1
|
Boonrat K, Jaroenkunpanit P, Wounchoum P, Jantarachote V, Chetpattananondh P, Chetpattananondh K. Feasibility Study of a Non-Contact Differentiation of Cannabidiol Concentrations Using Interdigital Electrodes. ACS OMEGA 2024; 9:51515-51524. [PMID: 39758664 PMCID: PMC11696433 DOI: 10.1021/acsomega.4c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
This feasibility study presents a novel noncontact method for differentiating standard cannabidiol (CBD) concentrations using optimized interdigital electrodes. The electrode design, with a 100 mm2 sensing area on a 64 mm × 77 mm FR-4 substrate, was improved through finite element analysis. Methanol-CBD solutions (25-1000 ppm) in 2 mL glass vials were analyzed using a vector network analyzer connected via a high-frequency SMA connector, focusing on scattering parameter (S-parameter) changes. The method demonstrated high effectiveness in CBD concentration differentiation, achieving a concentration resolution of 145 MHz/50 ppm based on resonant frequency shift, with an error of 0.17% of the reading, and 0.5 dB/50 ppm using S11 amplitude measurement. The proposed method offers a promising, linear, and precise technique for noncontact CBD standard analysis, with potential applications in future research. In addition, impedance measurements can be applied to enhance concentration differentiation further.
Collapse
Affiliation(s)
- Kanitsorn Boonrat
- Department
of Electrical and Biomedical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pinyada Jaroenkunpanit
- Department
of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phairote Wounchoum
- Department
of Electrical and Biomedical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Vasan Jantarachote
- Department
of Electrical and Biomedical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pakamas Chetpattananondh
- Department
of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kanadit Chetpattananondh
- Department
of Electrical and Biomedical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Yan C, Chang Q. Neural network assisted electrochemical fingerprint method for tea recognition. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Wang Q, Ye W, Li D, Zhu J, Liu C, Lin C, Fu L, Xu Z. Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification. MICROMACHINES 2023; 14:248. [PMID: 36837948 PMCID: PMC9963770 DOI: 10.3390/mi14020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical analysis has become a new method for plant analysis in recent years. It can not only collect signals of electrochemically active substances in plant tissues, but can also be used to identify plant species. At the same time, the signals of electrochemically active substances in plant tissues can also be used to investigate plant phylogeny. In this work, we collected electrochemical finger patterns in Malvaceae leaves based on the established methodological strategy. After the second derivative treatment, the collected electrochemical fingerprints can show more obvious differences. Three different recognition models were used to attempt electrochemical fingerprinting. The results show that linear support vector classification can be used to identify species with high accuracy by combining the electrochemical fingerprint signals collected in the phosphoric acid buffer solution and acetic acid buffer solution. In addition, the fingerprint information collected by the electrochemical sensor is further used for phylogenetic investigation. The 18 species were divided into three clusters. Species of the same genus have been clustered together. Dendrogram obtained by electrochemical fingerprinting was used to compare previously reported results deduced from morphological and complete chloroplast genomes.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Weiting Ye
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chenghang Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Chengte Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zenglai Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
4
|
Zhang P, Li X, Zheng Y, Fu L. Changes in and Recognition of Electrochemical Fingerprints of Acer spp. in Different Seasons. BIOSENSORS 2022; 12:1114. [PMID: 36551081 PMCID: PMC9775163 DOI: 10.3390/bios12121114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Electroanalytical chemistry is a metrological analysis technique that provides information feedback by measuring the voltammetric signal that changes when a molecule is involved in an electrochemical reaction. There is variability in the type and content of electrochemically active substances among different plants, and the signal differences presented by such differences in electrochemical reactions can be used for plant identification and physiological monitoring. This work used electroanalytical chemistry to monitor the growth of three Acer spp. This work explores the feasibility of the electrochemical analysis technique for the physiological monitoring of highly differentiated plants within the genus and further validates the technique. Changes in the electrochemical fingerprints of A. cinnamomifolium, A. sinopurpurascens and A. palmatum 'Matsumurae' were recorded during the one-year developmental cycle. The results show that the differences in the electrochemical fingerprint profiles of Acer spp. can be used to distinguish different species and identify the growth status in each season. This work also concludes with an identification flowchart based on electrochemical fingerprinting.
