1
|
Cho HY, Lee JE, Park KH, Choi BY, Lee MJ, Jeong DE, Shin S. Identification and characterization of plasma proteins associated with intra-amniotic inflammation and/or infection in women with preterm labor. Sci Rep 2024; 14:14654. [PMID: 38918423 PMCID: PMC11199617 DOI: 10.1038/s41598-024-65616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to identify plasma proteins that could serve as potential biomarkers for microbial invasion of the amniotic cavity (MIAC) or intra-amniotic inflammation (IAI) in women with preterm labor (PTL). A retrospective cohort comprised singleton pregnant women with PTL (24-34 weeks) who underwent amniocentesis. Pooled plasma samples were analyzed by label-free liquid chromatography-tandem mass spectrometry for proteome profiling in a nested case-control study (concomitant MIAC/IAI cases vs. non-MIAC/IAI controls [n = 10 per group]). Eight target proteins associated with MIAC/IAI were further verified by immunoassays in a large cohort (n = 230). Shotgun proteomic analysis revealed 133 differentially expressed proteins (fold change > 1.5, P < 0.05) in the plasma of MIAC/IAI cases. Further quantification confirmed that the levels of AFP were higher and those of kallistatin and TGFBI were lower in the plasma of women with MIAC and that the levels of kallistatin and TGFBI were lower in the plasma of women with IAI than in those without these conditions. The area under the curves of plasma AFP, kallistatin, and TGFBI ranged within 0.67-0.81 with respect to each endpoint. In summary, plasma AFP, kallistatin, and TGFBI may represent valuable non-invasive biomarkers for predicting MIAC or IAI in women with PTL.
Collapse
Affiliation(s)
- Hee Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Eun Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea.
| | - Bo Young Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Da Eun Jeong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|
2
|
Schiksnis C, Xu M, Saito MA, McIlvin M, Moran D, Bian X, John SG, Zheng Q, Yang N, Fu F, Hutchins DA. Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation. Front Microbiol 2024; 15:1323499. [PMID: 38444803 PMCID: PMC10912551 DOI: 10.3389/fmicb.2024.1323499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.
Collapse
Affiliation(s)
- Cara Schiksnis
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Min Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Matthew McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Dawn Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Xiaopeng Bian
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Seth G. John
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nina Yang
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Feixue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - David A. Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Rao D, Füssy Z, Brisbin MM, McIlvin MR, Moran DM, Allen AE, Follows MJ, Saito MA. Flexible B 12 ecophysiology of Phaeocystis antarctica due to a fusion B 12-independent methionine synthase with widespread homologues. Proc Natl Acad Sci U S A 2024; 121:e2204075121. [PMID: 38306482 PMCID: PMC10861871 DOI: 10.1073/pnas.2204075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.
Collapse
Affiliation(s)
- Deepa Rao
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Zoltán Füssy
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
| | | | | | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Andrew E. Allen
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Instition of Oceanography, University of California San Diego, La Jolla, CA92037
| | - Michael J. Follows
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| |
Collapse
|
4
|
Lee JE, Park KH, Kim HJ, Kim YM, Choi JW, Shin S, Lee KN. Proteomic identification of novel plasma biomarkers associated with spontaneous preterm birth in women with preterm labor without infection/inflammation. PLoS One 2021; 16:e0259265. [PMID: 34710180 PMCID: PMC8553083 DOI: 10.1371/journal.pone.0259265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Objective We sought to identify plasma biomarkers associated with spontaneous preterm birth (SPTB, delivery within 21 days of sampling) in women with preterm labor (PTL) without intra-amniotic infection/inflammation (IAI) using label-free quantitative proteomic analysis, as well as to elucidate specific protein pathways involved in these cases. Methods This was a retrospective cohort study comprising 104 singleton pregnant women with PTL (24–32 weeks) who underwent amniocentesis and demonstrated no evidence of IAI. Analysis of pooled plasma samples collected from SPTB cases and term birth (TB) controls (n = 10 for each group) was performed using label-free quantitative mass spectrometry for proteome profiling in a nested case-control study design. Eight candidate proteins of interest were validated by ELISA-based assay and a clot-based assay in the total cohort. Results Ninety-one proteins were differentially expressed (P < 0.05) in plasma samples obtained from SPTB cases, of which 53 (58.2%) were upregulated and 38 (41.8%) were downregulated when compared to TD controls. A validation study confirmed that plasma from women who delivered spontaneously within 21 days of sampling contained significantly higher levels of coagulation factor Ⅴ and lower levels of S100 calcium binding protein A9 (S100A9), especially the former which was independent of baseline variables. The top-ranked pathways related to the 91 differentially expressed proteins were liver-X-receptor/retinoid X receptor (RXR) activation, acute phase response signaling, farnesoid X receptor/RXR activation, coagulation system, and complement system. Conclusions Proteomic analyses in this study identified potential novel biomarkers (i.e., coagulation factor V and S100A9) and potential protein pathways in plasma associated with SPTB in the absence of IAI in women with PTL. The present findings provide novel insights into the molecular pathogenesis and therapeutic targets specific for idiopathic SPTB.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
5
|
Mullan KA, Bramberger LM, Munday PR, Goncalves G, Revote J, Mifsud NA, Illing PT, Anderson A, Kwan P, Purcell AW, Li C. ggVolcanoR: A Shiny app for customizable visualization of differential expression datasets. Comput Struct Biotechnol J 2021; 19:5735-5740. [PMID: 34745458 PMCID: PMC8551465 DOI: 10.1016/j.csbj.2021.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Volcano and other analytical plots (e.g., correlation plots, upset plots, and heatmaps) serve as important data visualization methods for transcriptomic and proteomic analyses. Customizable generation of these plots is fundamentally important for a better understanding of dysregulated expression data and is therefore instrumental for the ensuing pathway analysis and biomarker identification. Here, we present an R-based Shiny application, termed ggVolcanoR, to allow for customizable generation and visualization of volcano plots, correlation plots, upset plots, and heatmaps for differential expression datasets, via a user-friendly interactive interface in both local executable version and web-based application without requiring programming expertise. Compared to currently existing packages, ggVolcanoR offers more practical options to optimize the generation of publication-quality volcano and other analytical plots for analyzing and comparing dysregulated genes/proteins across multiple differential expression datasets. In addition, ggVolcanoR provides an option to download the customized list of the filtered dysregulated expression data, which can be directly used as input for downstream pathway analysis. The source code of ggVolcanoR is available at https://github.com/KerryAM-R/ggVolcanoR and the webserver of ggVolcanoR 1.0 has been deployed and is freely available for academic purposes at https://ggvolcanor.erc.monash.edu/.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Liesl M. Bramberger
