analysis of genomic and transcriptomic data from 3 spider mite species. These GARP family genes encode glycine and alanine-rich proteins; they are present in mites (Acariformes) but absent in ticks (Parasitiformes) in the subclass Acari, indicating that these genes have undergone a significant expansion in spider mites and thus play important adaptive roles. Transcriptomic analysis revealed that the expression of GARP genes is strongly correlated with feeding and the transfer to new hosts. We used RNA interference to silence GARP1d in the two-spotted spider mite Tetranychus urticae, which inhibited feeding and egg laying and significantly increased mortality when the mites were transferred to soybean shoots; a similar effect was observed after TuVATPase was silenced. However, no changes in mite mortality were observed after TuGARP1d-silenced mites were placed on an artificial diet, which was different from the effect of TuVATPase silencing. Our results indicate that GARP family members play important roles in mite-plant interactions. Additional studies are needed to clarify the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiao-Lin Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu-Fei Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan-Chun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen-Jie Chai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ruo-Yu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Ayllón-Gutiérrez R, López-Maldonado EA, Macías-Alonso M, González Marrero J, Díaz-Rubio L, Córdova-Guerrero I. Evaluation of the Stability of a 1,8-Cineole Nanoemulsion and Its Fumigant Toxicity Effect against the Pests Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. INSECTS 2023; 14:663. [PMID: 37504669 PMCID: PMC10380510 DOI: 10.3390/insects14070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pest control is a main concern in agriculture. Indiscriminate application of synthetic pesticides has caused negative impacts leading to the rapid development of resistance in arthropod pests. Plant secondary metabolites have been proposed as a safer alternative to conventional pesticides. Monoterpenoids have reported bioactivities against important pests; however, due to their high volatility, low water solubility and chemical instability, the application of these compounds has been limited. Nanosystems represent a potential vehicle for the broad application of monoterpenoids. In this study, an 1,8-cineole nanoemulsion was prepared by the low energy method of phase inversion, characterization of droplet size distribution and polydispersity index (PDI) was carried out by dynamic light scattering and stability was evaluated by centrifugation and Turbiscan analysis. Fumigant bioactivity was evaluated against Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. A nanoemulsion with oil:surfactant:water ratio of 0.5:1:8.5 had a droplet size of 14.7 nm and PDI of 0.178. Formulation was stable after centrifugation and the Turbiscan analysis showed no particle migration and a delta backscattering of ±1%. Nanoemulsion exhibited around 50% more bioactivity as a fumigant on arthropods when compared to free monoterpenoid. These results suggest that nanoformulations can provide volatile compounds of protection against volatilization, improving their bioactivity.
Collapse
Affiliation(s)
- Rocío Ayllón-Gutiérrez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Mariana Macías-Alonso
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Joaquín González Marrero
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Av. Mineral de Valenciana 200 Col. Fracc. Industrial Puerto Interior, Silao 36275, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
18
|
Zhu B, Jin P, Zhang Y, Shen Y, Wang W, Li S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol 2023; 21:82. [PMID: 37055766 PMCID: PMC10099834 DOI: 10.1186/s12915-023-01581-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Spiders comprise a hyperdiverse lineage of predators with venom systems, yet the origin of functionally novel spider venom glands remains unclear. Previous studies have hypothesized that spider venom glands originated from salivary glands or evolved from silk-producing glands present in early chelicerates. However, there is insufficient molecular evidence to indicate similarity among them. Here, we provide comparative analyses of genome and transcriptome data from various lineages of spiders and other arthropods to advance our understanding of spider venom gland evolution. RESULTS We generated a chromosome-level genome assembly of a model spider species, the common house spider (Parasteatoda tepidariorum). Module preservation, GO semantic similarity, and differentially upregulated gene similarity analyses demonstrated a lower similarity in gene expressions between the venom glands and salivary glands compared to the silk glands, which questions the validity of the salivary gland origin hypothesis but unexpectedly prefers to support the ancestral silk gland origin hypothesis. The conserved core network in the venom and silk glands was mainly correlated with transcription regulation, protein modification, transport, and signal transduction pathways. At the genetic level, we found that many genes in the venom gland-specific transcription modules show positive selection and upregulated expressions, suggesting that genetic variation plays an important role in the evolution of venom glands. CONCLUSIONS This research implies the unique origin and evolutionary path of spider venom glands and provides a basis for understanding the diverse molecular characteristics of venom systems.
Collapse
Affiliation(s)
- Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Xia X, Peng CW, Ye QT, Bing XL, Hong XY. Rop plays conserved roles in the reproductive and digestive processes of spider mites. INSECT SCIENCE 2023; 30:351-364. [PMID: 35980307 DOI: 10.1111/1744-7917.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Ras opposite (Rop) is known to play an essential role in regulating vesicle trafficking, including synaptic transmission and general secretion. The fundamental roles of Rop have been confirmed by the observation that null mutations in many organisms generate lethal phenotypes during embryogenesis. However, the effects of Rop during the postembryonic stages, especially in non-model organisms, remain largely unknown. Here, we provide new data that enhance our understanding of Rop's roles in the adults of multiple species of Tetranychus spider mites (Acari: Tetranychidae), a class of notorious agricultural pests. Our in silico and experimental evidence demonstrated that Rop is under purifying selection and is highly conserved in Tetranychus spp. RNA interference experiments showed that Rop is required for maintaining normal fecundity but has no significant effect on survival. We further demonstrate that knockdown of Rop darkens the body color of spider mites and blocks the excretion of fecal pellets, which is likely to be related to an abnormality in the excretion of food waste in the digestive system. Overall, our findings clarify novel functions of a vesicle trafficking-related gene in the adult stage of multiple Tetranychus species and highlight the need to evaluate the roles of essential genes in various organisms.