Collapse
Affiliation(s)
- Pengchong Zhang
- Hangzhou Botanical Garden (Hangzhou West Lake Research Institute of Garden Science), Hangzhou 310013, China
| | - Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Hu J, Shen Y, Zheng Y, Zhou W, Karimi-maleh H, Liu Q, Fu L. Electrochemical fingerprinting sensor for plant phylogenetic investigation: A case of sclerophyllous oak. FRONTIERS IN PLANT SCIENCE 2022; 13:962301. [PMID: 36438123 PMCID: PMC9682139 DOI: 10.3389/fpls.2022.962301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical fingerprinting can collect the electrochemical behavior of electrochemically active molecules in plant tissues, so it is regarded as a new plant analysis technology. Because the signal of electrochemical fingerprinting is positively correlated with the amount and type of electrochemically active molecules in plant tissues, it can also be used to reflect genetic differences between different species. Previous electrochemical fingerprinting techniques have been frequently used in phylogenetic studies of herbaceous plants. In this work, 19 Quercus species (17 evergreen or semi evergreen species and 2 deciduous species) were selected for investigation. The results indicated the electrochemical fingerprint of some species share similar features but can be distinguished after changing the recording condition (extraction solvent and electrolyte). The two sets of electrochemical fingerprint data can be used to construct different pattern recognition technology, which further speeds up the recognition efficiency. These electrochemical fingerprints were further used in phylogenetic investigations. The phylogenetic results deduced from electrochemical fingerprinting were divided mainly into three clusters. These can provide evidence for some of these arguments as well as new results.
Collapse
Affiliation(s)
- Jun Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yin Shen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
| | - Hassan Karimi-maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
- Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
6
|
Zheng Y, Mao S, Zhu J, Fu L, Moghadam M. A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers. CHEMOSPHERE 2022; 307:136069. [PMID: 35985381 DOI: 10.1016/j.chemosphere.2022.136069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticide testing is an important topic in environmental protection and food safety. The development of green, accurate and reliable pesticide residue detection methods is an important technical support for implementing of agricultural quality supervision. Electrochemical sensors are a very promising analytical method for pesticide detection due to their high sensitivity, speed, low cost and portability. Performance enhancement of electrochemical sensors is often accompanied by research advances in materials science. Among them, carbon material is a very important electrode material for the fabrication of electrochemical sensors. The discovery of graphene makes it the most promising candidate among carbon materials for sensor performance enhancement. The topic of this review is the use of graphene-modified electrochemical sensors for pesticide detection in the last decade. Traditional literature summaries and bibliometric analyses were used for an in-depth analysis of this topic. In addition to the introduction of different sensor types and performance comparisons, this review also parses the authors' country, keywords and publication frequency. The related research experienced rapid growth several years ago and has now reached a relatively stable stage. We also discuss the perspectives on this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
7
|
Fu L, Mao S, Chen F, Zhao S, Su W, Lai G, Yu A, Lin CT. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE 2022; 297:134127. [PMID: 35240147 DOI: 10.1016/j.chemosphere.2022.134127] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 05/25/2023]
Abstract
The residues of antibiotics in the environment pose a potential health hazard, so highly sensitive detection of antibiotics has always appealed to analytical chemists. With the widespread use of new low-dimensional materials, graphene-modified electrochemical sensors have emerged as an excellent candidate for highly sensitive detection of antibiotics. Graphene, its derivatives and its composites have been used in this field of exploration in the last decade. In this review, we have not only described the field using traditional summaries, but also used bibliometrics to quantify the development of the field. The literature between 2011 and 2021 was included in the analysis. Also, the sensing performance and detection targets of different sensors were compared. We were able to trace not only the flow of research themes, but also the future areas of development. Graphene is a material that has a high potential to be used on a large scale in the preparation of electrochemical sensors. How to design a sensor with selectivity and low cost is the key to bring this material from the laboratory to practical applications.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
8
|
Shi H, Fu L, Chen F, Zhao S, Lai G. Preparation of highly sensitive electrochemical sensor for detection of nitrite in drinking water samples. ENVIRONMENTAL RESEARCH 2022; 209:112747. [PMID: 35123964 DOI: 10.1016/j.envres.2022.112747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrite is both an environmental contaminant and a food additive. Excessive intake of nitrites not only causes blood diseases, but also has the potential risk of causing cancer. Therefore, rapid detection of nitrite in water is necessary. In this work, we propose an electrochemical sensor for the sensing of nitrite. Glassy carbon electrodes modified with noble metal nanomaterials have been widely used in the preparation of sensors, but the surface properties of noble metals largely affect the sensing performance. This work proposes the biosynthesis of Au nanoparticles using the pollen extract of Lycoris radiata as a reducing agent. Flavonoids rich in pollen can be used as weak reducing agents for the reduction of chloroauric acid, and slowly synthesize uniformly dispersed Au nanoparticles. These Au nanoparticles do not agglomerate because they contain small biological molecules on the surface and can form a homogeneous sensing interface on the electrode surface. The electrochemical sensor assembled with biosynthesized Au nanoparticles provides linear detection of nitrite between 0.01 and 3.8 mM. The sensor also has excellent immunity to interference. In addition, the proposed sensor was also successfully used for the detection of nitrite in drinking water.