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Prithvi Raj Munday
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Gabriel Goncalves
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jerico Revote
- Monash eResearch Centre, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Patricia T. Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Neurology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Neurology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
6
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Shinde A, Jung H, Lee H, Singh K, Roy M, Gohel D, Kim HB, Mane M, Vasiyani H, Currim F, Seo YR, Yang S, Cho A, Yi EC, Singh R. TNF-α differentially modulates subunit levels of respiratory electron transport complexes of ER/PR +ve/-ve breast cancer cells to regulate mitochondrial complex activity and tumorigenic potential. Cancer Metab 2021; 9:19. [PMID: 33926547 PMCID: PMC8082668 DOI: 10.1186/s40170-021-00254-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is an immunostimulatory cytokine that is consistently high in the breast tumor microenvironment (TME); however, its differential role in mitochondrial functions and cell survival in ER/PR +ve and ER/PR -ve breast cancer cells is not well understood. METHODS In the current study, we investigated TNF-α modulated mitochondrial proteome using high-resolution mass spectrometry and identified the differentially expressed proteins in two different breast cancer cell lines, ER/PR positive cell line; luminal, MCF-7 and ER/PR negative cell line; basal-like, MDA-MB-231 and explored its implication in regulating the tumorigenic potential of breast cancer cells. We also compared the activity of mitochondrial complexes, ATP, and ROS levels between MCF-7 and MDA-MB-231 in the presence of TNF-α. We used Tumor Immune Estimation Resource (TIMER) webserver to analyze the correlation between TNF-α and mitochondrial proteins in basal and luminal breast cancer patients. Kaplan-Meier method was used to analyze the correlation between mitochondrial protein expression and survival of breast cancer patients. RESULTS The proteome analysis revealed that TNF-α differentially altered the level of critical proteins of mitochondrial respiratory chain complexes both in MCF-7 and MDA-MB-231, which correlated with differential assembly and activity of mitochondrial ETC complexes. The inhibition of the glycolytic pathway in the presence of TNF-α showed that glycolysis is indispensable for the proliferation and clonogenic ability of MDA-MB-231 cells (ER/PR -ve) as compared to MCF-7 cells (ER/PR +ve). The TIMER database showed a negative correlation between the expressions of TNF-α and key regulators of mitochondrial OXPHOS complexes in basal breast vs lobular carcinoma. Conversely, patient survival analysis showed an improved relapse-free survival with increased expression of identified proteins of ETC complexes and survival of the breast cancer patients. CONCLUSION The evidence presented in our study convincingly demonstrates that TNF-α regulates the survival and proliferation of aggressive tumor cells by modulating the levels of critical assembly factors and subunits involved in mitochondrial respiratory chain supercomplexes organization and function. This favors the rewiring of mitochondrial metabolism towards anaplerosis to support the survival and proliferation of breast cancer cells. Collectively, the results strongly suggest that TNF-α differentially regulates metabolic adaptation in ER/PR +ve (MCF-7) and ER/PR -ve (MDA-MB-231) cells by modulating the mitochondrial supercomplex assembly and activity.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Hayun Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Milton Roy
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Minal Mane
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Fatema Currim
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India
| | - Yu Ri Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Seojin Yang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Ara Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, South Korea.
| | - Rajesh Singh
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Sayajigunj, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
8
|
Hong S, Lee JE, Kim YM, Park Y, Choi JW, Park KH. Identifying potential biomarkers related to pre-term delivery by proteomic analysis of amniotic fluid. Sci Rep 2020; 10:19648. [PMID: 33184413 PMCID: PMC7665029 DOI: 10.1038/s41598-020-76748-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
We sought to identify biomarkers in the amniotic fluid (AF) and specific signaling pathways related to spontaneous preterm delivery (SPTD, < 34 weeks) in women with preterm labor (PTL) without intra-uterine infection/inflammation (IUI). This was a retrospective cohort study of a total of 139 PTL women with singleton gestation (24 + 0 to 32 + 6 weeks) who underwent amniocentesis and who displayed no evidence of IUI. A nested case-control was conducted using pooled AF samples (n = 20) analyzed via label-free liquid chromatography-tandem mass spectrometry. In the total cohort, an ELISA validation study was performed for seven candidate proteins of interest. Proteomic analysis identified 77 differentially expressed proteins (DEPs, P < 0.05) in the AF from SPTD cases compared to term delivery controls. ELISA validation confirmed that women who had an SPTD before 34 weeks had significantly independently lower levels of VEGFR-1 and higher levels of lipocalin-2 and the Fc fragment of IgG binding protein in the AF. Five principle pathways associated with the 77 DEPs were identified, including glycolysis, gluconeogenesis, and iron homeostasis. The proteomic analysis data of AFs from women with PTL identified several novel biomarkers and specific protein pathways related to SPTD in the absence of IUI.
Collapse
Affiliation(s)
- Subeen Hong
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 463-707, Korea
| | - Yehyon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 463-707, Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 463-707, Korea.
| |
Collapse
|
9
|
Nil Z, Hervás R, Gerbich T, Leal P, Yu Z, Saraf A, Sardiu M, Lange JJ, Yi K, Unruh J, Slaughter B, Si K. Amyloid-like Assembly Activates a Phosphatase in the Developing Drosophila Embryo. Cell 2020; 178:1403-1420.e21. [PMID: 31491385 DOI: 10.1016/j.cell.2019.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/07/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
Prion-like proteins can assume distinct conformational and physical states in the same cell. Sequence analysis suggests that prion-like proteins are prevalent in various species; however, it remains unclear what functional space they occupy in multicellular organisms. Here, we report the identification of a prion-like protein, Herzog (CG5830), through a multimodal screen in Drosophila melanogaster. Herzog functions as a membrane-associated phosphatase and controls embryonic patterning, likely being involved in TGF-β/BMP and FGF/EGF signaling pathways. Remarkably, monomeric Herzog is enzymatically inactive and becomes active upon amyloid-like assembly. The prion-like domain of Herzog is necessary for both its assembly and membrane targeting. Removal of the prion-like domain impairs activity, while restoring assembly on the membrane using a heterologous prion-like domain and membrane-targeting motif can restore phosphatase activity. This study provides an example of a prion-like domain that allows an enzyme to gain essential functionality via amyloid-like assembly to control animal development.