Collapse
Affiliation(s)
- Xue Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chang-Wu Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Qing-Tong Ye
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Wu M, Zhang Q, Dong Y, Wang Z, Zhan W, Ke Z, Li S, He L, Ruf S, Bock R, Zhang J. Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites. THE NEW PHYTOLOGIST 2023; 237:1363-1373. [PMID: 36328788 DOI: 10.1111/nph.18595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Spider mites are serious pests and have evolved significant resistance to many chemical pesticides, thus making their control challenging. Several insect pests can be combated by plastid-mediated RNA interference (PM-RNAi), but whether PM-RNAi can be utilized to control noninsect pests is unknown. Here, we show that three species of spider mites (Tetranychus evansi, Tetranychus truncatus, and Tetranychus cinnabarinus) take up plastid RNA upon feeding. We generated transplastomic tomato plants expressing double-stranded RNA (dsRNA) targeted against a conserved region of the spider mite β-Actin mRNA. Transplastomic plants exhibited high levels of resistance to all three spider mite species, as evidenced by increased mortality and suppression of target gene expression. Notably, transplastomic plants induced a more robust RNAi response, caused higher mortality, and were overall better protected from spider mites than dsRNA-expressing nuclear transgenic plants. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for spider mites and extend the application range of the technology to noninsect pests.
Collapse
Affiliation(s)
- Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenqin Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
21
|
Filatov S, Dyčka F, Sterba J, Rego RO. A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes. Front Cell Infect Microbiol 2023; 13:1112952. [PMID: 36743301 PMCID: PMC9895398 DOI: 10.3389/fcimb.2023.1112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.
Collapse
Affiliation(s)
- Serhii Filatov
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, Ukraine,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| | - Filip Dyčka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Sterba
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Ryan O.M. Rego
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| |
Collapse
|
22
|
Bing XL, Xia CB, Ye QT, Gong X, Cui JR, Peng CW, Hong XY. Wolbachia manipulates reproduction of spider mites by influencing herbivore salivary proteins. PEST MANAGEMENT SCIENCE 2023; 79:315-323. [PMID: 36151871 DOI: 10.1002/ps.7201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The endosymbiont Wolbachia is known for manipulating host reproduction. Wolbachia also can affect host fitness by mediating interactions between plant and herbivores. However, it remains unclear whether saliva proteins are involved in this process. RESULTS We found that Wolbachia infection decreased the number of deposited eggs but increased the egg hatching rate in the spider mite Tetranychus urticae Koch (Acari: Tetranychidae), a cosmopolitan pest that infects >1000 species of plants. Transcriptomic and proteomic analyses revealed that Wolbachia-infected mites upregulated the gene expression levels of many T. urticae salivary proteins including a cluster of Tetranychidae-specific, functionally uncharacterized SHOT1s (secreted host-responsive proteins of Tetranychidae). The SHOT1 genes were expressed more in the feeding stages (nymphs and adults) of mites than in eggs and highly enriched in the proterosomas. RNA interference experiments showed that knockdown of SHOT1s significantly decreased Wolbachia density, increased the number of deposited eggs and decreased the egg hatching rate. CONCLUSION Together, these results indicate that SHOT1s are positively correlated with Wolbachia density and account for Wolbachia-mediated phenotypes. Our results provide new evidence that herbivore salivary proteins are related to Wolbachia-mediated manipulations of host performance on plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Cai-Bei Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Qing-Tong Ye
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chang-Wu Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Rajarapu SP, Ben-Mahmoud S, Benoit JB, Ullman DE, Whitfield AE, Rotenberg D. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103843. [PMID: 36113709 DOI: 10.1016/j.ibmb.2022.103843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.
Collapse
Affiliation(s)
- Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Njiru C, Xue W, De Rouck S, Alba JM, Kant MR, Chruszcz M, Vanholme B, Dermauw W, Wybouw N, Van Leeuwen T. Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals. BMC Biol 2022; 20:131. [PMID: 35658860 PMCID: PMC9167512 DOI: 10.1186/s12915-022-01323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to “intradiol ring cleavage dioxygenases (DOGs)” from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. Results We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite’s gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites’ survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. Conclusion Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01323-1.
Collapse
|
25
|
Sun J, Li C, Jiang J, Song C, Wang C, Feng K, Wei P, He L. Cross resistance, inheritance and fitness advantage of cyetpyrafen resistance in two-spotted spider mite, Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105062. [PMID: 35430065 DOI: 10.1016/j.pestbp.2022.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Cyetpyrafen belonging to mitochondrial electron transport inhibitors of complex II (METI II) has been widely applied to manage pest mites in China. To investigate the adaption of Tetranychus urticae in the evolution of cyetpyrafen resistance, a study of cross resistance, mode of inheritance and fitness comparison of resistance using indoor cyetpyrafen resistant strain (resistance ratio, RR > 2, 000-fold) was executed. Cyet-R showed serious cross resistance to cyenopyrafen (>2500-fold) and cyflumetofen (~190-fold). The number of resistant genes was evaluated via chi-square (χ2) test and the concentration-response curve regarding goodness-of-fit between observed and the expected mortality. The LC50s of F1RS (Cyet-R♀ × Tu-YN♂) and F1SR (Tu-YN♀ × Cyet-R♂) were 3126.30 mg/L and 2743.97 mg/L, respectively, without significance, suggesting autosomal inheritance. The degree of dominance (D) values of F1RS and F1SR ranged between 0 and 1, revealing an incompletely dominant inheritance in the tested population of Tetranychus urticae. Plots of concentration-response data for the orthogonal backcross and reverse backcross progenies showed a significant deviation from the expected lines, pointing out a polygenic inheritance. Besides, lifetable analysis showed a fitness advantage of Cyet-R with a significantly decreased adult preadult period and significantly increased total fecundity. This study suggested that cyetpyrafen resistance against T. urticae was inherited as autosomal, incompletely dominant and multigenetic and characterized with serious cross resistance and fitness advantage. Therefore, rational application and preventive strategy should be considered to sustain the efficacy of cyetpyrafen against T. urticae.
