1
|
Schneider E, Balasubramanian R, Ferri A, Cotter PD, Clarke G, Cryan JF. Fibre & fermented foods: differential effects on the microbiota-gut-brain axis. Proc Nutr Soc 2024:1-16. [PMID: 39449646 DOI: 10.1017/s0029665124004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
Collapse
Affiliation(s)
| | - Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
The contribution of intact structure and food processing to functionality of plant cell wall-derived dietary fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
|
4
|
Bull C, Devarakonda S, Ahlin R. Role of dietary fiber in safeguarding intestinal health after pelvic radiotherapy. Curr Opin Support Palliat Care 2021; 15:180-187. [PMID: 34232134 DOI: 10.1097/spc.0000000000000559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Damage to healthy bowel tissue during pelvic radiotherapy can produce devastating and life-long changes in bowel function. The surging interest in microbiota and its importance for our wellbeing has generated a bulk of research highlighting how the food we consume impacts bowel health and disease. Dietary fiber is known to promote bowel health, yet there is a limited number of studies on dietary fiber in connection to pelvic radiotherapy. Here, we review some of the literature on the subject and present the most recent publications in the field. RECENT FINDINGS Advice given concerning dietary fiber intake during and after pelvic radiotherapy are inconsistent, with some clinics suggesting a decrease in intake and others an increase. Recent animal studies provide a solid support for a protective role of dietary fiber with regards to intestinal health after pelvic radiotherapy, mainly through its impact on the microbiota. No clinical study has yet provided unambiguous evidence for a similar function of dietary fiber in humans undergoing pelvic radiotherapy. SUMMARY There is a lack of evidence behind the dietary advice given to cancer survivors suffering from radiation-induced bowel dysfunction, and high-quality and well powered studies with long follow-up times are needed.
Collapse
Affiliation(s)
- Cecilia Bull
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
5
|
Berding K, Carbia C, Cryan JF. Going with the grain: Fiber, cognition, and the microbiota-gut-brain-axis. Exp Biol Med (Maywood) 2021; 246:796-811. [PMID: 33641478 PMCID: PMC8719029 DOI: 10.1177/1535370221995785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Healthy dietary intake has been acknowledged for decades as one of the main contributors to health. More recently, the field of nutritional psychiatry has progressed our understanding regarding the importance of nutrition in supporting mental health and cognitive function. Thereby, individual nutrients, including omega-3 fatty acids and polyphenols, have been recognized to be key drivers in this relationship. With the progress in appreciating the influence of dietary fiber on health, increasingly research is focusing on deciphering its role in brain processes. However, while the importance of dietary fiber in gastrointestinal and metabolic health is well established, leading to the development of associated health claims, the evidence is not conclusive enough to support similar claims regarding cognitive function. Albeit the increasing knowledge of the impact of dietary fiber on mental health, only a few human studies have begun to shed light onto the underexplored connection between dietary fiber and cognition. Moreover, the microbiota-gut-brain axis has emerged as a key conduit for the effects of nutrition on the brain, especially fibers, that are acted on by specific bacteria to produce a variety of health-promoting metabolites. These metabolites (including short chain fatty acids) as well as the vagus nerve, the immune system, gut hormones, or the kynurenine pathway have been proposed as underlying mechanisms of the microbiota-brain crosstalk. In this minireview, we summarize the evidence available from human studies on the association between dietary fiber intake and cognitive function. We provide an overview of potential underlying mechanisms and discuss remaining questions that need to be answered in future studies. While this field is moving at a fast pace and holds promise for future important discoveries, especially data from human cohorts are required to further our understanding and drive the development of public health recommendations regarding dietary fiber in brain health.
Collapse
Affiliation(s)
- Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
In vitro fermentation of legume cells and components: Effects of cell encapsulation and starch/protein interactions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Monro JA, Paturi G. Kiwifruit Skin and Flesh Contributions to Fecal Bulking and Bacterial Abundance in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:525-531. [PMID: 32761416 DOI: 10.1007/s11130-020-00839-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Changes in fecal bulk and bacterial abundance due to separately consumed skin and flesh of four kiwifruit cultivars was determined using a rat model designed to estimate the fecal bulking potential of human foods. Dry matter contribution by skin to 100 g of fresh kiwifruit was less than 5% in all cultivars, whereas flesh dry matter contributed up to 20% of fresh fruit weight. Dietary fiber was 35-49% of skin compared with 8-23% of flesh on a dry weight basis. The skin significantly increased whole fruit fecal bulking, but the total bulk per 100 g kiwifruit was less than 10% of daily fecal bulk recommended for optimal gut health. Kiwifruit (skin or flesh) substantially increased the abundance of Lachnospiraceae and Lactobacillus spp. within the gut. Fermentation and prebiosis therefore probably play a greater role than fermentation-resistant dietary fiber in gut health benefits of kiwifruit.
Collapse
Affiliation(s)
- John A Monro
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
8
|
Alyousif Z, Miller JL, Auger J, Sandoval M, Piano A, Tompkins TA, Dahl WJ. Microbiota profile and efficacy of probiotic supplementation on laxation in adults affected by Prader-Willi Syndrome: A randomized, double-blind, crossover trial. Mol Genet Genomic Med 2020; 8:e1535. [PMID: 33103385 PMCID: PMC7767560 DOI: 10.1002/mgg3.1535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background Probiotics may provide a benefit for adults with Prader‐Willi syndrome (PWS) experiencing constipation. The primary aim was to determine if Bifidobacterium animalis ssp. lactis B94 (B. lactis B94) improves stool frequency, with secondary aims of stool form and gastrointestinal symptoms. Exploratory aims included diet quality and fecal microbiota composition. Methods Following a 4‐week baseline, 25 adults with PWS were randomized to consume B. lactis B94 by capsule (15 billion) or placebo for 4 weeks, followed by 4‐week washout in a double‐blind, crossover design. Stool frequency and Bristol Stool Form (BSF) were assessed daily, and Gastrointestinal Symptom Rating Scale (GSRS) and dietary intake (7‐days food records), per period. Fecal microbiota per period was analyzed using 16S rRNA gene amplicon sequencing and taxa of interest by qPCR (n = 24). Results No adverse events were reported. Stool frequency at baseline (n = 25; 2.0 ± 0.1 stools/day), GSRS syndromes, and microbiota composition did not differ with the probiotic intervention overall; however, a delayed, carry‐over effect on BSF types 6 and 7 was seen. Diet quality by HEI‐2015 was 65.4 ± 8.5. Conclusion In adults with PWS, B. lactis B94 exhibited little effect on laxation over 4 weeks; however, further research is needed.