Collapse
Affiliation(s)
- Zelha Nil
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Rubén Hervás
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Therese Gerbich
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Paulo Leal
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Mihaela Sardiu
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Brian Slaughter
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
Choi D, Go G, Kim DK, Lee J, Park SM, Di Vizio D, Gho YS. Quantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins. J Extracell Vesicles 2020; 9:1757209. [PMID: 32489530 PMCID: PMC7241501 DOI: 10.1080/20013078.2020.1757209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles surrounded by a lipid bilayer and released into the extracellular milieu by most of cells. Although various EV isolation methods have been established, most of the current methods isolate EVs with contaminated non-vesicular proteins. By applying the label-free quantitative proteomic analyses of human colon cancer cell SW480-derived EVs, we identified trypsin-sensitive and trypsin-resistant vesicular proteins. Further systems biology and protein-protein interaction network analyses based on their cellular localization, we classified the trypsin-sensitive and trypsin-resistant vesicular proteins into two subgroups: 363 candidate real-vesicular proteins and 151 contaminated non-vesicular proteins. Moreover, the protein interaction network analyses showed that candidate real-vesicular proteins are mainly derived from plasma membrane (46.8%), cytosol (36.6%), cytoskeleton (8.0%) and extracellular region (2.5%). On the other hand, most of the contaminated non-vesicular proteins derived from nucleus, Golgi apparatus, endoplasmic reticulum and mitochondria. In addition, ribosomal protein complexes and T-complex proteins were classified as the contaminated non-vesicular proteins. Taken together, our trypsin-digested proteomic approach on EVs is an important advance to identify the real-vesicular proteins that could help to understand EV biogenesis and protein cargo-sorting mechanism during EV release, to identify more reliable EV diagnostic marker proteins, and to decode pathophysiological roles of EVs.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Canada
| | - Gyeongyun Go
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Republic of Korea
| | - Dolores Di Vizio
- Department of Surgery, Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
11
|
Lee J, Lee JE, Choi JW, Han MH, Seong SY, Park KH, Park JW. Proteomic Analysis of Amniotic Fluid Proteins for Predicting the Outcome of Emergency Cerclage in Women with Cervical Insufficiency. Reprod Sci 2020; 27:1318-1329. [PMID: 32046453 DOI: 10.1007/s43032-019-00110-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
We aimed to identify novel biomarkers in amniotic fluid (AF) that predict the outcome of emergency cerclage in women with cervical insufficiency. This retrospective cohort study included 40 singleton pregnant women who received emergency cerclage for cervical insufficiency (17-25 weeks) and underwent amniocentesis. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify AF proteins in pooled samples (n = 16) using a nested case-control approach. The six candidate biomarkers of interest were validated by enzyme-linked immunosorbent assays (ELISA) in the final cohort (n = 40). The differentially expressed proteins (DEPs) were analyzed by pathway analysis software. The primary outcome measure was failure of emergency cerclage [defined as spontaneous preterm delivery (SPTD) at < 34 weeks of gestation after cerclage placement]. Sixty-eight proteins were differentially expressed (P < 0.001) in AF from SPTD cases and near-term controls, of which 44 (64.7%) were upregulated and 24 (35.3%) were downregulated. Validation by ELISA confirmed that AF from women with cerclage failure contained significantly higher levels of myeloperoxidase, lactoferrin, glucose-6-phosphate isomerase, lipocalin-2, and lymphocyte cytosolic protein 1, the first four of which were independent of cervical dilatation at presentation. The five pathways with the most differentially regulated proteins were actin cytoskeleton signaling, acute phase response signaling, ILK signaling, glycolysis, and gluconeogenesis. Proteomic analyses of AF in this study identified DEPs and specific protein pathways related to poor prognosis after emergency cerclage for cervical insufficiency. Four novel independent biomarkers in AF for cerclage failure have been identified using proteomics.
Collapse
Affiliation(s)
- JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Mi-Hee Han
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Jeong Woo Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
12
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
13
|
Refinements of LC-MS/MS Spectral Counting Statistics Improve Quantification of Low Abundance Proteins. Sci Rep 2019; 9:13653. [PMID: 31541118 PMCID: PMC6754416 DOI: 10.1038/s41598-019-49665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based spectral count has been a common choice of label-free proteome quantification due to the simplicity for the sample preparation and data generation. The discriminatory nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which hampers sensitive proteome quantification. As many low-abundance proteins play important roles in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly expands the depth of biological insights. Here, we implemented the Moment Adjusted Imputation error model in the spectral count refinement as a post PLGEM-STN for improving sensitivity for quantitation of low-abundance proteins by reducing spectral count variability. The statistical framework, automated spectral count refinement by integrating the two statistical tools, was tested with LC-MS/MS datasets of MDA-MB468 breast cancer cells grown under normal and glucose deprivation conditions. We identified about 30% more quantifiable proteins that were found to be low-abundance proteins, which were initially filtered out by the PLGEM-STN analysis. This newly developed statistical framework provides a reliable abundance measurement of low-abundance proteins in the spectral count-based label-free proteome quantification and enabled us to detect low-abundance proteins that could be functionally important in cellular processes.
Collapse
|
14
|
Nakajima YI, Lee ZT, McKinney SA, Swanson SK, Florens L, Gibson MC. Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. J Cell Biol 2019; 218:1824-1838. [PMID: 31088859 PMCID: PMC6548121 DOI: 10.1083/jcb.201803116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nakajima et al. reveal a novel mechanism of planar spindle alignment through junctional tumor suppressors Scrib/Dlg and 14-3-3 proteins in the Drosophila wing disc epithelium. Their results suggest that 14-3-3 proteins interact with Scrib/Dlg to control planar spindle orientation and maintain epithelial architecture. Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Stowers Institute for Medical Research, Kansas City, MO .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Zachary T Lee
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
15
|
Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth. mSystems 2019; 4:mSystems00299-18. [PMID: 31058231 PMCID: PMC6495232 DOI: 10.1128/msystems.00299-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments. Clostridium butyricum, the type species of the genus Clostridium, is considered an obligate anaerobe, yet it has been shown to grow in the presence of oxygen. C. butyricum strains atypically producing the botulinum neurotoxin type E are the leading cause of type E human botulism in Italy. Here, we show that type E botulinum neurotoxin-producing C. butyricum strains growing exponentially were able to keep growing and producing toxin in vitro upon exposure to air, although less efficiently than under ideal oxygen-depleted conditions. Bacterial growth in air was maintained when the initial cell density was higher than 103 cells/ml. No spores were detected in the cultures aerated for 5 h. To understand the biological mechanisms allowing the adaptation of vegetative cells of C. butyricum type E to oxygen, we compared the proteome and metabolome profiles of the clostridial cultures grown for 5 h under either aerated or anaerobic conditions. The results indicated that bacterial cells responded to oxygen stress by slowing growth and modulating the expression of proteins involved in carbohydrate uptake and metabolism, redox homeostasis, DNA damage response, and bacterial motility. Moreover, the ratio of acetate to butyrate was significantly higher under aeration. This study demonstrates for the first time that a botulinum neurotoxin-producing Clostridium can withstand oxygen during vegetative growth. IMPORTANCE Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments.