Collapse
Affiliation(s)
- Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chunji Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jinqi Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Changgui Song
- Institute of Sericulture Science and Technology Research, Chongqing, China
| | - Chao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
26
|
Villacis-Perez E, Alba JM, Cotte J, van Loon Z, Breeuwer JAJ, Van Leeuwen T. Interactions With Plant Defences Isolate Sympatric Populations of an Herbivorous Mite. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host plant specialisation can promote evolutionary divergence between herbivore populations associated with different plant species. While the mechanisms by which specialist species exploit their hosts have been studied widely across taxa, less is known about the mechanisms that allow intraspecific variants to arise and to be maintained across spatial and temporal scales. To understand whether adaptations to plant defences against herbivory contribute to the co-existence of genetically distinct populations of an herbivore, we investigate the interaction between honeysuckle (Lonicera periclymenum) and sympatric specialist and generalist populations of the spider mite Tetranychus urticae. We found that mite folivory induces the production of sticky droplets on honeysuckle, which have a defensive role: they increase mite mortality directly, and potentially indirectly by increasing the arrestment of a predator. We show that droplet induction and the preference to feed on honeysuckle depend on mite genotype, where the generalist avoids this host and the specialist suppresses droplet production. These traits are heritable and dominant in F1 hybrids between generalists and specialists. Selection pressure from honeysuckle and differences in host preference likely reduce the opportunity of mating encounters on this host. We propose that the interplay between selection from host plant defences and ecological barriers to hybridisation contribute to the persistence of genetically distinct populations of a single species in sympatry.
Collapse
|
27
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
28
|
Li G, Liu XY, Smagghe G, Niu JZ, Wang JJ. Molting process revealed by the detailed expression profiles of RXR1/RXR2 and mining the associated genes in a spider mite, Panonychus citri. INSECT SCIENCE 2022; 29:430-442. [PMID: 34015180 DOI: 10.1111/1744-7917.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Spider mites have one ecdysone receptor (EcR) and multiple retinoid X receptors (RXRs). However, the function of these RXRs in spider mite development is unknown. Here, we screened the expression dynamics of two PcRXR isoforms at 4 h intervals in the deutonymphal stage of Panonychus citri. The results showed that PcEcR had an expression pattern similar to that of PcRXR2. For PcRXR1, its expression remained at a certain high level, when there was a decrease of both PcEcR and PcRXR2. In situ hybridization showed that PcRXR2 was detected in the central nervous mass, while the ecdysteroid biosynthesis gene PcSpo was mainly expressed at the edge of the central nervous mass. RNAi-based silencing of PcRXR1 or PcRXR2 showed the same phenotype as in mites with that of silencing PcEcR. Furthermore, RNA-seq was used to mine the genes associated with the expression dynamics of PcRXR1 or PcRXR2, which revealed that the heterodimer of EcR-RXR2 in spider mites might be linked with the cell autophagy and tissue remodeling during apolysis, and RXR1 might be linked with new epicuticle and exocuticle secretion during ecdysis. Taken together, these results increase our understanding of the regulation mechanism of ecdysteroid signal pathway in spider mite development.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| |
Collapse
|
29
|
Papapostolou KM, Riga M, Samantsidis GR, Skoufa E, Balabanidou V, Van Leeuwen T, Vontas J. Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103709. [PMID: 34995778 DOI: 10.1016/j.ibmb.2021.103709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| | - George-Rafael Samantsidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
30
|
dos Santos Silva N, Willemart RH, Cunha da Silva JR, da Silva Junior PI. Protein Components of the Arthrodial Membrane Gland in a Neotropical Harvestman (Arachnida, Opiliones). ACS OMEGA 2021; 6:35250-35255. [PMID: 34984257 PMCID: PMC8717388 DOI: 10.1021/acsomega.1c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The content of arthrodial membrane glands in arthropods has seldom been studied. Here, we have analyzed the proteins of the arthrodial membrane gland of the trochanter-coxa articulation of the fourth pair of legs in the harvestman Mischonyx cuspidatus via reverse-phase high-performance liquid chromatography (RP-HPLC), polyacrylamide gel electrophoresis (PAGE), and nanoscale liquid chromatography coupled to mass spectrometry (nLC-MS/MS) analysis. Most of the fractions studied are hydrophobic, being proteins with molecular weights of ∼28, 62, and ∼198 kDa. These proteins seem to be homologous to proteins involved in product secretion, cytoskeleton, protein binding, cellular metabolism, and antimicrobial action among others. Lubricant function is also possible based on the literature. We were able to identify 147 proteins in the inner region, 91 proteins from the outer dorsal region, and 36 proteins from the outer ventral region. Some proteins are present only in one of these regions and some are shared by one or more regions. Our work provides, to the best of our knowledge, the first proteome characterization of the content of an arthrodial membrane gland in arachnids. Dataset Identifier: ftp://massive.ucsd.edu/MSV000087195/.