Collapse
Affiliation(s)
- Haobing Shi
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
9
|
Jiang J, Cai Q, Deng M. Construction of Electrochemical Aptamer Sensor Based on Pt-Coordinated Titanium-Based Porphyrin MOF for Thrombin Detection. Front Chem 2022; 9:812983. [PMID: 35071191 PMCID: PMC8776986 DOI: 10.3389/fchem.2021.812983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this work, a Pt-coordinated titanium-based porphyrin metal organic framework (Ti-MOF-Pt) was prepared by embedding single-atom Pt through strong interactions between the four pyrrole nitrogen atoms in the rigid backbone of the porphyrin. The synthesized Ti-MOF-Pt was characterized by TEM, XRD, FTIR and BET. Then, the Ti-MOF-Pt has been used for glassy carbon electrode surface modification and consequently used for construction of a thrombin aptamer sensor. The high surface area provides by MOF and excellent electrochemical property provided by Pt enhance the sensing performance. After optimization of amount of aptamer, hybridization time and specific reaction time, the fabricated aptamer sensor exhibited a linear relationship with the logarithm of the thrombin concentration in the range of 4 pM to 0.2 μM. The detection limit can be calculated as 1.3 pM.
Collapse
Affiliation(s)
- Jiazi Jiang
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Quan Cai
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Minghan Deng
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Shao J, Wang C, Shen Y, Shi J, Ding D. Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review. Front Chem 2022; 9:818461. [PMID: 35096777 PMCID: PMC8795770 DOI: 10.3389/fchem.2021.818461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.
Collapse
Affiliation(s)
- Jinhua Shao
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chao Wang
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yiling Shen
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jinlei Shi
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dongqing Ding
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
11
|
The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrochemical oscillation reflects the overall characteristics of the system under test in terms of redox activity. It has proven to be advantageous in analyzing and processing complex components of herbal systems, such as polysaccharides and proteins. Therefore, it is widely used in the quantitative or qualitative tests of traditional Chinese medicines (TCMs) for identification and quality control. Electrochemical oscillation has several advantages such as high sensitivity, stability and micro sample requirement. Compared with other traditional methods, the interaction of multi-component in the TCMs was taken into account, which provides new ideas for the search of TCMs. Here, we presented a brief introduction on the progress on the topic, which promoted the development of electrochemical oscillation and the standardization of TCMs in the last twenty years. Electrochemical oscillation method is cheap, sensitive, fast, stable and convenient for the identification and quality control of TCMs. Reaction systems and the visualization of the fingerprints can be improved in the future.
Collapse
|
12
|
Yu M, Liu M, Li Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5711384. [PMID: 35677726 PMCID: PMC9170392 DOI: 10.1155/2022/5711384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This work describes a label-free electrochemical immunosensor for the sensing of Epstein-Barr virus (EBV) with high sensitivity. First, a monolayer of 1,6-hexanedithiol (HDT) was fabricated on the screen-printed electrode surface by the interaction between sulfur atoms and SPE. AuNPs can be modified on the electrode by the Au-S bond formed between the HDT-free group and Au atom in AuNPs. Protein A is then adsorbed onto AuNPs. Several parameters were optimized. The optimum concentration of protein A is 0.6 mg/mL. The optimum immobilization time for protein A is 90 min. The optimum concentration of antibody is 80 μg/mL. The optimum immobilization time for antibody is 90 min. Directional immobilization of EBV antibody is achieved by high affinity binding of protein A to the Fc segment of antibody. When antigen specifically binds to antibody, the formation of immune complexes blocks electron transfer of [Fe(CN)6]4-/3- and is reflected in the detection of cyclic voltammetry/electrochemical impedance spectroscopy. The detection range is 1 pg/mL-l00 ng/mL with a LOD of 0.1 pg/mL. In addition, the proposed sensor exhibited an excellent antiinterference property.