Collapse
|
16
|
Wang Y, Li YJ, Huang XH, Zheng CC, Yin XF, Li B, He QY. Liensinine perchlorate inhibits colorectal cancer tumorigenesis by inducing mitochondrial dysfunction and apoptosis. Food Funct 2019; 9:5536-5546. [PMID: 30207364 DOI: 10.1039/c8fo01137k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SCOPE Colorectal cancer (CRC) is one of the most common cancers worldwide with poor survival and limited therapeutic options, and there is an urgent need to develop novel therapeutic agents with good treatment efficiency and low toxicity. This study aims to examine the anticancer bioactivity of liensinine, a constituent of Nelumbo nucifera Gaertn, in CRC and investigate the action mechanisms involved. METHODS AND RESULTS Liensinine was found to induce apoptosis and exert a significant inhibitory effect on the proliferation and colony-forming ability of CRC cells in a dose-dependent manner without any observed cytotoxicity on normal colorectal epithelial cells. Mechanistically, our data from quantitative proteomics, western blot analysis and flow cytometry analyses demonstrated that exposure of CRC cells to liensinine caused cell cycle arrest, mitochondrial dysfunction and apoptosis, accompanied by the activation of the JNK signaling pathway. Furthermore, animal experiments showed that liensinine markedly suppressed the growth of CRC tumor xenografts in nude mice by reducing the Ki-67 proliferation index, but did not damage the vital organs of the animals. CONCLUSION This study demonstrated for the first time that liensinine, a food-source natural product, could be a novel therapeutic strategy for treating CRC without obvious side effects.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Paternoster V, Svanborg M, Edhager AV, Rajkumar AP, Eickhardt EA, Pallesen J, Grove J, Qvist P, Fryland T, Wegener G, Nyengaard JR, Mors O, Palmfeldt J, Børglum AD, Christensen JH. Brain proteome changes in female Brd1 +/- mice unmask dendritic spine pathology and show enrichment for schizophrenia risk. Neurobiol Dis 2018; 124:479-488. [PMID: 30590179 DOI: 10.1016/j.nbd.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic and molecular studies have implicated the Bromodomain containing 1 (BRD1) gene in the pathogenesis of schizophrenia and bipolar disorder. Accordingly, mice heterozygous for a targeted deletion of Brd1 (Brd1+/- mice) show behavioral phenotypes with broad translational relevance to psychiatric disorders. BRD1 encodes a scaffold protein that affects the expression of many genes through modulation of histone acetylation. BRD1 target genes have been identified in cell lines; however the impact of reduced Brd1 levels on the brain proteome is largely unknown. In this study, we applied label-based quantitative mass spectrometry to profile the frontal cortex, hippocampus and striatum proteome and synaptosomal proteome of female Brd1+/- mice. We successfully quantified between 1537 and 2196 proteins and show widespread changes in protein abundancies and compartmentalization. By integrative analysis of human genetic data, we find that the differentially abundant proteins in frontal cortex and hippocampus are enriched for schizophrenia risk further linking the actions of BRD1 to psychiatric disorders. Affected proteins were further enriched for proteins involved in processes known to influence neuronal and dendritic spine morphology e.g. regulation of cytoskeleton dynamics and mitochondrial function. Directly prompted in these findings, we investigated dendritic spine morphology of pyramidal neurons in anterior cingulate cortex and found them significantly altered, including reduced size of small dendritic spines and decreased number of the mature mushroom type. Collectively, our study describes known as well as new mechanisms related to BRD1 dysfunction and its role in psychiatric disorders, and provides evidence for the molecular and cellular dysfunctions underlying altered neurosignalling and cognition in Brd1+/- mice.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| | - Maria Svanborg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Anto P Rajkumar
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Mental Health of Older Adults and Dementia Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK; Department of Old Age Psychiatry, Psychology, & Neuroscience, King's College London, Institute of Psychiatry, London, UK
| | - Esben Ahlburg Eickhardt
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Slama P, Hoopmann MR, Moritz RL, Geman D. Robust determination of differential abundance in shotgun proteomics using nonparametric statistics. Mol Omics 2018; 14:424-436. [PMID: 30259924 PMCID: PMC6490964 DOI: 10.1039/c8mo00077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Label-free shotgun mass spectrometry enables the detection of significant changes in protein abundance between different conditions. Due to often limited cohort sizes or replication, large ratios of potential protein markers to number of samples, as well as multiple null measurements pose important technical challenges to conventional parametric models. From a statistical perspective, a scenario similar to that of unlabeled proteomics is encountered in genomics when looking for differentially expressed genes. Still, the difficulty of detecting a large fraction of the true positives without a high false discovery rate is arguably greater in proteomics due to even smaller sample sizes and peptide-to-peptide variability in detectability. These constraints argue for nonparametric (or distribution-free) tests on normalized peptide values, thus minimizing the number of free parameters, as well as for measuring significance with permutation testing. We propose such a procedure with a class-based statistic, no parametric assumptions, and no parameters to select other than a nominal false discovery rate. Our method was tested on a new dataset which is available via ProteomeXchange with identifier PXD006447. The dataset was prepared using a standard proteolytic digest of a human protein mixture at 1.5-fold to 3-fold protein concentration changes and diluted into a constant background of yeast proteins. We demonstrate its superiority relative to other approaches in terms of the realized sensitivity and realized false discovery rates determined by ground truth, and recommend it for detecting differentially abundant proteins from MS data.
Collapse
Affiliation(s)
- Patrick Slama
- Center for Imaging Science, Institute for Computational Medicine, Johns Hopkins University, USA.
- Independent Researcher, Paris, France
| | | | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA, USA 98109
| | - Donald Geman
- Center for Imaging Science, Institute for Computational Medicine, Johns Hopkins University, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N. Charles St., Baltimore MD, 21218
| |
Collapse
|
19
|
Sohail W, Majeed F, Afroz A. Differential proteome analysis of diabetes mellitus type 2 and its pathophysiological complications. Diabetes Metab Syndr 2018; 12:1125-1131. [PMID: 29907545 DOI: 10.1016/j.dsx.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
The prevalence of Diabetes Mellitus Type 2 (DM 2) is increasing every passing year due to some global changes in lifestyles of people. The exact underlying mechanisms of the progression of this disease are not yet known. However recent advances in the combined omics more particularly in proteomics and genomics have opened a gateway towards the understanding of predetermined genetic factors, progression, complications and treatment of this disease. Here we shall review the recent advances in proteomics that have led to an early and better diagnostic approaches in controlling DM 2 more importantly the comparison of structural and functional protein biomarkers that are modified in the diseased state. By applying these advanced and promising proteomic strategies with bioinformatics applications and bio-statistical tools the prevalence of DM 2 and its associated disorders i-e nephropathy and retinopathy are expected to be controlled.
Collapse
Affiliation(s)
- Waleed Sohail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan.
| | - Fatimah Majeed
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| |
Collapse
|
20
|
Cohen NR, Gong W, Moran DM, McIlvin MR, Saito MA, Marchetti A. Transcriptomic and proteomic responses of the oceanic diatom
Pseudo‐nitzschia granii
to iron limitation. Environ Microbiol 2018; 20:3109-3126. [DOI: 10.1111/1462-2920.14386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Natalie R Cohen
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Weida Gong
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Matthew R. McIlvin
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Adrian Marchetti
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| |
Collapse
|
21
|
Kim ST, Lee YJ, Tasaki T, Hwang J, Kang MJ, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is required for neurogenesis and homeostasis of cell surface proteins. PLoS One 2018; 13:e0202260. [PMID: 30157281 PMCID: PMC6114712 DOI: 10.1371/journal.pone.0202260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal amino acids of proteins act as a class of degrons (N-degrons) that determine the half-lives of proteins. We have previously identified a family of mammals N-recognins (termed UBR1, UBR2, UBR4/p600, and UBR5/EDD) whose conserved UBR boxes bind N-degrons to facilitate substrate ubiquitination and proteasomal degradation via the ubiquitin-proteasome system (UPS). Amongst these N-recognins, UBR1 and UBR2 mediate ubiquitination and proteolysis of short-lived regulators and misfolded proteins. Here, we characterized the null phenotypes of UBR4-deficient mice in which the UBR box of UBR4 was deleted. We show that the mutant mice die around embryonic days 9.5–10.5 (E9.5–E10.5) associated with abnormalities in various developmental processes such as neurogenesis and cardiovascular development. These developmental defects are significantly attributed to the inability to maintain cell integrity and adhesion, which significantly correlates to the severity of null phenotypes. UBR4-loss induces the depletion of many, but not all, proteins from the plasma membrane, suggesting that UBR4 is involved in proteome-wide turnover of cell surface proteins. Indeed, UBR4 is associated with and required to generate the multivesicular body (MVB) which transiently store endocytosed cell surface proteins before their targeting to autophagosomes and subsequently lysosomes. Our results suggest that the N-recognin UBR4 plays a role in the homeostasis of cell surface proteins and, thus, cell adhesion and integrity.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Takafumi Tasaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eugene C. Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
- * E-mail: (YTK); (BYK)
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YTK); (BYK)
| |
Collapse
|
22
|
Vitorino FNDL, Montoni F, Moreno JN, de Souza BF, Lopes MDC, Cordeiro B, Fonseca CS, Gilmore JM, Sardiu MI, Reis MS, Florens LA, Washburn MP, Armelin HA, da Cunha JPC. FGF2 Antiproliferative Stimulation Induces Proteomic Dynamic Changes and High Expression of FOSB and JUNB in K-Ras-Driven Mouse Tumor Cells. Proteomics 2018; 18:e1800203. [PMID: 30035358 DOI: 10.1002/pmic.201800203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Indexed: 11/07/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.