Collapse
Affiliation(s)
- Zainab Alyousif
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Jennifer L Miller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, QC, Canada
| | - Mariana Sandoval
- Rosell Institute for Microbiome and Probiotics, Montreal, QC, Canada
| | - Amanda Piano
- Rosell Institute for Microbiome and Probiotics, Montreal, QC, Canada
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, QC, Canada
| | - Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Processing Has Differential Effects on Microbiota-Accessible Carbohydrates in Whole Grains during In Vitro Fermentation. Appl Environ Microbiol 2020; 86:AEM.01705-20. [PMID: 32859598 DOI: 10.1128/aem.01705-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Whole grains are generally low in nondigestible carbohydrates that are available for fermentation by the gut microbiota, or microbiota-accessible carbohydrates (MAC). However, there is potential to increase MAC in whole grains through food processing. Five processing methods: boiling, extrusion, sourdough bread, unleavened bread, and yeast bread, were applied to whole wheat flour and then subjected to in vitro digestion followed by fermentation using fecal microbiomes from 10 subjects. The microbiomes separated into 2 groups: those that showed high carbohydrate utilization (CU) and those that exhibited low CU. The former exhibited not only enhanced CU but also increased butyrate production (MAC, 31.1 ± 1.1% versus 19.3 ± 1.2%, P < 0.001; butyrate, 5.26 ± 0.26 mM versus 3.17 ± 0.27 mM, P < 0.001). Only the microbiomes in the high-CU group showed significant differences among processing methods: extrusion and sourdough bread led to dichotomous results for MAC and short-chain fatty acid production, where extrusion resulted in high MAC but low butyrate production while sourdough bread resulted in low MAC but high butyrate production. Extrusion led to a noticeable decrease in α-diversity and some members of the families Ruminococcaceae and Lachnospiraceae, with increases in Acinetobacter, Enterococcus, and Staphylococcaceae This study demonstrated that only microbiomes that exhibited high CU responded to the effects of processing by showing significant differences among processing methods. In these microbiomes, extrusion was able to increase accessibility of the cell wall polysaccharides but did not increase butyrate production. In contrast, sourdough bread led to high butyrate production by supporting important butyrate-producers in the families Lachnospiraceae and Ruminococcaceae IMPORTANCE Dietary nondigestible carbohydrates, or dietary fiber, have long been recognized for their beneficial health effects. However, recent studies have revealed that fermentation of nondigestible carbohydrates by gut bacteria is critical in mediating many of the health-promoting properties of dietary fibers. Whole grains are excellent candidates to supply the microbiome with a plentiful source of nondigestible carbohydrates, although unfortunately a majority of these carbohydrates in whole grains are not available to gut bacteria for fermentation. Processing is known to alter the structural characteristics of nondigestible carbohydrates in whole grains, yet the relationship between these effects and gut microbial fermentation is unknown. This research aimed to address this important research gap by identifying interactions between whole-grain processing and gut bacteria, with the ultimate goal of increasing the availability of nondigestible carbohydrates for fermentation to enhance host health.
Collapse
|
10
|
Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:237-263. [PMID: 32475524 DOI: 10.1016/bs.pmbts.2020.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although there is associative evidence linking fecal microbiome profile to health and disease, many studies have not considered the confounding effects of dietary intake. Consuming food provides fermentable substrate which sustains the microbial ecosystem that resides with most abundance in the colon. Western, Mediterranean and vegetarian dietary patterns have a role in modulating the gut microbiota, as do trending restrictive diets such the paleolithic and ketogenic. Altering the amount or ratio of carbohydrate, protein and fat, particularly at the extremes of intake, impacts the microbiome. Diets high in fermentable carbohydrates support the relative abundance of Bifidobacterium, Prevotella, Ruminococcus, Dorea and Roseburia, among others, capable of degrading polysaccharides, oligosaccharides and sugars. Conversely, very high fat diets increase bile-resistant organisms such as Bilophila and Bacteroides. Food form, whole foods vs. ultra-processed, alters the provision of macronutrient substrate to the colon due to differing digestibility, and thereby may impact the microbiota and its metabolic activity. In addition, phytochemicals in plant-based foods have specific and possibly prebiotic effects on the microbiome. Further, food ingredients such as certain low-calorie sweeteners enhance Bifidobacterium spp. The weight of evidence to date suggests a high level of interindividual variability in the human microbiome vs. clearly defined, dietary-induced profiles. Healthful dietary patterns, emphasizing plant foods high in microbial-available carbohydrate, support favorable microbiome profiles active in saccharolytic fermentation. Future research into diet and microbiome should consider the balance of gut microbial-generated metabolites, an important link between microbiome profile and human health.
Collapse
Affiliation(s)
- Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States.
| | - Daniela Rivero Mendoza
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jason M Lambert
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
De Maesschalck C, Eeckhaut V, Maertens L, De Lange L, Marchal L, Daube G, Dewulf J, Haesebrouck F, Ducatelle R, Taminau B, Van Immerseel F. Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poult Sci 2019; 98:3811-3817. [PMID: 31065709 DOI: 10.3382/ps/pez090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
The grains that form the basis of most commercial chicken diets are rich in cellulose, an unbranched β-1,4-linked D-glucopyranose polymer, used as a structural molecule in plants. Although it is a predominant polysaccharide in cereal hulls, it is considered an inert non-fermentable fiber. The aim of the current study was to analyze the effect of in-feed supplementation of cellulose on the gut microbiota composition of broilers. Administration of cellulose to chickens, on top of a wheat-based diet, changed the caecal microbiota composition, as determined using pyrosequencing of the 16S rRNA gene. At day 26, a significantly (P < 0.01) higher relative abundance of the Alistipes genus was observed in the caeca of broilers fed the cellulose-supplemented diet, compared to animals fed the control diet. An in vitro batch fermentation assay showed a significant (P < 0.01) growth stimulation of Alistipes finegoldii in the presence of cellulose. In conclusion, in-feed supplementation of cellulose alters the microbiota composition at the level of the phylum Bacteroidetes, specifically the Alistipes genus. This suggests that cellulose is not essentially inert but can alter the gut micro-environment.
Collapse
Affiliation(s)
- Celine De Maesschalck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Luc Maertens
- Animal Science Unit, Institute for Agricultural and Fisheries Research, Scheldeweg 68, B-9090 Melle, Belgium
| | - Loek De Lange
- Schothorst Feed Research, Meerkoetenweg 26, NL-8200 AM Lelystad, The Netherlands
| | - Leon Marchal
- ForFarmers BV, Kwinkweerd 12, NL-7241 CW Lochem, The Netherlands
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Sciences, Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier vallée 2, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 13, B-9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Bernard Taminau
- Laboratory of Food Microbiology, Department of Food Sciences, Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier vallée 2, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Bågenholm V, Wiemann M, Reddy SK, Bhattacharya A, Rosengren A, Logan DT, Stålbrand H. A surface-exposed GH26 β-mannanase from Bacteroides ovatus: Structure, role, and phylogenetic analysis of BoMan26B. J Biol Chem 2019; 294:9100-9117. [PMID: 31000630 PMCID: PMC6556568 DOI: 10.1074/jbc.ra118.007171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
The galactomannan utilization locus (BoManPUL) of the human gut bacterium Bacteroides ovatus encodes BoMan26B, a cell-surface–exposed endomannanase whose functional and structural features have been unclear. Our study now places BoMan26B in context with related enzymes and reveals the structural basis for its specificity. BoMan26B prefers longer substrates and is less restricted by galactose side-groups than the mannanase BoMan26A of the same locus. Using galactomannan, BoMan26B generated a mixture of (galactosyl) manno-oligosaccharides shorter than mannohexaose. Three defined manno-oligosaccharides had affinity for the SusD-like surface–exposed glycan-binding protein, predicted to be implicated in saccharide transport. Co-incubation of BoMan26B and the periplasmic α-galactosidase BoGal36A increased the rate of galactose release by about 10-fold compared with the rate without BoMan26B. The results suggested that BoMan26B performs the initial attack on galactomannan, generating oligosaccharides that after transport to the periplasm are processed by BoGal36A. A crystal structure of BoMan26B with galactosyl-mannotetraose bound in subsites −5 to −2 revealed an open and long active-site cleft with Trp-112 in subsite −5 concluded to be involved in mannosyl interaction. Moreover, Lys-149 in the −4 subsite interacted with the galactosyl side-group of the ligand. A phylogenetic tree consisting of GH26 enzymes revealed four strictly conserved GH26 residues and disclosed that BoMan26A and BoMan26B reside on two distinct phylogenetic branches (A and B). The three other branches contain lichenases, xylanases, or enzymes with unknown activities. Lys-149 is conserved in a narrow part of branch B, and Trp-112 is conserved in a wider group within branch B.