Collapse
Affiliation(s)
- Norton
Felipe dos Santos Silva
- Laboratório
de Histofisiologia Evolutiva (LHE), Instituto de Ciências Biomédicas
(ICB 1), Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Av Professor Lineu Prestes 1524, CEP 05508900 São Paulo
- SP, Brasil
- Programa
de Pós-Graduação em Biologia de Sistemas, Instituto
de Ciências Biomédicas (ICB 1), Universidade de São Paulo, Av Professor Lineu Prestes 1524, CEP
05508900 São Paulo - SP, Brasil
| | - Rodrigo Hirata Willemart
- Laboratório
de Ecologia Sensorial e Comportamento de Artrópodes (LESCA),
Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio 1000, Ermelino Matarazzo, CEP 03828-000 São Paulo
- SP, Brasil
- Programa
de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 321, Travessa 1, CEP 05508-090 São Paulo
- SP, Brasil
| | - José Roberto
Machado Cunha da Silva
- Laboratório
de Histofisiologia Evolutiva (LHE), Instituto de Ciências Biomédicas
(ICB 1), Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Av Professor Lineu Prestes 1524, CEP 05508900 São Paulo
- SP, Brasil
- Programa
de Pós-Graduação em Biologia de Sistemas, Instituto
de Ciências Biomédicas (ICB 1), Universidade de São Paulo, Av Professor Lineu Prestes 1524, CEP
05508900 São Paulo - SP, Brasil
| | - Pedro Ismael da Silva Junior
- Programa
de Pós-Graduação em Biologia de Sistemas, Instituto
de Ciências Biomédicas (ICB 1), Universidade de São Paulo, Av Professor Lineu Prestes 1524, CEP
05508900 São Paulo - SP, Brasil
- Laboratório
de Toxinologia Aplicada (LETA), Instituto
Butantan, Av Vital Brasil 1500, CEP 05503-900 São Paulo - SP, Brasil
| |
Collapse
|
31
|
Salehipourshirazi G, Bruinsma K, Ratlamwala H, Dixit S, Arbona V, Widemann E, Milojevic M, Jin P, Bensoussan N, Gómez-Cadenas A, Zhurov V, Grbic M, Grbic V. Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts. PLANT PHYSIOLOGY 2021; 187:2608-2622. [PMID: 34618096 PMCID: PMC8644343 DOI: 10.1093/plphys/kiab412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.
Collapse
Affiliation(s)
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Huzefa Ratlamwala
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Pengyu Jin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Instituto de Ciencias de la Vid y el Vino (CSIC, UR, Gobiernode La Rioja), Logrono 26006, Spain
- Department of Biology, University of Belgrade, Belgrade, Serbia
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Author for communication:
| |
Collapse
|
32
|
Scott IM, McDowell T, Renaud JB, Krolikowski SW, Chen L, Dhaubhadel S. Soybean (Glycine max L Merr) host-plant defenses and resistance to the two-spotted spider mite (Tetranychus urticae Koch). PLoS One 2021; 16:e0258198. [PMID: 34618855 PMCID: PMC8496822 DOI: 10.1371/journal.pone.0258198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
In southern Ontario, Canada, the two-spotted spider mite (Tetranychus urticae) is an emerging pest of soybean (Glycine max) due to the increasing incidence of warmer, drier weather conditions. One key strategy to manage soybean pests is breeding resistant cultivars. Resistance to pathogens and herbivores in soybean has been associated with isoflavonoid phytoalexins, a group of specialized metabolites commonly associated with root, leaf and seed tissues. A survey of 18 Ontario soybean cultivars for spider mite resistance included evaluations of antibiosis and tolerance in relation to isoflavonoid and other metabolites detected in the leaves. Ten-day and 4-week trials beginning with early growth stage plants were used to compare survival, growth, fecundity as well as damage to leaves. Two-spotted spider mite (TSSM) counts were correlated with HPLC measurements of isoflavonoid concentration in the leaves and global metabolite profiling by high resolution LC-MS to identify other metabolites unique to the most resistant (R) and susceptible (S) cultivars. Within 10 days, no significant difference (P>0.05) in resistance to TSSM was determined between cultivars, but after 4 weeks, one cultivar, OAC Avatar, was revealed to have the lowest number of adult TSSMs and their eggs. Other cultivars showing partial resistance included OAC Wallace and OAC Lakeview, while Pagoda was the most tolerant to TSSM feeding. A low, positive correlation between isoflavonoid concentrations and TSSM counts and feeding damage indicated these compounds alone do not explain the range of resistance or tolerance observed. In contrast, other metabolite features were significantly different (P<0.05) in R versus S cultivars. In the presence of TSSM, the R cultivars had significantly greater (P<0.05) concentrations of the free amino acids Trp, Val, Thr, Glu, Asp and His relative to S cultivars. Furthermore, the R cultivar metabolites detected are viable targets for more in-depth analysis of their potential roles in TSSM defense.