Collapse
Affiliation(s)
- Francisca Nathalia de Luna Vitorino
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Fabio Montoni
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Jaqueline Neves Moreno
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Bruno Ferreira de Souza
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Mariana de Camargo Lopes
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Barbara Cordeiro
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Cecilia Sella Fonseca
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Mihaela I Sardiu
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marcelo Silva Reis
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66045, USA
| | - Hugo Aguirre Armelin
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório Especial de Ciclo Celular - Center of Toxins, Immune-Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| |
Collapse
|
23
|
Sun X, Cui Y, Wang Q, Tang S, Cao X, Luo H, He Z, Hu X, Nie X, Yang Y, Wang T. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6699-6707. [PMID: 29874910 DOI: 10.1021/acs.jafc.8b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Qing Wang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Shengquan Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Xin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Hongtian Luo
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Zhili He
- School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiaonong Hu
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Xiangping Nie
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yufeng Yang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
24
|
Go DJ, Lee JY, Kang MJ, Lee EY, Lee EB, Yi EC, Song YW. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare. Lupus 2018; 27:1600-1615. [PMID: 29958502 DOI: 10.1177/0961203318778774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lupus nephritis (LN) is a major complication of systemic lupus erythematosus (SLE). Conventional biomarkers for assessing renal disease activity are imperfect in predicting clinical outcomes associated with LN. The aim of this study is to identify urinary protein biomarkers that reliably reflect the disease activity or predict clinical outcomes. A quantitative proteomic analysis was performed to identify protein biomarker candidates that can differentiate between SLE patients with and without LN. Selected biomarker candidates were further verified by enzyme-linked immunosorbent assay using urine samples from a larger cohort of SLE patients ( n = 121) to investigate their predictive values for LN activity measure. Furthermore, the association between urinary levels of a selected panel of potential biomarkers and prognosis of LN was assessed with a four-year follow-up study of renal outcomes. Urinary vitamin D-binding protein (VDBP), transthyretin (TTR), retinol binding protein 4 (RBP4), and prostaglandin D synthase (PTGDS) were significantly elevated in SLE patients with LN, especially in patients with active LN ( n = 21). Among them, VDBP well correlated with severity of proteinuria (rho = 0.661, p < 0.001) and renal SLE Disease Activity Index (renal SLEDAI) (rho = 0.520, p < 0.001). In the four-year follow-up, VDBP was a significant risk factor (hazard ratio 9.627, 95% confidence interval 1.698 to 54.571, p = 0.011) for the development of proteinuric flare in SLE patients without proteinuria ( n = 100) after adjustments for multiple confounders. Urinary VDBP correlated with proteinuria and renal SLEDAI, and predicted the development of proteinuria.
Collapse
Affiliation(s)
- D J Go
- 1 Division of Rheumatology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea.,2 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Korea
| | - J Y Lee
- 2 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Korea
| | - M J Kang
- 2 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Korea
| | - E Y Lee
- 3 Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - E B Lee
- 3 Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - E C Yi
- 2 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Korea
| | - Y W Song
- 2 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Institute, Seoul National University, Seoul, Korea.,3 Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
25
|
Bader M, Dunkel A, Wenning M, Kohler B, Medard G, Del Castillo E, Gholami A, Kuster B, Scherer S, Hofmann T. Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5621-5634. [PMID: 29787679 DOI: 10.1021/acs.jafc.8b02092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saliva flow measurements and SDS-PAGE separation of human whole saliva freshly collected after oral stimulation with citric acid (sour), aspartame (sweet), iso-α-acids (bitter), mono sodium l-glutamate (umami), NaCl (salty), 6-gingerol (pungent), hydroxy-α-sanshool (tingling), and hydroxy-β-sanshool (numbing), followed by tryptic digestion, nano-HPLC-MS/MS, and label-free protein quantitation demonstrated a stimulus- and time-dependent influence of the dietary chemosensates on salivation and the salivary proteome composition. Gene ontology enrichment analysis showed evidence for stimulus-induced alterations of the saliva proteome to boot an efficient molecular defense network of the oral cavity, e.g., 6-gingerol increased salivary lactoperoxidase activity, catalyzing the oxidation of thiocyanate to produce the antimicrobial and antifungal hypothiocyanate, from 0.37 ± 0.02 to 0.91 ± 0.05 mU/mL 45 s after stimulation. In comparison, oral citric acid stimulation induced an increase of myeloperoxidase activity, catalyzing the chloride oxidation to generate antimicrobial hypochloride in saliva, from 0.24 ± 0.04 to 0.70 ± 0.1 mU/mL as well as an increase of salivary levels of lysozyme, exhibiting antimicrobial activity on Gram-positive bacteria, from 6.0-10 to 100-150 μg/mL. Finally, microbial growth experiments clearly demonstrated for the first time that the increase of the salivary lysozyme abundance upon oral citric acid stimulation translates into an enhanced biological function, that is an almost complete growth inhibition of the two lysozyme-sensitive Gram-positive bacteria tested.