Collapse
Affiliation(s)
- Viktoria Bågenholm
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| | - Mathias Wiemann
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| | - Sumitha K Reddy
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 750 07, Uppsala, Sweden
| | - Abhishek Bhattacharya
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| | - Anna Rosengren
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| | - Derek T Logan
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| | - Henrik Stålbrand
- From the Department of Biochemistry and Structural Biology, Lund University P. O. Box 124, S-221 00, Lund, Sweden and
| |
Collapse
|
13
|
Wernersson S, Bågenholm V, Persson C, Upadhyay SK, Stålbrand H, Akke M. Backbone 1H, 13C, and 15N resonance assignments of BoMan26A, a β-mannanase of the glycoside hydrolase family 26 from the human gut bacterium Bacteroides ovatus. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:213-218. [PMID: 30734154 PMCID: PMC6439179 DOI: 10.1007/s12104-019-09879-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 05/10/2023]
Abstract
Bacteroides ovatus is a member of the human gut microbiota. The importance of this microbial consortium involves the degradation of complex dietary glycans mainly conferred by glycoside hydrolases. In this study we focus on one such catabolic glycoside hydrolase from B. ovatus. The enzyme, termed BoMan26A, is a β-mannanase that takes part in the hydrolytic degradation of galactomannans. The crystal structure of BoMan26A has previously been determined to reveal a TIM-barrel like fold, but the relation between the protein structure and the mode of substrate processing has not yet been studied. Here we report residue-specific assignments for 95% of the 344 backbone amides of BoMan26A. The assignments form the basis for future studies of the relationship between substrate interactions and protein dynamics. In particular, the potential role of loops adjacent to glycan binding sites is of interest for such studies.
Collapse
Affiliation(s)
- Sven Wernersson
- Department of Chemistry, Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Viktoria Bågenholm
- Department of Chemistry, Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Cecilia Persson
- The Swedish NMR Center, University of Gothenburg, Gothenburg, Sweden
| | - Santosh Kumar Upadhyay
- Department of Chemistry, Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Henrik Stålbrand
- Department of Chemistry, Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Mikael Akke
- Department of Chemistry, Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Awika JM, Rose DJ, Simsek S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 2018. [PMID: 29532826 DOI: 10.1039/c7fo02011b] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cereal grains and grain pulses are primary staples often consumed together, and contribute a major portion of daily human calorie and protein intake globally. Protective effects of consuming whole grain cereals and grain pulses against various inflammation-related chronic diseases are well documented. However, potential benefits of combined intake of whole cereals and pulses beyond their complementary amino acid nutrition is rarely considered in literature. There is ample evidence that key bioactive components of whole grain cereals and pulses are structurally different and thus may be optimized to provide synergistic/complementary health benefits. Among the most important whole grain bioactive components are polyphenols and dietary fiber, not only because of their demonstrated biological function, but also their major impact on consumer choice of whole grain/pulse products. This review highlights the distinct structural differences between key cereal grain and pulse polyphenols and non-starch polysaccharides (dietary fiber), and the evidence on specific synergistic/complementary benefits of combining the bioactive components from the two commodities. Interactive effects of the polyphenols and fiber on gut microbiota and associated benefits to colon health, and against systemic inflammation, are discussed. Processing technologies that can be used to further enhance the interactive benefits of combined cereal-pulse bioactive compounds are highlighted.
Collapse
Affiliation(s)
- Joseph M Awika
- Cereal Quality Laboratory, Soil & Crop Science Department, Texas A&M University, College Station, Texas, USA. and Nutrition and Food Science Department, Texas A&M University, College Station, Texas, USA
| | - Devin J Rose
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Fargo, ND 58105, USA
| |
Collapse
|
15
|
Huang Z, Urriola PE, Shurson GC. Use of in vitro dry matter digestibility and gas production to predict apparent total tract digestibility of total dietary fiber for growing pigs. J Anim Sci 2017; 95:5474-5484. [PMID: 29293750 PMCID: PMC6292337 DOI: 10.2527/jas2017.1964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
In vitro DM disappearance (IVDMD) and gas production methods have been developed and used to measure in vivo nutrient digestibility of feed ingredients, but further validation is needed for ingredients containing high concentrations of insoluble fiber such as corn distiller's dried grains with solubles (DDGS). A 3-step in vitro procedure and resulting gas production were used to predict in vivo apparent total tract digestibility (ATTD) of total dietary fiber (TDF) among 3 sources each of wheat straw (WS), soybean hulls (SBH), and DDGS. A total of 34 barrows and 2 gilts (84 ± 7 kg BW) were used in a changeover design to determine the ATTD of 9 dietary treatments. The WS, SBH, or DDGS sources were the only ingredients containing fiber in each diet, and all diets were formulated to contain the same TDF concentration (22.3%). The in vivo experiment was conducted in 2 consecutive 13-d periods, each including a 10-d adaptation and a 3-d collection period to provide 8 replications/dietary treatment, and 0.5% TiO was added to each diet as an indigestible marker. Pigs had ad libitum access to water and were fed an amount of feed equivalent to 2.5% of initial BW in each period. The in vitro experiment was used to determine IVDMD and gas production of the 9 ingredients (5 to 8 replicates/ingredient) fed during the in vivo experiment. Gas production kinetics were fitted using a nonlinear model and analyzed using a mixed model, and predictions were evaluated using correlations and regression models. There were differences ( < 0.01) in ATTD of TDF among WS (26.7%), SBH (78.9%), and DDGS (43.0%) and among sources of DDGS (36.0 to 49.8%). Differences ( < 0.05) in IVDMD from simulated gastric and small intestinal hydrolysis were observed among WS (13.3%), SBH (18.9%), and DDGS (53.7%) and among sources of WS (12.8 to 13.8%), SBH (17.0 to 20.5%), and DDGS (52.0 to 56.9%). Differences ( < 0.05) in IVDMD from simulated large intestine fermentation (IVDMDf) were also observed among WS (23.3%), SBH (84.6%), and DDGS (69.6%) and among sources of WS (18.7 vs. 26.8%). In vitro DM disappearance from simulated total tract digestion of SBH (88.9%) and DDGS (86.1%) were greater ( < 0.01) than that of WS (33.5%). Differences ( < 0.01) in asymptotic gas production (A; mL/g DM substrate) were observed among WS (121), SBH (412), and DDGS (317), and ATTD of TDF was highly correlated with IVDMDf and A. In conclusion, low variability in ATTD of TDF and IVDMD among sources of WS and SBH evaluated in the current study may not justify the use of in vitro measurements, but in vitro fermentation accurately predicts ATTD of TDF among sources of corn DDGS.