Collapse
Affiliation(s)
- Miao Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Ming Liu
- Logistics Support Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Yuan Li
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
13
|
Can Electrochemical Sensors Be Used for Identification and Phylogenetic Studies in Lamiaceae? SENSORS 2021; 21:s21248216. [PMID: 34960306 PMCID: PMC8706286 DOI: 10.3390/s21248216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
Electrochemical sensors have shown potential in recent years for plant species identification and phylogenetic studies. These works have been used to investigate the affinities of different species in many genera. However, the ability of electrochemical sensors to study relationships between different genera within a family has not been investigated. In this work, we selected 31 species in the Labiatae and 5 exotaxa as subjects to investigate the feasibility of electrochemical sensors at the genus level. The results show that electrochemical sensors are still very effective for the identification of these plants. Different pattern recognition techniques can make the identification more efficient. Also, the fingerprint profiles collected by the sensors can be used for phylogenetic studies of Labiatae. The phylogram divides all the species into five clusters, where the exotaxa are in one cluster. Species in the Labiatae are mainly distributed in four other clusters. Importantly, the different genera of species all showed close affinities, representing that electrochemical fingerprinting can well distinguish the affinities between the different genera. The results of this work demonstrate the great potential of electrochemical sensors in the study of plant phylogeny. Its application is not limited to the study at the species level, but can be extended to the genus level.
Collapse
|
14
|
Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100282] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrode modifications for electrochemical sensors attract a lot of attention every year. Among them, hydrogels are a relatively special class of electrode modifier. Since hydrogels often contain polymers, even though they are conductive polymers, they are not ideal electrode modifiers because of their poor conductivity. However, the micro-aqueous environment and the three-dimensional structure of hydrogels are an excellent platform for immobilizing bioactive molecules and maintaining their activity. This gives the hydrogel-modified electrochemical sensor the potential to perform specific recognition. At the same time, the rapid development of nanomaterials also makes the composite hydrogel have good electrical conductivity. This has led many scientists to become interested in hydrogel-based electrochemical sensors. In this review, we summarize the development process of hydrogel-based electrochemical sensors, starting from 2000. Hydrogel-based electrochemical sensors were initially used only as a carrier for biomolecules, mostly for loading enzymes and for specific recognition. With the widespread use of noble metal nanoparticles and carbon materials, hydrogels can now be used to prepare enzyme-free sensors. Although there are some sporadic studies on the use of hydrogels for practical applications, the vast majority of reports are still limited to the detection of common model molecules, such as glucose and H2O2. In the review, we classify hydrogels according to their different conducting strategies, and present the current status of the application of different hydrogels in electrochemical sensors. We also summarize the advantages and shortcomings of hydrogel-based electrochemical sensors. In addition, future prospects regarding hydrogel for electrochemical sensor use have been provided at the end.
Collapse
|
15
|
Dong M, Zhao S, Lv Y, Chen F, Wang A, Fu L, Lin CT. Electroanalytical determination of vanillin using PdZn particles decorated ZnS fibers. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Quantification of Silicon in Rice Based on an Electrochemical Sensor via an Amplified Electrocatalytic Strategy. MICROMACHINES 2021; 12:mi12091048. [PMID: 34577693 PMCID: PMC8469415 DOI: 10.3390/mi12091048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Silicon plays a very important role in the growth of rice. The study of the relationship between rice and silicon has become a hot area in the last decade. Currently, the silica-molybdenum blue spectrophotometric method is mostly used for the determination of silicon content in rice. However, the results of this method vary greatly due to the different choices of reducing agents, measurement wavelengths and color development times. In this work, we present for the first time an electrochemical sensor for the detection of silicon content in rice. This electrochemical analysis technique not only provides an alternative detection strategy, but also, due to the rapid detection by electrochemical methods and the miniaturization of the instrument, it is suitable for field testing. Methodological construction using electrochemical techniques is a key objective. The silicon in rice was extracted by HF and becomes silica after pH adjustment. The silica was then immobilized onto the glassy carbon surface. These silica nanoparticles provided additional specific surface area for adsorption of sodium borohydride and Ag ions, which in turn formed Ag nanoparticles to fabricate an electrochemical sensor. The proposed electrochemical sensor can be used for indirect measurements of 10-400 mg/L of SiO2, and thus, the method can measure 4.67-186.8 mg/g of silicon. The electrochemical sensor can be used to be comparable with the conventional silicon-molybdenum blue spectrophotometric method. The RSD of the current value was only 3.4% for five sensors. In practical use, 200 samples of glume, leaf, leaf sheath and culm were tested. The results showed that glume had the highest silicon content and culm had the lowest silicon content. The linear correlation coefficients for glume, leaf, leaf sheath and culm were 0.9841, 0.9907, 0.9894 and 0.993, respectively.