Collapse
Affiliation(s)
- Ian M. Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Justin B. Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Sophie W. Krolikowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| |
Collapse
|
33
|
Huang HJ, Ye ZX, Lu G, Zhang CX, Chen JP, Li JM. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses. INSECT SCIENCE 2021; 28:1369-1381. [PMID: 32757245 DOI: 10.1111/1744-7917.12856] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 05/13/2023]
Abstract
The whitefly Bemisia tabaci is a notorious agricultural pest of many crops worldwide. Although it is thought that B. tabaci secretes saliva into the host plant to counter plant defenses, knowledge on the whitefly salivary proteome is limited. Here, we characterized the gene/protein repertoires of B. tabaci salivary glands and secreted saliva by transcriptomic and liquid chromatography tandem mass spectroscopy analyses. A total of 698 salivary gland-enriched unigenes and 171 salivary proteins were identified. Comparative analysis between the B. tabaci salivary proteins and those of different arthropod species revealed numerous similarities in proteins associated with binding, hydrolysis, and oxidation-reduction, which demonstrates a degree of conservation across herbivorous saliva. There were 74 proteins only identified in B. tabaci saliva, of which 34 were B. tabaci-specific. In addition, 13 salivary proteins, of which 11 were B. tabaci-specific, were differentially regulated when B. tabaci fed on different hosts. Our results provide a good resource for future functional studies of whitefly salivary effectors, and might be useful in pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
34
|
Huang HJ, Yan XT, Wei ZY, Wang YZ, Chen JP, Li JM, Sun ZT, Zhang CX. Identification of Riptortus pedestris Salivary Proteins and Their Roles in Inducing Plant Defenses. BIOLOGY 2021; 10:biology10080753. [PMID: 34439985 PMCID: PMC8389542 DOI: 10.3390/biology10080753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary The bean bug, Riptortus pedestris (Fabricius) is a notorious pest of soybean crops in Asia. During the feeding process, the bug secretes a mixture of salivary components, which play critical roles in the insect–plant interactions. In the present study, a total of 136 salivary proteins were identified by transcriptomic and proteomic approaches. Among them, five proteins (RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2) were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results provide a good resource for future functional studies of bug salivary effectors and might be useful in pest management. Abstract The bean bug, Riptortus pedestris (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, R. pedestris secretes a mixture of salivary proteins, which play critical roles in the insect–plant interactions and may be responsible for staygreen-like syndromes. The present study aimed to identify the major salivary proteins in R. pedestris saliva by transcriptomic and proteomic approaches, and to screen the proteins that potentially induced plant defense responses. Altogether, 136 salivary proteins were identified, and a majority of them were involved in hydrolase and binding. Additionally, R. pedestris saliva contained abundant bug-specific proteins with unknown function. Transient expression of salivary proteins in Nicotiana benthamiana leaves identified that RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2 were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results will shed more light on the molecular mechanisms underlying the plant–insect interactions and are useful for pest management.
Collapse
|
35
|
Huo SM, Yan ZC, Zhang F, Chen L, Sun JT, Hoffmann AA, Hong XY. Comparative genome and transcriptome analyses reveal innate differences in response to host plants by two color forms of the two-spotted spider mite Tetranychus urticae. BMC Genomics 2021; 22:569. [PMID: 34301178 PMCID: PMC8306301 DOI: 10.1186/s12864-021-07894-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background The two-spotted spider mite, Tetranychus urticae, is a major agricultural pest with a cosmopolitan distribution, and its polyphagous habits provide a model for investigating herbivore-plant interactions. There are two body color forms of T. urticae with a different host preference. Comparative genomics and transcriptomics are used here to investigate differences in responses of the forms to host plants at the molecular level. Biological responses of the two forms sourced from multiple populations are also presented. Results We carried out principal component analysis of transcription changes in three red and three green T. urticae populations feeding on their original host (common bean), and three hosts to which they were transferred: cotton, cucumber and eggplant. There were differences among the forms in gene expression regardless of their host plant. In addition, different changes in gene expression were evident in the two forms when responding to the same host transfer. We further compared biological performance among populations of the two forms after feeding on each of the four hosts. Fecundity of 2-day-old adult females showed a consistent difference between the forms after feeding on bean. We produced a 90.1-Mb genome of the red form of T. urticae with scaffold N50 of 12.78 Mb. Transcriptional profiles of genes associated with saliva, digestion and detoxification showed form-dependent responses to the same host and these genes also showed host-specific expression effects. Conclusions Our research revealed that forms of T. urticae differ in host-determined transcription responses and that there is form-dependent plasticity in the transcriptomic responses. These differences may facilitate the extreme polyphagy shown by spider mites, although fitness differences on hosts are also influenced by population differences unrelated to color form. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07894-7.