Collapse
Affiliation(s)
- Z. Huang
- Department of Animal Science, University of Minnesota, Saint Paul 55108
| | - P. E. Urriola
- Department of Animal Science, University of Minnesota, Saint Paul 55108
| | - G. C. Shurson
- Department of Animal Science, University of Minnesota, Saint Paul 55108
| |
Collapse
|
16
|
Bajury DM, Nashri SM, King Jie Hung P, Sarbini SR. Evaluation of potential prebiotics: a review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1373287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dayang Marshitah Bajury
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Siti Maisarah Nashri
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Patricia King Jie Hung
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu, Malaysia
| |
Collapse
|
17
|
Yan CL, Kim HS, Hong JS, Lee JH, Han YG, Jin YH, Son SW, Ha SH, Kim YY. Effect of Dietary sugar beet pulp supplementation on growth performance, nutrient digestibility, fecal Microflora, blood profiles and Diarrhea incidence in weaning pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:18. [PMID: 28794893 PMCID: PMC5545862 DOI: 10.1186/s40781-017-0142-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/19/2017] [Indexed: 11/10/2022]
Abstract
Background In 2006, the European Union (EU) has decided to forbid use of antibiotics as growth promoters. Although many researches had been conducted about fiber source as alternatives of antibiotics, there are still lack of reports in the literature about the optimum level of sugar beet pulp supplementation, affecting growth performance and nutrient digestibility in weaning pigs. Therefore, different level of sugar beet pulp was added to diets to determine the effects of sugar beet pulp supplementation on growth performance, nutrient digestibility, fecal microflora, blood profile and incidence of diarrhea in weaning pigs. Methods A total of 200 weaning pigs [(Yorkshire × Landrace) × Duroc], averaging 9.01 ± 1.389 kg of initial body weight were, allotted to 5 treatments in a randomized complete block (RCB) design. Each treatment was composed of 4 replicates with 10 pigs per pen. The treatments were control treatment: Corn-SBM basal diet + ZnO (phase 1: 0.05%; phase 2; 0.03%) and four different levels of sugar beet pulp were supplemented in Corn-SBM basal diet (3, 6, 9 or 12%). Two phase feeding programs (phase 1: 1–2 weeks; phase 2: 3–5 weeks) were used for 5 week of growth trial. Results In feeding trial, there were no significant differences in growth performance and incidence of diarrhea among treatments. The E.coli counts were not significantly different among dietary treatments but linear response was observed in Lactobacillus counts as sugar beet pulp supplementation increased (P < 0.05). In addition, IGF-1, IgA and IgG were not affected by dietary treatments. However, the BUN concentration was decreased when pigs were fed the treatments of diets with SBP compared to that of control treatment (P < 0.05). In nutrient digestibility, crude fiber and NDF digestibilities were improved as the sugar beet pulp increased (P < 0.05). However, digestibilities of crude ash, crude fat, crude fiber and nitrogen retention were not affected by dietary sugar beet pulp levels. Conclusion This experiment demonstrated that sugar beet pulp can be supplemented in weaning pigs’ diet instead of ZnO to prevent postweaning diarrhea without any detrimental effect on growth performance.
Collapse
Affiliation(s)
- C L Yan
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - H S Kim
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - J S Hong
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - J H Lee
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Y G Han
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Y H Jin
- Department of Agricultural College of Yanbian University, Yanji, Jilin 13300 China
| | - S W Son
- PuKyung Pig Farmers Agricultural Cooperative, Gimhae, 50925 Republic of Korea
| | - S H Ha
- PuKyung Pig Farmers Agricultural Cooperative, Gimhae, 50925 Republic of Korea
| | - Y Y Kim
- Department of Agricultural Biotechnology, College of Animal Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea.,College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
18
|
Application of a dynamic gastrointestinal in vitro model combined with a rat model to predict the digestive fate of barley dietary fibre and evaluate potential impact on hindgut fermentation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bcdf.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Henningsson Å, Björck I, Nyman M. Short-chain fatty acid formation at fermentation of indigestible carbohydrates. ACTA ACUST UNITED AC 2016. [DOI: 10.3402/fnr.v45i0.1801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Åsa Henningsson
- Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Inger Björck
- Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Margareta Nyman
- Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
20
|
Vermeulen K, Verspreet J, Courtin CM, Haesebrouck F, Ducatelle R, Van Immerseel F. Reduced particle size wheat bran is butyrogenic and lowers Salmonella colonization, when added to poultry feed. Vet Microbiol 2016; 198:64-71. [PMID: 28062009 DOI: 10.1016/j.vetmic.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022]
Abstract
Feed additives, including prebiotics, are commonly used alternatives to antimicrobial growth promoters to improve gut health and performance in broilers. Wheat bran is a highly concentrated source of (in)soluble fiber which is partly degraded by the gut microbiota. The aim of the present study was to investigate the potential of wheat bran as such to reduce colonization of the cecum and shedding of Salmonella bacteria in vivo. Also, the effect of particle size was evaluated. Bran with an average reduced particle size of 280μm decreased levels of cecal Salmonella colonization and shedding shortly after infection when compared to control groups and groups receiving bran with larger particle sizes. In vitro fermentation experiments revealed that bran with smaller particle size was fermented more efficiently, with a significantly higher production of butyric and propionic acid, compared to the control fermentation and fermentation of a larger fraction. Fermentation products derived from bran with an average particle size of 280μm downregulated the expression of hilA, an important invasion-related gene of Salmonella. This downregulation was reflected in an actual lowered invasive potential when Salmonella bacteria were pretreated with the fermentation products derived from the smaller bran fraction. These data suggest that wheat bran with reduced particle size can be a suitable feed additive to help control Salmonella infections in broilers. The mechanism of action most probably relies on a more efficient fermentation of this bran fraction and the consequent increased production of short chain fatty acids (SCFA). Among these SCFA, butyric and propionic acid are known to reduce the invasion potential of Salmonella bacteria.
Collapse
Affiliation(s)
- K Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - J Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 22 box2463, B-3001 Leuven, Belgium
| | - C M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 22 box2463, B-3001 Leuven, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
21
|
Monro J, Mishra S, Redman C, Somerfield S, Ng J. Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food Funct 2016; 7:2645-54. [DOI: 10.1039/c5fo01526j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural components in tissues of minimally processed vegetables substantially increase faecal bulk and hydration capacity much more than fermentable fibres.