Collapse
Affiliation(s)
- Matthias Bader
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| | - Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| | - Mareike Wenning
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
| | - Bernd Kohler
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
| | - Guillaume Medard
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Estela Del Castillo
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Amin Gholami
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Siegfried Scherer
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
- Chair of Microbial Ecology, Department of Biosciences, WZW , Technische Universität München , 85354 Freising , Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
- Leibniz-Institute for Food Systems Biology , Technical University of Munich , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| |
Collapse
|
26
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2018; 7:67387-67402. [PMID: 27602764 PMCID: PMC5341883 DOI: 10.18632/oncotarget.11794] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Collapse
Affiliation(s)
- Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanlong Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Hoopmann MR, Winget JM, Mendoza L, Moritz RL. StPeter: Seamless Label-Free Quantification with the Trans-Proteomic Pipeline. J Proteome Res 2018; 17:1314-1320. [PMID: 29400476 DOI: 10.1021/acs.jproteome.7b00786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Label-free quantification has grown in popularity as a means of obtaining relative abundance measures for proteomics experiments. However, easily accessible and integrated tools to perform label-free quantification have been lacking. We describe StPeter, an implementation of Normalized Spectral Index quantification for wide availability through integration into the widely used Trans-Proteomic Pipeline. This implementation has been specifically designed for reproducibility and ease of use. We demonstrate that StPeter outperforms other state-of-the art packages using a recently reported benchmark data set over the range of false discovery rates relevant to shotgun proteomics results. We also demonstrate that the software is computationally efficient and supports data from a variety of instrument platforms and experimental designs. Results can be viewed within the Trans-Proteomic Pipeline graphical user interfaces and exported in standard formats for downstream statistical analysis. By integrating StPeter into the freely available Trans-Proteomic Pipeline, users can now obtain high-quality label-free quantification of any data set in seconds by adding a single command to the workflow.
Collapse
Affiliation(s)
- Michael R Hoopmann
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Jason M Winget
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Robert L Moritz
- Institute for Systems Biology , Seattle, Washington 98109, United States
| |
Collapse
|
28
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
29
|
Kuntová B, Stopková R, Stopka P. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse. Front Genet 2018; 9:26. [PMID: 29459883 PMCID: PMC5807349 DOI: 10.3389/fgene.2018.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.
Collapse
Affiliation(s)
- Barbora Kuntová
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Stopková
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Stopka
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
30
|
Park YE, Yeom J, Kim Y, Lee HJ, Han KC, Lee ST, Lee C, Lee JE. Identification of Plasma Membrane Glycoproteins Specific to Human Glioblastoma Multiforme Cells Using Lectin Arrays and LC-MS/MS. Proteomics 2017; 18. [PMID: 29136334 DOI: 10.1002/pmic.201700302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.
Collapse
Affiliation(s)
- Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Cheol Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
31
|
Tang S, Deng S, Guo J, Chen X, Zhang W, Cui Y, Luo Y, Yan Z, He QY, Shen S, Wang T. Deep Coverage Tissue and Cellular Proteomics Revealed IL-1β Can Independently Induce the Secretion of TNF-Associated Proteins from Human Synoviocytes. THE JOURNAL OF IMMUNOLOGY 2017; 200:821-833. [DOI: 10.4049/jimmunol.1700480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023]
|
32
|
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 2017; 7:11674. [PMID: 28916783 PMCID: PMC5601457 DOI: 10.1038/s41598-017-12021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Collapse
Affiliation(s)
- Martina Černá
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Barbora Kuntová
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Talacko
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Romana Stopková
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic.
| |
Collapse
|
33
|
Pascovici D, Handler DCL, Wu JX, Haynes PA. Multiple testing corrections in quantitative proteomics: A useful but blunt tool. Proteomics 2017; 16:2448-53. [PMID: 27461997 DOI: 10.1002/pmic.201600044] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/12/2016] [Accepted: 07/21/2016] [Indexed: 11/08/2022]
Abstract
Multiple testing corrections are a useful tool for restricting the FDR, but can be blunt in the context of low power, as we demonstrate by a series of simple simulations. Unfortunately, in proteomics experiments low power can be common, driven by proteomics-specific issues like small effects due to ratio compression, and few replicates due to reagent high cost, instrument time availability and other issues; in such situations, most multiple testing corrections methods, if used with conventional thresholds, will fail to detect any true positives even when many exist. In this low power, medium scale situation, other methods such as effect size considerations or peptide-level calculations may be a more effective option, even if they do not offer the same theoretical guarantee of a low FDR. Thus, we aim to highlight in this article that proteomics presents some specific challenges to the standard multiple testing corrections methods, which should be employed as a useful tool but not be regarded as a required rubber stamp.
Collapse
Affiliation(s)
- Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - David C L Handler
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Jemma X Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
34
|
Bleuyard JY, Fournier M, Nakato R, Couturier AM, Katou Y, Ralf C, Hester SS, Dominguez D, Rhodes D, Humphrey TC, Shirahige K, Esashi F. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Proc Natl Acad Sci U S A 2017; 114:7671-7676. [PMID: 28673974 PMCID: PMC5530651 DOI: 10.1073/pnas.1620208114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.
Collapse
Affiliation(s)
- Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Marjorie Fournier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anthony M Couturier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Yuki Katou
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Christine Ralf
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Svenja S Hester
- Advanced Proteomics Facility, Department of Biochemisty, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Daniel Dominguez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Daniela Rhodes
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Timothy C Humphrey
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
35
|
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse ( Mus musculus musculus) in relation to chemical signalling. PeerJ 2017; 5:e3541. [PMID: 28698824 PMCID: PMC5502090 DOI: 10.7717/peerj.3541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs) are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs) have the capacity to selectively transport volatile organic compounds (VOCs) in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8%) and female-biased (7%) proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides), and SCGB/ABP (i.e., secretoglobin) families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.
Collapse
Affiliation(s)
- Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Klempt
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kuntova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
Mohr T, Haudek-Prinz V, Slany A, Grillari J, Micksche M, Gerner C. Proteome profiling in IL-1β and VEGF-activated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLoS One 2017; 12:e0179065. [PMID: 28617818 PMCID: PMC5472280 DOI: 10.1371/journal.pone.0179065] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells represent major effectors in inflammation and angiogenesis, processes that drive a multitude of pathological states such as atherosclerosis and cancer. Both inflammation and angiogenesis are interconnected with each other in the sense that many pro-inflammatory proteins possess proangiogenic properties and vice versa. To elucidate this interplay further, we present a comparative proteome study of inflammatory and angiogenic activated endothelial cells. HUVEC were stimulated with interleukin 1-β and VEGF, respectively. Cultured primary cells were fractionated into secreted, cytoplasmic and nuclear protein fractions and processed for subsequent LC-MS/MS analysis. Obtained protein profiles were filtered for fraction-specific proteins to address potential cross fractional contamination, subjected to comparative computational biology analysis (GO-Term enrichment analysis, weighted gene co-expression analysis) and compared to published mRNA profiles of IL-1β respectively VEGF stimulated HUVEC. GO Term enrichment analysis and comparative pathway analysis revealed features such as NOD and NfkB signaling for inflammatory activated HUVEC and VEGF and ErB signaling for VEGF-activated HUVEC with potential crosstalk via map kinases MAP2K2. Weighted protein co-expression network analysis revealed several potential hub genes so far not associated with driver function in inflammation or angiogenesis such as HSPG2, ANXA3, and GPI. "Classical" inflammation or angiogenesis markers such as IL6, CXCL8 or CST1 were found in a less central position within the co-expression networks. In conclusion, this study reports a framework for the computational biology based analysis of proteomics data applied to cytoplasmic, nucleic and extracellular fractions of quiescent, inflammatory and angiogenic activated HUVEC. Novel potential hub genes relevant for these processes were successfully identified.