Collapse
Affiliation(s)
- Shi-Mei Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhi-Chao Yan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
36
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
38
|
Labudda M, Tokarz K, Tokarz B, Muszyńska E, Gietler M, Górecka M, Różańska E, Rybarczyk-Płońska A, Fidler J, Prabucka B, Dababat AA, Lewandowski M. Reactive oxygen species metabolism and photosynthetic performance in leaves of Hordeum vulgare plants co-infested with Heterodera filipjevi and Aceria tosichella. PLANT CELL REPORTS 2020; 39:1719-1741. [PMID: 32955612 PMCID: PMC7502656 DOI: 10.1007/s00299-020-02600-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Krzysztof Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosława Górecka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Center (CIMMYT), Soil Borne Pathogens Program, Ankara, Turkey
| | - Mariusz Lewandowski
- Department of Plant Protection, Section of Applied Entomology, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
39
|
Ovalle TM, Vásquez-Ordóñez AA, Jimenez J, Parsa S, Cuellar WJ, Becerra Lopez-Lavalle LA. A simple PCR-based method for the rapid and accurate identification of spider mites (Tetranychidae) on cassava. Sci Rep 2020; 10:19496. [PMID: 33177527 PMCID: PMC7658231 DOI: 10.1038/s41598-020-75743-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
The morphological identification of mites entails great challenges. Characteristics such as dorsal setae and aedeagus are widely used, but they show variations between populations, and the technique is time consuming and demands specialized taxonomic expertise that is difficult to access. A successful alternative has been to exploit a region of the mitochondrial cytochrome oxidase I (COI) gene to classify specimens to the species level. We analyzed the COI sequences of four mite species associated with cassava and classified them definitively by detailed morphological examinations. We then developed an identification kit based on the restriction fragment length polymorphism-polymerase chain reaction of subunit I of the COI gene focused on the three restriction enzymes AseI, MboII, and ApoI. This set of enzymes permitted the simple, accurate identification of Mononychellus caribbeanae, M. tanajoa, M. mcgregori, and Tetranychus urticae, rapidly and with few resources. This kit could be a vital tool for the surveillance and monitoring of mite pests in cassava crop protection programs in Africa, Asia, and Latin America.
Collapse
Affiliation(s)
- Tatiana M Ovalle
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia.,CGIAR Research Program for Root Tubers and Bananas, Lima, Peru
| | - Aymer Andrés Vásquez-Ordóñez
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia.,Entomology Section, Universidad del Valle, Ciudad Universitaria Melendez, Cali, Valle del Cauca, Colombia
| | - Jenyfer Jimenez
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia.,CGIAR Research Program for Root Tubers and Bananas, Lima, Peru
| | - Soroush Parsa
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia.,International Potato Center (CIP), Av. La Molina 1895, La Molina, Lima, Lima12, Perú
| | - Wilmer J Cuellar
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia.,CGIAR Research Program for Root Tubers and Bananas, Lima, Peru
| | - Luis A Becerra Lopez-Lavalle
- Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, 763537, Cali, Valle del Cauca, Colombia. .,CGIAR Research Program for Root Tubers and Bananas, Lima, Peru.
| |
Collapse
|
40
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
42
|
Zhu YX, Song ZR, Song YL, Hong XY. Double infection of Wolbachia and Spiroplasma alters induced plant defense and spider mite fecundity. PEST MANAGEMENT SCIENCE 2020; 76:3273-3281. [PMID: 32388920 DOI: 10.1002/ps.5886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Herbivore-associated bacterial symbionts can change plant physiology and influence herbivore fitness. The spider mite Tetranychus truncatus is a notorious pest harboring various bacterial symbionts; however, the effect of bacterial symbionts on host plant physiology remains unclear. Here, we investigated whether infection with the endosymbionts Wolbachia and Spiroplasma altered spider mite performance on tomato plants and affected plant-induced defenses. RESULTS Wolbachia and Spiroplasma were mainly located in the gnathosoma and ovaries of their spider mite hosts. Wolbachia and Spiroplasma significantly improved spider mite reproductive performance in cultivated and wild-type tomato. However, in plants deficient in jasmonic acid (JA) and salicylic acid (SA), there were no significant differences in reproduction between spider mites infected with Wolbachia and Spiroplasma and uninfected mites. The results indicated that the reproduction benefits conferred by endosymbionts may relate to plant defenses. Both spider mites infected with Wolbachia and Spiroplasma and uninfected mites induced similar levels of JA and SA accumulation in tomato, whereas tomato plants damaged by spider mites infected with both Wolbachia and Spiroplasma showed lower expression levels of JA- and SA-responsive genes than those damaged by uninfected spider mites. In addition, mites infected with Wolbachia and Spiroplasma mites consumed more tomato amino acids compared to uninfected spider mites, which may have contributed to host fecundity. CONCLUSIONS Our results suggest that the reproduction benefits conferred by endosymbionts may be associated with changes in plant defense parameters and the concentrations of plant amino acids. The results highlight the importance of endosymbionts in interactions between spider mites and their host plants. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Zhang-Rong Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yue-Ling Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Ghazy NA, Okamura M, Sai K, Yamakawa S, Hamdi FA, Grbic V, Suzuki T. A Leaf-Mimicking Method for Oral Delivery of Bioactive Substances Into Sucking Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2020; 11:1218. [PMID: 32849754 PMCID: PMC7431704 DOI: 10.3389/fpls.2020.01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 05/22/2023]
Abstract
Spider mites (Acari: Tetranychidae) are pests of a wide range of agricultural crops, vegetables, and ornamental plants. Their ability to rapidly develop resistance to synthetic pesticides has prompted the development of new strategies for their control. Evaluation of synthetic pesticides and bio-pesticides-and more recently the identification of RNA interference (RNAi) target genes-requires an ability to deliver test compounds efficiently. Here we describe a novel method that uses a sheet-like structure mimicking plant leaves and allows for oral delivery of liquid test compounds to a large number of individuals in a limited area simultaneously (~100 mites cm-2). The main component is a fine nylon mesh sheet that holds the liquid within each pore, much like a plant cell, and consequently allows for greater distribution of specific surface area even in small amounts (10 µl cm-2 for 100-µm mesh opening size). The nylon mesh sheet is placed on a solid plane (e.g., the undersurface of a Petri dish), a solution or suspension of test compounds is pipetted into the mesh sheet, and finally a piece of paraffin wax film is gently stretched above the mesh so that the test mites can feed through it. We demonstrate the use of the method for oral delivery of a tracer dye (Brilliant Blue FCF), pesticides (abamectin and bifenazate), dsRNA targeting the Vacuolar-type H+-VATPase gene, or fluorescent nanoparticles to three species of Tetranychus spider mites (Acari: Tetranychidae) and to the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). The method is fast, easy, and highly reproducible and can be adapted to facilitate several aspects of bioassays.