Collapse
Affiliation(s)
- John Monro
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Suman Mishra
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Claire Redman
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Sheryl Somerfield
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Jovyn Ng
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| |
Collapse
|
22
|
Fåk F, Jakobsdottir G, Kulcinskaja E, Marungruang N, Matziouridou C, Nilsson U, Stålbrand H, Nyman M. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain Fatty Acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One 2015; 10:e0127252. [PMID: 25973610 PMCID: PMC4431822 DOI: 10.1371/journal.pone.0127252] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate how physico-chemical properties of two dietary fibres, guar gum and pectin, affected weight gain, adiposity, lipid metabolism, short-chain fatty acid (SCFA) profiles and the gut microbiota in male Wistar rats fed either low- or high-fat diets for three weeks. Both pectin and guar gum reduced weight gain, adiposity, liver fat and blood glucose levels in rats fed a high-fat diet. Methoxylation degree of pectin (low, LM and high (HM)) and viscosity of guar gum (low, medium or high) resulted in different effects in the rats, where total blood and caecal amounts of SCFA were increased with guar gum (all viscosities) and with high methoxylated (HM) pectin. However, only guar gum with medium and high viscosity increased the levels of butyric acid in caecum and blood. Both pectin and guar gum reduced cholesterol, liver steatosis and blood glucose levels, but to varying extent depending on the degree of methoxylation and viscosity of the fibres. The medium viscosity guar gum was the most effective preparation for prevention of diet-induced hyperlipidaemia and liver steatosis. Caecal abundance of Akkermansia was increased with high-fat feeding and with HM pectin and guar gum of all viscosities tested. Moreover, guar gum had distinct bifidogenic effects independent of viscosity, increasing the caecal abundance of Bifidobacterium ten-fold. In conclusion, by tailoring the viscosity and possibly also the degree of methoxylation of dietary fibre, metabolic effects may be optimized, through a targeted modulation of the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Frida Fåk
- Food for Health Science Centre, Lund University, Lund, Sweden
- * E-mail:
| | | | - Evelina Kulcinskaja
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Ulf Nilsson
- Food for Health Science Centre, Lund University, Lund, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Heinzmann SS, Schmitt-Kopplin P. Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. J Proteome Res 2015; 14:2267-77. [DOI: 10.1021/acs.jproteome.5b00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Silke S. Heinzmann
- Research
Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research
Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair
of Analytical Food Chemistry, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
24
|
Brotherton CS. Insoluble fiber and intestinal microbiota metabolism. J Gastroenterol 2015; 50:491. [PMID: 25652234 DOI: 10.1007/s00535-015-1043-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Carol S Brotherton
- School of Nursing, George Mason University, 4400 University Drive, MS 3C4, Fairfax, VA, 22030, USA,
| |
Collapse
|
25
|
Goldsmith JR, Sartor RB. Response to the letter by Brotherton regarding "insoluble fiber and intestinal microbiota metabolism". J Gastroenterol 2015; 50:492-3. [PMID: 25663612 DOI: 10.1007/s00535-015-1044-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Jason R Goldsmith
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA,
| | | |
Collapse
|
26
|
Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach. PLoS One 2014; 10:e0119117. [PMID: 25742634 PMCID: PMC4351085 DOI: 10.1371/journal.pone.0119117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Liu G, Xiao L, Fang T, Cai Y, Jia G, Zhao H, Wang J, Chen X, Wu C. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach. PLoS One 2014; 9:e115561. [PMID: 25541729 PMCID: PMC4277351 DOI: 10.1371/journal.pone.0115561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, 1-1 sukuba, Ohwashi, TIbaragi, 305-8686, Japan
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| |
Collapse
|
28
|
Zhong Y, Nyman M. Prebiotic and synbiotic effects on rats fed malted barley with selected bacteria strains. Food Nutr Res 2014; 58:24848. [PMID: 25317120 PMCID: PMC4189009 DOI: 10.3402/fnr.v58.24848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Butyric acid, one of the key products formed when β-glucans are degraded by the microbiota in the colon, has been proposed to be important for colonic health. Glutamine bound to the fibre may have similar effects once it has been liberated from the fibre in the colon. Both β-glucans and glutamine are found in high amounts in malted barley. Lactobacillus rhamnosus together with malt has been shown to increase the formation of butyric acid further in rats. OBJECTIVE To investigate whether Lactobacillus rhamnosus 271, Lactobacillus paracasei 87002, Lactobacillus plantarum HEAL 9 and 19, and Bifidobacterium infantis CURE 21 affect the levels of short-chain fatty acids and glutamine in caecum and portal blood of rats fed barley malt. DESIGN The experimental diets were fed for 12 days. The daily dose of the probiotic strain was 1×10(9) colony forming units and the intake of fibre 0.82 g/day. RESULTS The malt mostly contained insoluble fibre polymers (93%), consisting of glucose and xylose (38-41 g/kg) and some arabinose (21 g/kg). The fibre polysaccharides were quite resistant to fermentation in the rats, regardless of whether or not probiotics were added (25-30% were fermented). Caecal and portal levels of acetic acid decreased in the rats after the addition of L. plantarum HEAL 9 and L. rhamnosus 271, and also the levels of butyric acid. Viable counts of Lactobacillus, Bifidobacterium and Enterobacteriaceae were unaffected, while the caecal composition of Lactobacilli was influenced by the type of strain administrated. Portal levels of glutamine were unchanged, but glycine levels increased with L. plantarum HEAL 9 and 19 and phenylalanine with L. rhamnosus 271. CONCLUSIONS Although the probiotic strains survived and reached the caecum, except B. infantis CURE 21, there were no effects on viable counts or in the fermentation of different fibre components, but the formation of some bacterial metabolites decreased. This may be due to the high proportion of insoluble fibres in the malt.
Collapse
Affiliation(s)
- Yadong Zhong
- Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, Lund, Sweden
| | - Margareta Nyman
- Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Coles LT, Moughan PJ, Awati A, Darragh AJ. Validation of a dual in vivo-in vitro assay for predicting the digestibility of nutrients in humans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2637-2645. [PMID: 23420614 DOI: 10.1002/jsfa.6108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/28/2013] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND The validation of a dual in vivo-in vitro digestibility assay ('dual digestibility assay') for separately predicting the upper-tract, hindgut and total tract digestibility of nutrients in humans, as estimated using organic matter digestibility (OMD), is described. Human upper-tract OMD was predicted using an animal (rat) model with digesta from the terminal ileum collected from rats fed one of four complete human diets (wheat bran diet, pectin diet, mixed low-fibre diet, mixed high-fibre diet). Large intestinal OMD was predicted using an in vitro hindgut fermentation assay employing a human faecal inoculum and with the rat ileal digesta as the substrate. RESULTS A comparison of total tract OMD of the four diets from a human balance study (OMDhuman ) with that predicted using the dual digestibility assay (OMDdual ) showed no significant differences (P > 0.05). OMDhuman and OMDdual were highly correlated (r = 0.953, P = 0.047). CONCLUSION The dual digestibility assay accurately predicts the uptake of dietary nutrients (as grams of organic matter) in humans over the total tract. The assay is able to separately quantify the digestibility of nutrients in the upper and lower digestive tracts. The validation of the dual digestibility assay needs to be extended to a wider range of human diets.
Collapse
Affiliation(s)
- Leah T Coles
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
30
|
Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. Br J Nutr 2013; 110:1565-72. [PMID: 23531375 DOI: 10.1017/s0007114513000809] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SCFA are important end products formed during colonic fermentation of dietary fibre (DF). It has been suggested that propionic and butyric acids affect metabolic parameters, low-grade systemic inflammation, insulin resistance and obesity. The aim of the present study was to investigate whether the various SCFA profiles observed after fermentation in the caecum of rats fed pectin, guar gum and fructo-oligosaccharides (FOS) were also represented in hepatic portal and aortic serum. The SCFA in serum were extracted using hollow fibre-supported liquid membrane extraction before GLC analysis. The concentrations of acetic, propionic and butyric acids in caecal content correlated well with those in portal serum (P< 0·001) for all the three diets. A weaker correlation was found for propionic and butyric acids between the caecal content and aortic serum (P< 0·05). Butyric acid concentration in caecal content was also reflected in the aortic serum (P= 0·019) of rats fed FOS. FOS gave rather low amounts of the SCFA, especially butyric acid, but caecal tissue weight was higher with FOS than with the other two diets. This may be explained by rapid fermentation and quick utilisation/absorption of the SCFA. The present study also showed that propionic acid was metabolised/utilised to a higher extent than butyric acid by colonocytes before reaching the liver. We conclude that the formation of propionic and butyric acids in the caecum is reflected by increased concentrations in the aortic blood. This approach may therefore simplify the evaluation and study of SCFA from DF in human subjects.
Collapse
|
31
|
Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol 2012; 79:133-40. [PMID: 23064345 DOI: 10.1128/aem.02118-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed in Escherichia coli without the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 μM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K, k(cat) was determined to be 444 s(-1) and K(m) 21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides.
Collapse
|
32
|
Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L. Health benefits of algal polysaccharides in human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 66:75-145. [PMID: 22909979 DOI: 10.1016/b978-0-12-394597-6.00003-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.