Collapse
Affiliation(s)
- Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- ScienceConsult – DI Thomas Mohr KG, Guntramsdorf, Austria
| | - Verena Haudek-Prinz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU – University of Life Sciences, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Michael Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Kim SM, Cho BK, Kang MJ, Norwitz ER, Lee SM, Lee J, Park CW, Kim BJ, Jun JK, Park JS, Yi EC. Expression changes of proteins associated with the development of preeclampsia in maternal plasma: A case-control study. Proteomics 2017; 16:1581-9. [PMID: 27001287 DOI: 10.1002/pmic.201500381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 11/09/2022]
Abstract
Defective deep placentation, involving abnormal transformation of the spiral arteries in the junctional zone of the myometrium, is known to cause significant obstetric complications, such as preeclampsia (PE), fetal growth restriction, and placental infarction leading to fetal death. Serological biomarkers to predict and diagnose PE would help antenatal care and reduce obstetric complications. To discover candidate PE biomarkers, we first performed global proteomic profiling of three pairs of plasma samples obtained from pregnant women in the early second trimester, who subsequently developed PE, and controls to identify candidate proteins that were abundant in the patients. We further evaluated the changes in the expression of PE-representing proteins in stored plasma samples of a cohort that subsequently developed PE and their matched controls by MRM-MS analysis. We identified that both complement C1s subcomponent (C1S) and protein AMBP were elevated in the plasma samples of the PE cohort before the manifestation of clinical disease. We propose that these proteins may be involved in the remodeling process of the spiral arteries even before PE manifestation. These proteins can serve as potential plasma biomarkers to predict the pregnant women having an increased risk of developing PE.
Collapse
Affiliation(s)
- Sun Min Kim
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Byoung-Kyu Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Seung Mi Lee
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joonho Lee
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan-Wook Park
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Byoung Jae Kim
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Kwan Jun
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joong Shin Park
- Department of Obstetrics & Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Langley SR, Willeit K, Didangelos A, Matic LP, Skroblin P, Barallobre-Barreiro J, Lengquist M, Rungger G, Kapustin A, Kedenko L, Molenaar C, Lu R, Barwari T, Suna G, Yin X, Iglseder B, Paulweber B, Willeit P, Shalhoub J, Pasterkamp G, Davies AH, Monaco C, Hedin U, Shanahan CM, Willeit J, Kiechl S, Mayr M. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest 2017; 127:1546-1560. [PMID: 28319050 PMCID: PMC5373893 DOI: 10.1172/jci86924] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London in partnership with King’s College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.
Collapse
Affiliation(s)
- Sarah R. Langley
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
- Duke-NUS Medical School, Singapore
| | - Karin Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Athanasios Didangelos
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Philipp Skroblin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Gregor Rungger
- Department of Neurology, Bruneck Hospital, Bruneck, Italy
| | - Alexander Kapustin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Ludmilla Kedenko
- First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Chris Molenaar
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
- Nikon Imaging Centre, King’s College London, London, United Kingdom
| | - Ruifang Lu
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Temo Barwari
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Gonca Suna
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Shalhoub
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alun H. Davies
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Claudia Monaco
- Kennedy Institute, University of Oxford, Oxford, United Kingdom
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Catherine M. Shanahan
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Johann Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| |
Collapse
|
39
|
Fujii K, Nakamura H, Nishimura T. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteomics 2017; 14:373-386. [PMID: 28271730 DOI: 10.1080/14789450.2017.1304215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges. Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma. Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.
Collapse
Affiliation(s)
- Kiyonaga Fujii
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Haruhiko Nakamura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan.,b Department of Chest Surgery , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Toshihide Nishimura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| |
Collapse
|
40
|
Zhang B, Pirmoradian M, Zubarev R, Käll L. Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences. Mol Cell Proteomics 2017; 16:936-948. [PMID: 28302922 PMCID: PMC5417831 DOI: 10.1074/mcp.o117.067728] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Indexed: 12/29/2022] Open
Abstract
Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer. We conclude that Diffacto can facilitate the interpretation and enhance the utility of most types of proteomics data.
Collapse
Affiliation(s)
- Bo Zhang
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden
| | - Mohammad Pirmoradian
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden.,§Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden
| | - Roman Zubarev
- From the ‡Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Solna, Sweden;
| | - Lukas Käll
- ¶Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology-KTH, SE-17165 Solna, Sweden
| |
Collapse
|
41
|
Dalgliesh AJ, Liu ZZ, Griffiths LG. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering. Tissue Eng Part A 2017; 23:609-621. [PMID: 28178887 DOI: 10.1089/ten.tea.2016.0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Collapse
Affiliation(s)
- Ailsa J Dalgliesh
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California.,2 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Zhi Zhao Liu
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California
| | - Leigh G Griffiths
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California.,2 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
42
|
Miao J, Chen Z, Wang Z, Shrestha S, Li X, Li R, Cui L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol Cell Proteomics 2017; 16:537-551. [PMID: 28126901 DOI: 10.1074/mcp.m116.061804] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote.
Collapse
Affiliation(s)
- Jun Miao
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| | - Zhao Chen
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Zenglei Wang
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Sony Shrestha
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Xiaolian Li
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Runze Li
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Liwang Cui
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| |
Collapse
|
43
|
Luo Y, Mok TS, Lin X, Zhang W, Cui Y, Guo J, Chen X, Zhang T, Wang T. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma. Sci Rep 2017; 7:41191. [PMID: 28117408 PMCID: PMC5259699 DOI: 10.1038/srep41191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC.
Collapse
Affiliation(s)
- Yanzhang Luo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Tin Seak Mok
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Xiuxian Lin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Wanling Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Xing Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Tao Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
44
|
Banks CAS, Boanca G, Lee ZT, Eubanks CG, Hattem GL, Peak A, Weems LE, Conkright JJ, Florens L, Washburn MP. TNIP2 is a Hub Protein in the NF-κB Network with Both Protein and RNA Mediated Interactions. Mol Cell Proteomics 2016; 15:3435-3449. [PMID: 27609421 DOI: 10.1074/mcp.m116.060509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/06/2022] Open
Abstract
The NF-κB family of transcription factors is pivotal in controlling cellular responses to environmental stresses; abnormal nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling features in many autoimmune diseases and cancers. Several components of the NF-κB signaling pathway have been reported to interact with the protein TNIP2 (also known as ABIN2), and TNIP2 can both positively and negatively regulate NF-κB- dependent transcription of target genes. However, the function of TNIP2 remains elusive and the cellular machinery associating with TNIP2 has not been systematically defined. Here we first used a broad MudPIT/Halo Affinity Purification Mass Spectrometry (AP-MS) approach to map the network of proteins associated with the NF-κB transcription factors, and establish TNIP2 as an NF-κB network hub protein. We then combined AP-MS with biochemical approaches in a more focused study of truncated and mutated forms of TNIP2 to map protein associations with distinct regions of TNIP2. NF-κB interacted with the N-terminal region of TNIP2. A central region of TNIP2 interacted with the endosomal sorting complex ESCRT-I via its TSG101 subunit, a protein essential for HIV-1 budding, and a single point mutant in TNIP2 disrupted this interaction. The major gene ontology category for TNIP2 associated proteins was mRNA metabolism, and several of these associations, like KHDRBS1, were lost upon depletion of RNA. Given the major association of TNIP2 with mRNA metabolism proteins, we analyzed the RNA content of affinity purified TNIP2 using RNA-Seq. Surprisingly, a specific limited number of mRNAs was associated with TNIP2. These RNAs were enriched for transcription factor binding, transcription factor cofactor activity, and transcription regulator activity. They included mRNAs of genes in the Sin3A complex, the Mediator complex, JUN, HOXC6, and GATA2. Taken together, our findings suggest an expanded role for TNIP2, establishing a link between TNIP2, cellular transport machinery, and RNA transcript processing.