Collapse
Affiliation(s)
- Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Mayo Okamura
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kanae Sai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Faten Abdelsalam Hamdi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Instituto de Ciencias de la Vid y el Vino, Logrono, Spain
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
44
|
Feng K, Liu J, Wei P, Ou S, Wen X, Shen G, Xu Z, Xu Q, He L. lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 regulation pathway mediates cyflumetofen resistance in Tetranychus cinnabarinus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103413. [PMID: 32534987 DOI: 10.1016/j.ibmb.2020.103413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Differential expression of metabolic detoxification enzymes is an important mechanism involved in pesticide/acaricide resistance of mite pests. The competing endogenous RNA hypothesis offers a new opportunity to investigate post-transcriptional regulation of those genes. In this study, 4454 long non-coding RNAs were identified in the carmine spider mite Tetranychus cinnabarinus by transcriptome sequencing. Software-based predictions indicated that a long intergenic non-coding RNA, (lincRNA)_Tc13743.2 and a detoxification enzyme gene, TcGSTm02, both contained a microRNA (miR-133-5p) response element. Over-expression of lincRNA_Tc13743.2 and TcGSTm02 were detected in a cyflumetofen-resistant T. cinnabarinus strain (CyR), whereas down-regulation of miR-133-5p was observed in this strain. Conversely, up-regulation of miR-133-5p could inhibit TcGSTm02 expression levels, and both lincRNA_Tc13743.2 and TcGSTm02 were significantly enriched in miR-133-5p biotin-avidin pull-down assays. RNA-binding protein immunoprecipitation assay showed that lincRNA_Tc13743.2 and TcGSTm02 bound to a silencing complex containing miR-133-5p. Moreover, a luciferase reporter assay based on a human cell line revealed that over-expression of lincRNA_Tc13743.2 could significantly reduce the inhibition exerted by miR-133-5p through the TcGSTm02 3'UTR. In addition, co-localization of lincRNA_Tc13743.2 and miR-133-5p was detected using fluorescence in situ hybridization, suggesting that lincRNA_Tc13743.2 interacts directly with miR-133-5p in spider mites. More importantly, silencing the expression of lincRNA_Tc13743.2 significantly reduced the expression levels of TcGSTm02 and increased the sensitivity of spider mites to cyflumetofen. Our data show that lincRNA_Tc13743.2 up-regulates TcGSTm02 expression by competing for miR-133-5p binding, demonstrating that a lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 pathway mediates cyflumetofen resistance in mites.
Collapse
Affiliation(s)
- Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jie Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shiyuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Qiang Xu
- Department of Biology, Abilene Christian University, Abilene, TX, 79699, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
45
|
Liu J, Legarrea S, Alba JM, Dong L, Chafi R, Menken SBJ, Kant MR. Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults. FRONTIERS IN PLANT SCIENCE 2020; 11:980. [PMID: 32754172 PMCID: PMC7367147 DOI: 10.3389/fpls.2020.00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 05/25/2023]
Abstract
When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.
Collapse
Affiliation(s)
- Jie Liu
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Saioa Legarrea
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M. Alba
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lin Dong
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steph B. J. Menken
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Merijn R. Kant
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
He J, Bouwmeester HJ, Dicke M, Kappers IF. Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus). PLANT MOLECULAR BIOLOGY 2020; 103:489-505. [PMID: 32306368 PMCID: PMC7299927 DOI: 10.1007/s11103-020-01005-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Cucumber plants adapt their transcriptome and metabolome as result of spider mite infestation with opposite consequences for direct and indirect defences in two genotypes. Plants respond to arthropod attack with the rearrangement of their transcriptome which lead to subsequent phenotypic changes in the plants' metabolome. Here, we analysed transcriptomic and metabolite responses of two cucumber (Cucumis sativus) genotypes to chelicerate spider mites (Tetranychus urticae) during the first 3 days of infestation. Genes associated with the metabolism of jasmonates, phenylpropanoids, terpenoids and L-phenylalanine were most strongly upregulated. Also, genes involved in the biosynthesis of precursors for indirect defence-related terpenoids were upregulated while those involved in the biosynthesis of direct defence-related cucurbitacin C were downregulated. Consistent with the observed transcriptional changes, terpenoid emission increased and cucurbitacin C content decreased during early spider-mite herbivory. To further study the regulatory network that underlies induced defence to spider mites, differentially expressed genes that encode transcription factors (TFs) were analysed. Correlation analysis of the expression of TF genes with metabolism-associated genes resulted in putative identification of regulators of herbivore-induced terpenoid, green-leaf volatiles and cucurbitacin biosynthesis. Our data provide a global image of the transcriptional changes in cucumber leaves in response to spider-mite herbivory and that of metabolites that are potentially involved in the regulation of induced direct and indirect defences against spider-mite herbivory.