Collapse
Affiliation(s)
- Ladislava Mišurcová
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin CM. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol Nutr Food Res 2011; 55:1862-74. [PMID: 22058065 DOI: 10.1002/mnfr.201100377] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/14/2011] [Accepted: 08/27/2011] [Indexed: 01/01/2023]
Abstract
SCOPE Cereal arabinoxylan (AX) is one of the main dietary fibers in a balanced human diet. To gain insight into the importance of structural features of AX for their prebiotic potential and intestinal fermentation properties, a rat trial was performed. METHODS AND RESULTS A water unextractable AX-rich preparation (WU-AX, 40% purity), water extractable AX (WE-AX, 81% purity), AX oligosaccharides (AXOS, 79% purity) and combinations thereof were included in a standardized diet at a 5% AX level. WU-AX was only partially fermented in the ceco-colon and increased the level of butyrate and of butyrate producing Roseburia/E. rectale spp. Extensive fermentation of WE-AX and/or AXOS reduced the pH, suppressed relevant markers of the proteolytic breakdown and induced a selective bifidogenic response. Compared with WE-AX, AXOS showed a slightly less pronounced effect in the colon as its fermentation was virtually complete in the cecum. Combining WU-AX and AXOS caused a striking synergistic increase in cecal butyrate levels. WU-AX, WE-AX and AXOS together combined a selective bifidogenic effect in the colon with elevated butyrate levels, a reduced pH and suppressed proteolytic metabolites. CONCLUSION The prebiotic potential and fermentation characteristics of cereal AX depend strongly on their structural properties and joint presence.
Collapse
Affiliation(s)
- Bram Damen
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Haskå L, Andersson R, Nyman M. A water-soluble fraction from a by-product of wheat increases the formation of propionic acid in rats compared with diets based on other by-product fractions and oligofructose. Food Nutr Res 2011; 55:6397. [PMID: 22022302 PMCID: PMC3198505 DOI: 10.3402/fnr.v55i0.6397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 11/24/2022] Open
Abstract
Background Dietary fibre is fermented by the colonic microbiota to carboxylic acids (CA), with potential health effects associated in particular with butyric and propionic acid. Objective To investigate the formation of CA in the hindgut of healthy rats fed dietary fibre from different fractions of wheat shorts, a by-product of the milling of wheat. Design Rats were fed dietary fibre (80 g/kg feed per day for 7 days) from wheat shorts and fractions thereof (ethanol-soluble, water-soluble and insoluble fractions), oligofructose (OF) diet and a mixture of oligofructose and raffinose (OR) diet. Results The water-soluble fraction, with a high content of arabinoxylan (AX), increased the formation of propionic acid in the hindgut and lowered the ratio of acetic to propionic acid in the portal blood of rats. High levels and proportions of butyric acid were seen in rats fed the OR diet. The pattern of CA resulting from the ethanol-soluble diet, mainly composed of fructan and raffinose, was more similar to that of the OF diet than the OR diet. Conclusions The high formation of propionic acid with the water-soluble fraction may be attributed to the high AX content. The results also indicate that the wheat fructans produced more propionic acid and less butyric acid than OF. It may furthermore be speculated that the formation of butyric acid associated with the OR diet was due to a synergetic effect of OR.
Collapse
Affiliation(s)
- Lina Haskå
- Department of Food Technology, Engineering and Nutrition, Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden
| | | | | |
Collapse
|
35
|
A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose. Nutr Metab (Lond) 2011; 8:38. [PMID: 21676253 PMCID: PMC3141389 DOI: 10.1186/1743-7075-8-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/15/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. METHODS In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight) or isocaloric glucose (18.2 mg.g-1 bw); measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. RESULTS A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight) occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99) only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww) during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww) to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww). CONCLUSION In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative phosphorylation yield and to induce a glucose-sparing effect, delayed the transient increase in mitochondrial ATP turnover and hence energy contribution to glycogen metabolism.
Collapse
|
36
|
Sholly DM, Jørgensen H, Sutton AL, Richert BT, Bach Knudsen KE. Effect of fermentation of cereals on the degradation of polysaccharides and other macronutrients in the gastrointestinal tract of growing pigs. J Anim Sci 2011; 89:2096-105. [PMID: 21317344 DOI: 10.2527/jas.2010-2891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main objective of the present investigation was to study the impact of fermentation of cereals on the degradation of polysaccharides and other macronutrients in the small intestine and total tract of growing pigs. Eight pigs (initial BW, 34.5 ± 0.9 kg) were used in a replicated 4 × 4 Latin square design. Pigs were cannulated and housed individually in metabolism pens during sample collection. The 4 cereal-based diets were nonfermented liquid barley (NFLB), nonfermented liquid wheat (NFLW), fermented liquid barley (FLB), and fermented liquid wheat (FLW). The fermented feeds were prepared by storing the dietary cereals (barley and wheat) and water [1:2.75 (wt/wt)] in a closed tank at 25 °C for 2 d, after which 50% of the volume was removed and replaced with an equal amount of fresh cereals and water after each afternoon meal. At the time of feeding (0730 and 1430 h), the remaining dietary ingredients were added. Water was added to the dry nonfermented feeds [1:1 (wt/wt)] immediately before feeding. The fermentation process reduced the amount of DM in both cereals (P<0.001), whereas the amount of DM was similar (P=0.626) between the fermented cereals. There was an interaction of cereal and treatment for ileal flow of DM (P=0.014), OM (P=0.013), and protein (P=0.006), which were less in pigs fed the NFLB than the FLB diets, but unchanged in pigs fed the NFLW and FLW diets. Conversely, the ileal flow of protein was similar (P=0.605) in pigs fed the barley diets (average, 47.5 ± 1.7 g/kg of DMI) and increased with the FLW diet compared with the NFLW diet (43 vs. 35 g/kg of DMI, respectively). Ileal fat and CH(2)O digestibilities were 7.6 (P=0.002) and 8.9% (P<0.001) greater, respectively, when pigs were fed wheat compared with the barley-based diets, and the ileal digestibility of CH(2)O was greater when pigs were fed the fermented than nonfermented diets (86.5 vs. 84.5%, respectively; P<0.001). Fermentation reduced (P<0.0001) the fecal excretion of DM, OM, and protein in pigs fed the barley diet, but not when fed the wheat-based diet (P=0.305). Fermentation had no effect (P=0.243) on the fecal digestibility of nonstarch polysaccharides in either of the cereals but their digestibility was 10.0% greater (P<0.001) in pigs fed wheat than the barley-based diets. In conclusion, fermentation of cereal before feeding altered the dietary composition and influenced flow and composition of polysaccharides and other macronutrients at the ileum and in feces to a larger extent for barley than wheat.