Collapse
Affiliation(s)
- Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Zachary T Lee
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Cassandra G Eubanks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Allison Peak
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Lauren E Weems
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Juliana J Conkright
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and .,§Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
45
|
Branson OE, Freitas MA. A multi-model statistical approach for proteomic spectral count quantitation. J Proteomics 2016; 144:23-32. [PMID: 27260494 DOI: 10.1016/j.jprot.2016.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
UNLABELLED The rapid development of mass spectrometry (MS) technologies has solidified shotgun proteomics as the most powerful analytical platform for large-scale proteome interrogation. The ability to map and determine differential expression profiles of the entire proteome is the ultimate goal of shotgun proteomics. Label-free quantitation has proven to be a valid approach for discovery shotgun proteomics, especially when sample is limited. Label-free spectral count quantitation is an approach analogous to RNA sequencing whereby count data is used to determine differential expression. Here we show that statistical approaches developed to evaluate differential expression in RNA sequencing experiments can be applied to detect differential protein expression in label-free discovery proteomics. This approach, termed MultiSpec, utilizes open-source statistical platforms; namely edgeR, DESeq and baySeq, to statistically select protein candidates for further investigation. Furthermore, to remove bias associated with a single statistical approach a single ranked list of differentially expressed proteins is assembled by comparing edgeR and DESeq q-values directly with the false discovery rate (FDR) calculated by baySeq. This statistical approach is then extended when applied to spectral count data derived from multiple proteomic pipelines. The individual statistical results from multiple proteomic pipelines are integrated and cross-validated by means of collapsing protein groups. BIOLOGICAL SIGNIFICANCE Spectral count data from shotgun proteomics experiments is semi-quantitative and semi-random, yet a robust way to estimate protein concentration. Tag-count approaches are routinely used to analyze RNA sequencing data sets. This approach, termed MultiSpec, utilizes multiple tag-count based statistical tests to determine differential protein expression from spectral counts. The statistical results from these tag-count approaches are combined in order to reach a final MultiSpec q-value to re-rank protein candidates. This re-ranking procedure is completed to remove bias associated with a single approach in order to better understand the true proteomic differences driving the biology in question. The MultiSpec approach can be extended to multiple proteomic pipelines. In such an instance, MultiSpec statistical results are integrated by collapsing protein groups across proteomic pipelines to provide a single ranked list of differentially expressed proteins. This integration mechanism is seamlessly integrated with the statistical analysis and provides the means to cross-validate protein inferences from multiple proteomic pipelines.
Collapse
Affiliation(s)
- Owen E Branson
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:883-95. [PMID: 26947242 DOI: 10.1016/j.bbapap.2016.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
Abstract
How to process and analyze MS data to quantify and statistically compare protein abundances in bottom-up proteomics has been an open debate for nearly fifteen years. Two main approaches are generally used: the first is based on spectral data generated during the process of identification (e.g. peptide counting, spectral counting), while the second makes use of extracted ion currents to quantify chromatographic peaks and infer protein abundances based on peptide quantification. These two approaches actually refer to multiple methods which have been developed during the last decade, but were submitted to deep evaluations only recently. In this paper, we compiled these different methods as exhaustively as possible. We also summarized the way they address the different problems raised by bottom-up protein quantification such as normalization, the presence of shared peptides, unequal peptide measurability and missing data. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Mélisande Blein-Nicolas
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Michel Zivy
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| |
Collapse
|
47
|
Lakshminarasimhan M, Boanca G, Banks CAS, Hattem GL, Gabriel AE, Groppe BD, Smoyer C, Malanowski KE, Peak A, Florens L, Washburn MP. Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components. Mol Cell Proteomics 2016; 15:960-74. [PMID: 26831523 DOI: 10.1074/mcp.m115.053165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.
Collapse
Affiliation(s)
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Ana E Gabriel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Christine Smoyer
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Kate E Malanowski
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Allison Peak
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and §Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
48
|
Washburn MP. The H-index of 'an approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database'. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1799-1803. [PMID: 26091891 DOI: 10.1007/s13361-015-1181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Over 20 years ago a remarkable paper was published in the Journal of American Society for Mass Spectrometry. This paper from Jimmy Eng, Ashley McCormack, and John Yates described the use of protein databases to drive the interpretation of tandem mass spectra of peptides. This paper now has over 3660 citations and continues to average more than 260 per year over the last decade. This is an amazing scientific achievement. The reason for this is the paper was a cutting edge development at the moment in time when genomes of organisms were being sequenced, protein and peptide mass spectrometry was growing into the field of proteomics, and the power of computing was growing quickly in accordance with Moore's law. This work by the Yates lab grew in importance as genomics, proteomics, and computation all advanced and eventually resulted in the widely used SEQUEST algorithm and platform for the analysis of tandem mass spectrometry data. This commentary provides an analysis of the impact of this paper by analyzing the citations it has generated and the impact of these citing papers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Departments of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
49
|
Suomi T, Corthals GL, Nevalainen OS, Elo LL. Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins. J Proteome Res 2015; 14:4564-70. [PMID: 26380941 DOI: 10.1021/acs.jproteome.5b00363] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.
Collapse
Affiliation(s)
| | - Garry L Corthals
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam , 1090 GD Amsterdam , The Netherlands
| | | | | |
Collapse
|
50
|
Salomon D, Klimko JA, Trudgian DC, Kinch LN, Grishin NV, Mirzaei H, Orth K. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog 2015; 11:e1005128. [PMID: 26305100 PMCID: PMC4549250 DOI: 10.1371/journal.ppat.1005128] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness. The bacterial type VI secretion system (T6SS) is a contact-dependent protein secretion apparatus that is emerging as a major component of interbacterial competition in the environment. The bacterium Vibrio alginolyticus is a pathogen of marine animals and a causal agent of wound infections, otitis, and gastroenteritis in humans. In this study, we provide a comprehensive characterization of the environmental regulation, antibacterial activities, and secreted effector repertoires of the two T6SSs found in this pathogen. We also identify a subset of T6SS effectors that appear to be mobile and shared between marine bacteria that can interact with each other in aquatic environments. Our findings suggest that bacteria can incorporate T6SS effectors from competitors in the environment. These newly acquired toxins may be used to expand and diversify T6SS effector repertoires and enhance bacterial fitness.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (DS); (KO)
| | - John A. Klimko
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David C. Trudgian
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (DS); (KO)
| |
Collapse
|