Collapse
Affiliation(s)
- Jun He
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Liu J, Chafi R, Legarrea S, Alba JM, Meijer T, Menken SBJ, Kant MR. Spider Mites Cause More Damage to Tomato in the Dark When Induced Defenses Are Lower. J Chem Ecol 2020; 46:631-641. [PMID: 32588284 PMCID: PMC7371662 DOI: 10.1007/s10886-020-01195-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022]
Abstract
Plants have evolved robust mechanisms to cope with incidental variation (e.g. herbivory) and periodical variation (e.g. light/darkness during the day-night cycle) in their environment. It has been shown that a plant's susceptibility to pathogens can vary during its day-night cycle. We demonstrated earlier that the spider mite Tetranychus urticae induces jasmonate- and salicylate-mediated defenses in tomato plants while the spider mite T. evansi suppresses these defenses probably by secreting salivary effector proteins. Here we compared induction/suppression of plant defenses; the expression of mite-effector genes and the amount of damage due to mite feeding during the day and during the night. T. urticae feeding upregulated the expression of jasmonate and salicylate marker-genes albeit significantly higher under light than under darkness. Some of these marker-genes were also upregulated by T. evansi-feeding albeit to much lower levels than by T. urticae-feeding. The expression of effector 28 was not affected by light or darkness in either mite species. However, the expression of effector 84 was considerably higher under light, especially for T. evansi. Finally, while T. evansi produced overall more feeding damage than T. urticae both mites produced consistently more damage during the dark phase than under light. Our results suggest that induced defenses are subject to diurnal variation possibly causing tomatoes to incur more damage due to mite-feeding during the dark phase. We speculate that mites, but especially T. evansi, may relax effector production during the dark phase because under these conditions the plant's ability to upregulate defenses is reduced.
Collapse
Affiliation(s)
- Jie Liu
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Rachid Chafi
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Saioa Legarrea
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M Alba
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Tomas Meijer
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steph B J Menken
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Merijn R Kant
- Section Molecular and Chemical Ecology, Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
48
|
Dermauw W, Jonckheere W, Riga M, Livadaras I, Vontas J, Van Leeuwen T. Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103347. [PMID: 32114158 DOI: 10.1016/j.ibmb.2020.103347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The use of CRISPR-Cas9 has revolutionized functional genetic work in many organisms, including more and more insect species. However, successful gene editing or genetic transformation has not yet been reported for chelicerates, the second largest group of terrestrial animals. Within this group, some mite and tick species are economically very important for agriculture and human health, and the availability of a gene-editing tool would be a significant advancement for the field. Here, we report on the use of CRISPR-Cas9 in the spider mite Tetranychus urticae. The ovary of virgin adult females was injected with a mix of Cas9 and sgRNAs targeting the phytoene desaturase gene. Natural mutants of this laterally transferred gene have previously shown an easy-to-score albino phenotype. Albino sons of injected virgin females were mated with wild-type females, and two independent transformed lines where created and further characterized. Albinism inherited as a recessive monogenic trait. Sequencing of the complete target-gene of both lines revealed two different lesions at expected locations near the PAM site in the target-gene. Both lines did not genetically complement each other in dedicated crosses, nor when crossed to a reference albino strain with a known genetic defect in the same gene. In conclusion, two independent mutagenesis events were induced in the spider mite T. urticae using CRISPR-Cas9, hereby providing proof-of-concept that CRISPR-Cas9 can be used to create gene knockouts in mites.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Maria Riga
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - Ioannis Livadaras
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
49
|
Knegt B, Meijer TT, Kant MR, Kiers ET, Egas M. Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol Evol 2020; 10:4375-4390. [PMID: 32489604 PMCID: PMC7246200 DOI: 10.1002/ece3.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.
Collapse
Affiliation(s)
- Bram Knegt
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tomas T. Meijer
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVU UniversityAmsterdamThe Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
50
|
Denecke S, Ioannidis P, Buer B, Ilias A, Douris V, Topalis P, Nauen R, Geibel S, Vontas J. A transcriptomic and proteomic atlas of expression in the Nezara viridula (Heteroptera: Pentatomidae) midgut suggests the compartmentalization of xenobiotic metabolism and nutrient digestion. BMC Genomics 2020; 21:129. [PMID: 32028881 PMCID: PMC7006211 DOI: 10.1186/s12864-020-6459-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stink bugs are an emerging threat to crop security in many parts of the globe, but there are few genetic resources available to study their physiology at a molecular level. This is especially true for tissues such as the midgut, which forms the barrier between ingested material and the inside of the body. RESULTS Here, we focus on the midgut of the southern green stink bug Nezara viridula and use both transcriptomic and proteomic approaches to create an atlas of expression along the four compartments of the anterior-posterior axis. Estimates of the transcriptome completeness were high, which led us to compare our predicted gene set to other related stink bugs and Hemiptera, finding a high number of species-specific genes in N. viridula. To understand midgut function, gene ontology and gene family enrichment analyses were performed for the most highly expressed and specific genes in each midgut compartment. These data suggested a role for the anterior midgut (regions M1-M3) in digestion and xenobiotic metabolism, while the most posterior compartment (M4) was enriched in transmembrane proteins. A more detailed characterization of these findings was undertaken by identifying individual members of the cytochrome P450 superfamily and nutrient transporters thought to absorb amino acids or sugars. CONCLUSIONS These findings represent an initial step to understand the compartmentalization and physiology of the N. viridula midgut at a genetic level. Future studies will be able to build on this work and explore the molecular physiology of the stink bug midgut.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece.
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D Pest Control, 40789, Monheim, Germany
| | - Aris Ilias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece.,Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D Pest Control, 40789, Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science Division, R&D Pest Control, 40789, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013, Heraklion, Crete, Greece.,Department of Crop Science, Agricultural University of Athens, Iera Odos 75, GR-11855, Athens, Greece
| |
Collapse
|