Collapse
Affiliation(s)
- D M Sholly
- Department of Animal Health and Bioscience, Faculty of Agricultural Science, University of Aarhus, DK-8839 Tjele, Denmark
| | | | | | | | | |
Collapse
|
37
|
Lorenzo-Pisarello M, Gultemirian M, Nieto-Peñalver C, Perez Chaia A. Propionibacterium acidipropionici CRL1198 influences the production of acids and the growth of bacterial genera stimulated by inulin in a murine model of cecal slurries. Anaerobe 2010; 16:345-54. [DOI: 10.1016/j.anaerobe.2010.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 04/19/2010] [Accepted: 04/29/2010] [Indexed: 11/26/2022]
|
38
|
New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 2010; 23:65-134. [PMID: 20565994 DOI: 10.1017/s0954422410000041] [Citation(s) in RCA: 614] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have clearly shown that whole-grain cereals can protect against obesity, diabetes, CVD and cancers. The specific effects of food structure (increased satiety, reduced transit time and glycaemic response), fibre (improved faecal bulking and satiety, viscosity and SCFA production, and/or reduced glycaemic response) and Mg (better glycaemic homeostasis through increased insulin secretion), together with the antioxidant and anti-carcinogenic properties of numerous bioactive compounds, especially those in the bran and germ (minerals, trace elements, vitamins, carotenoids, polyphenols and alkylresorcinols), are today well-recognised mechanisms in this protection. Recent findings, the exhaustive listing of bioactive compounds found in whole-grain wheat, their content in whole-grain, bran and germ fractions and their estimated bioavailability, have led to new hypotheses. The involvement of polyphenols in cell signalling and gene regulation, and of sulfur compounds, lignin and phytic acid should be considered in antioxidant protection. Whole-grain wheat is also a rich source of methyl donors and lipotropes (methionine, betaine, choline, inositol and folates) that may be involved in cardiovascular and/or hepatic protection, lipid metabolism and DNA methylation. Potential protective effects of bound phenolic acids within the colon, of the B-complex vitamins on the nervous system and mental health, of oligosaccharides as prebiotics, of compounds associated with skeleton health, and of other compounds such as alpha-linolenic acid, policosanol, melatonin, phytosterols and para-aminobenzoic acid also deserve to be studied in more depth. Finally, benefits of nutrigenomics to study complex physiological effects of the 'whole-grain package', and the most promising ways for improving the nutritional quality of cereal products are discussed.
Collapse
|
39
|
Coles LT, Moughan PJ, Awati A, Darragh AJ, Zou ML. Predicted apparent digestion of energy-yielding nutrients differs between the upper and lower digestive tracts in rats and humans. J Nutr 2010; 140:469-76. [PMID: 20071653 DOI: 10.3945/jn.109.116293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The apparent digestibility of energy-yielding nutrients (carbohydrate, protein, and fat) was predicted in the human upper digestive tract and large bowel separately for 4 diverse diets containing either a single dietary fiber source [wheat bran and pectin (PE) diets] or mixed fiber sources [low-fiber (LF) and high-fiber (HF) diets). A human balance study was undertaken to determine fecal energy and nutrient excretion and a rat model was used to predict human ileal energy and nutrient excretion. Total tract energy digestibility ranged from 92 (HF diet) to 96% (PE diet and LF diet), while at the ileal level it ranged from 79 to 86% for the HF diet to the LF diet. The predicted upper-tract digestion of starch, sugars, and fat was high, with ileal digestibilities exceeding 90% for all diets. Nonstarch polysaccharides were poorly digested in the upper tract for all diets except in the PE diet. The daily quantity of protein excreted at the ileal level was between 2 (HF diet) and 5 (PE diet) times higher than that at the fecal level. The large differences between fecal and ileal nutrient loss highlight that fecal digestibility data alone provide incomplete information on nutrient loss. There is a need to be able to routinely determine the uptake of energy in the upper and lower digestive tracts separately.
Collapse
Affiliation(s)
- Leah T Coles
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- G Livesey
- AFRC Institute of Food Reh, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| |
Collapse
|
41
|
Year rather than farming system influences protein utilization and energy value of vegetables when measured in a rat model. Nutr Res 2008; 28:866-78. [DOI: 10.1016/j.nutres.2008.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 11/19/2022]
|
42
|
Canibe N, Knudsen KEB, Eggumt BO. Apparent digestibility of non‐starch polysaccharides and short chain fatty acids production in the large intestine of pigs fed dried or toasted peas. ACTA AGR SCAND A-AN 2008. [DOI: 10.1080/09064709709362376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Hlebowicz J, Wickenberg J, Fahlström R, Björgell O, Almér LO, Darwiche G. Effect of commercial breakfast fibre cereals compared with corn flakes on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized blinded crossover trial. Nutr J 2007; 6:22. [PMID: 17875200 PMCID: PMC2031888 DOI: 10.1186/1475-2891-6-22] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dietary fibre food intake is related to a reduced risk of developing diabetes mellitus. However, the mechanism of this effect is still not clear. The aim of this study was to evaluate the effect of commercial fibre cereals on the rate of gastric emptying, postprandial glucose response and satiety in healthy subjects. METHODS Gastric emptying rate (GER) was measured by standardized real time ultrasonography. Twelve healthy subjects were assessed using a randomized crossover blinded trial. The subjects were examined after an 8 hour fast and after assessment of normal fasting blood glucose level. Satiety scores were estimated and blood glucose measurements were taken before and at 0, 20, 30, 40, 60, 80, 100 and 120 min after the end of the meal. GER was calculated as the percentage change in the antral cross-sectional area 15 and 90 min after ingestion of sour milk with corn flakes (GER1), cereal bran flakes (GER2) or wholemeal oat flakes (GER3). RESULTS The median value was, respectively, 42% for GER1, 33 % for GER2 and 51% for GER3. The difference between the GER after ingestion of bran flakes compared to wholemeal oat flakes was statistically significant (p = 0.023). The postprandial delta blood glucose level was statistically significantly lower at 40 min (p = 0.045) and 120 min (p = 0.023) after the cereal bran flakes meal. There was no statistical significance between the areas under the curve (AUCs) of the cereals as far as blood glucose and satiety were concerned. CONCLUSION The result of this study demonstrates that the intake of either bran flakes or wholemeal oat flakes has no effect on the total postprandial blood glucose response or satiety when compared to corn flakes. However, the study does show that the intake of cereal bran flakes slows the GER when compared to oat flakes and corn flakes, probably due to a higher fibre content. Since these products do not differ in terms of glucose response and satiety on healthy subjects, they should be considered equivalent in this respect.
Collapse
Affiliation(s)
- Joanna Hlebowicz
- Department of Medicine, University of Lund, Malmö University Hospital, Malmö, Sweden
| | - Jennie Wickenberg
- Medical School, University of Lund, Malmö University Hospital, Malmö, Sweden
| | - Rickard Fahlström
- Medical School, University of Lund, Malmö University Hospital, Malmö, Sweden
| | - Ola Björgell
- Department of Radiology, University of Lund, Malmö University Hospital, Malmö, Sweden
| | - Lars-Olof Almér
- Department of Medicine, University of Lund, Malmö University Hospital, Malmö, Sweden
| | - Gassan Darwiche
- Department of Medicine, University of Lund, Malmö University Hospital, Malmö, Sweden
| |
Collapse
|
44
|
Tiihonen K, Suomalainen T, Tynkkynen S, Rautonen N. Effect of prebiotic supplementation on a probiotic bacteria mixture: comparison between a rat model and clinical trials. Br J Nutr 2007; 99:826-31. [PMID: 17868490 DOI: 10.1017/s0007114507825141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of a probiotic mixture (PRO), supplemented with either galacto-oligosaccharide (GOS) or polydextrose (PDX), on cell numbers of lactic acid bacteria (LAB) and bifidobacteria (BIF) were studied in conventional rats and healthy human subjects. In rats the baseline BIF cell numbers were below the detection limit and were increased by the 2-week GOSPRO intervention. In contrast baseline LAB numbers in rats were high and not affected by the treatments. The human study consisted of two independent but concurrent trials; both started with PRO followed by GOSPRO or PDXPRO periods. In the human subjects variation in numbers of BIF and LAB were high. The GOSPRO group exhibited high counts of faecal LAB and BIF at the start and showed little or no effects of the interventions. In contrast, the PDX group had low faecal LAB and BIF numbers at the start and clearly increased cell numbers of BIF after the PDXPRO period, and LAB after the PRO and PDXPRO period, compared with the run-in period. We propose here that responses to pro- and prebiotics are dependent on baseline numbers of LAB and/or BIF, and that the conventional rat model does not predict well the treatment responses in humans. The survival of PRO was presumably enhanced by the use of prebiotic supplementation and advocates the use of particular combinations of pro- and prebiotics.
Collapse
Affiliation(s)
- Kirsti Tiihonen
- Danisco Finland Oy, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland.
| | | | | | | |
Collapse
|
45
|
Gallis JL, Tissier P, Gin H, Beauvieux MC. Decrease in oxidative phosphorylation yield in presence of butyrate in perfused liver isolated from fed rats. BMC PHYSIOLOGY 2007; 7:8. [PMID: 17725817 PMCID: PMC2048500 DOI: 10.1186/1472-6793-7-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 08/28/2007] [Indexed: 11/10/2022]
Abstract
Background Butyrate is the main nutrient for the colonocytes but the effect of the fraction reaching the liver is not totally known. A decrease in tissue ATP content and increase in respiration was previously demonstrated when livers were perfused with short-chain fatty acids (SCFA) such as butyrate, or octanoate. In fed rats the oxidative phosphorylation yield was determined on the whole isolated liver perfused with butyrate in comparison with acetate and octoanoate (3 mmol/L). The rate of ATP synthesis was determined in the steady state by monitoring the rate of ATP loss after inhibition of (i) cytochrome oxidase (oxidative phosphorylation) with KCN (2.5 mmol/L) and (ii) glyceraldehyde 3-phosphate dehydrogenase (glycolysis) with IAA (0.5 mmol/L). The ATP flux, estimated by 31P Nuclear Magnetic Resonance, and the measured liver respiration allowed the ATP/O ratio to be determined. Results ATP turnover was significantly lower in the presence of butyrate (0.40 ± 0.10 μmoles/min.g, p = 0.001, n = 7) and octanoate (0.56 ± 0.10 μmoles/min.g, p = 0.01, n = 5) than in control (1.09 ± 0.13 μmoles/min.g, n = 7), whereas perfusion with acetate induced no significant decrease (0.76 ± 0.10 μmoles/min.g, n = 7). Mitochondrial oxygen consumption was unchanged in the presence of acetate (1.92 ± 0.16 vs 1.86 ± 0.16 for control) and significantly increased in the presence of butyrate (p = 0.02) and octanoate (p = 0.0004) (2.54 ± 0.18 and 3.04 ± 0.15 μmoles/min.g, respectively). The oxidative phosphorylation yield (ATP/O ratio) calculated in the whole liver was significantly lower with butyrate (0.07 ± 0.02, p = 0.0006) and octanoate (0.09 ± 0.02, p = 0.005) than in control (0.30 ± 0.05), whereas there was no significant change with acetate (0.20 ± 0.02). Conclusion Butyrate or octanoate decrease rather than increase the rate of ATP synthesis, resulting in a decrease in the apparent ATP/O ratio. Butyrate as a nutrient has the same effect as longer chain FA. An effect on the hepatic metabolism should be taken into account when large quantities of SCFA are directly used or obtained during therapeutic or nutritional strategies.
Collapse
Affiliation(s)
- Jean-Louis Gallis
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
| | - Pierre Tissier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
| | - Henri Gin
- Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Avenue de Magellan, F-33604 Pessac France
| | - Marie-Christine Beauvieux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France
- Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Avenue de Magellan, F-33604 Pessac France
| |
Collapse
|
46
|
Nyman M. Fermentation and bulking capacity of indigestible carbohydrates: the case of inulin and oligofructose. Br J Nutr 2007. [DOI: 10.1079/bjn/2002533] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bulking index (i.e. the increase in faecal fresh weight in gram per gram indigestible carbohydrate ingested) with oligofructose and inulin is similar to that produced with other easily fermented fibres such as pectins and gums. Most studies in man have been performed at a level of 15 g/d and more investigations on lower intakes are needed to appoint the least intake for an effect. Concerning short-chain fatty acids (SCFA) most studies have been using oligofructose and points at an increased butyric acid formation in the caecum of rats. In one study on rats with inulin high caecal proportions of propionic acid were obtained. As inulin has a higher molecular weight than oligofructose it might be speculated if this could be a reason to the different SCFA-profile formed. No effects on faecal concentrations of SCFA in humans have been revealed with inulin and oligofructose, which neither is expected as most of the SCFA formed during the fermentation already has been absorbed or utilized by the colonic mucosa.
Collapse
|
47
|
Nilsson U, Nyman M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. Br J Nutr 2007; 94:705-13. [PMID: 16277772 DOI: 10.1079/bjn20051531] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The contents of short-chain fatty acids were investigated in rats fed lactitol, lactulose and four fructo-oligosaccharides of different degree of polymerisation and solubility. Fructo-oligosaccharides with a low degree of polymerisation (2–8) generated the highest levels of butyric acid all along the hindgut, whereas fructo-oligosaccharides with a high degree of polymerisation (10–60) generated the highest levels of propionic acid. These specific differences were also generally reflected in the caecal pools and molar proportions of short-chain fatty acids. The lower solubility of the fructo-oligosaccharides was related to a lower degree of caecal fermentation. Lactulose and lactitol yielded high proportions of acetic acid and low proportions of butyric acid. It is concluded that both the degree of polymerisation and the solubility may affect short-chain fatty acid formation, whereas the fructose contentper seseem to be of less importance. This may be of interest when designing foods with specific health effects.
Collapse
Affiliation(s)
- Ulf Nilsson
- Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden.
| | | |
Collapse
|
48
|
Coles L, Moughan P, Darragh A. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Annison G, Illman RJ, Topping DL. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 2004; 133:3523-8. [PMID: 14608068 DOI: 10.1093/jn/133.11.3523] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Maize starch was acylated with acetic, propionic or butyric anhydride to produce the corresponding acylated starch. In the first experiment, butyrylated starch at a degree of substitution (DS) of 0.25 (i.e., 1 acyl unit per 4 glucosyl units) was fed to rats for 3 d. Cecal and distal colonic SCFA concentrations were 170 and 78% higher, respectively, in rats fed the butyrylated starch. However, the greatest increase was in butyrate with corresponding increases of 460 and 212%. Subsequently, acetylated, propionylated or butyrylated starches with DS of approximately 0.18 were prepared on a larger scale. Body weight gain did not differ between rats fed these acylated starches or a control starch for 14 d. Large bowel pH was significantly lower and digesta mass significantly higher throughout the large bowel in rats fed the acylated starches. Cecal + distal colonic starch averaged 12 mg in rats fed the control starch and 103, 134 and 135 (pooled SEM = 6) mg in rats fed acetylated, propionylated or butyrylated starch, respectively. Large bowel SCFA concentrations and pools were significantly higher in rats fed the three acylated starches and were disproportionately greater in the SCFA that had been esterified to the starch. In the cecum, acetate, propionate and butyrate pools were 280, 690 and 1060% higher, respectively, in rats fed the corresponding acylated starch than in those fed the control diet. In the distal colon, the corresponding increases were 320, 940 and 1370%. These data indicate that acylated starches are resistant starch (RS) and raise large bowel SCFA, apparently through bacterial release of the esterified fatty acid and fermentation of the residual starch.
Collapse
|
50
|
A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol 2003. [DOI: 10.1016/s0377-8401(03)00163-9] [Citation(s) in RCA: 567] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|