Collapse
|
17
|
Analysis of coumarin in food and plant tissue without extraction based on voltammetry of microparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Preparation of cassava fiber-iron nanoparticles composite for electrochemical determination of tea polyphenol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Yue Y, Su L, Hao M, Li W, Zeng L, Yan S. Evaluation of Peroxidase in Herbal Medicines Based on an Electrochemical Sensor. Front Chem 2021; 9:709487. [PMID: 34249876 PMCID: PMC8260690 DOI: 10.3389/fchem.2021.709487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxidases are species-specific. Differences in peroxidase can objectively reflect the genetics among species. The use of peroxidase to assist in species identification is relatively simple and effective. In this work, we proposed a graphene-modified electrode. This electrode can amplify the signal of electrocatalytic reduction of hydrogen peroxide. Since peroxidase can catalyze the reduction of hydrogen peroxide, this signal can be used as an indicator to demonstrate the content of peroxidase in different plant tissues. Twelve herbal medicines were selected for our study. The results show that this electrochemical-based detection technique was comparable to colorimetric method in terms of accuracy.
Collapse
Affiliation(s)
- Yinzi Yue
- First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wenting Li
- First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zeng
- First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Yan
- Department of Anorectal, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
20
|
Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR, Khataee A, Woo Joo S. Emerging electrochemical sensing and biosensing approaches for detection of Fumonisins in food samples. Crit Rev Food Sci Nutr 2021; 62:8761-8776. [PMID: 34085894 DOI: 10.1080/10408398.2021.1932723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fumonisins (FBs) can be found extensively in feedstuffs, foodstuffs, and crops. The consumption of the fumonisin-contaminated corn can result in esophageal cancer. In addition, the secondary metabolites of fungi termed mycotoxins may have some adverse effects on animals and humans such as estrogenicity, immunotoxicity, teratogenicity, mutagenicity, and carcinogenicity. Hence, developing sensitivity techniques for mycotoxins determination is of great importance. This paper reports the latest developments of nanomaterial-based electrochemical biosensing, apta-sensing, sensing, and immunosensing analyses to detect fumonisins. A concise study of the occurrence, legislations, toxicity, and distribution of FBs in levels monitoring was done. The techniques, different detection matrices, and approaches to highly selective and sensitive sensing methods were reviewed. The review also summarizes the salient features and the necessity of biosensing assessments in FBs detection, and diverse immobilization techniques. Furthermore, this review defined the performance of various electrochemical sensors using different detection elements couples with nanomaterials fabricated applying different detection elements coupled with nanomaterials (metal oxide nanoparticles (NPs), metal NPs, CNT, and graphene), the factors limiting progress, and the upcoming tasks in successful aptasensor fabrication with the functionalized nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Department of Environmental Engineering, Gebze Technical University, Gebze, Turkey.,Department of Materrial Science and Physical Chemistry of Materials, South Ural State University, Chelyabinsk, Russian Federation
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang, South Korea
| |
Collapse
|
21
|
Duan R, Fang X, Wang D. A Methylene Blue Assisted Electrochemical Sensor for Determination of Drug Resistance of Escherichia coli. Front Chem 2021; 9:689735. [PMID: 34136465 PMCID: PMC8201616 DOI: 10.3389/fchem.2021.689735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the abuse of antibiotics in clinical, animal husbandry, and aquaculture, drug-resistant pathogens are produced, which poses a great threat to human and the public health. At present, a rapid and effective drug sensitivity test method is urgently needed to effectively control the spread of drug-resistant bacteria. Using methylene blue as a redox probe, the electrochemical signals of methylene blue in drug-resistant Escherichia coli strains were analyzed by a CV method. Graphene ink has been used for enhancing the electrochemical signal. Compared with the results of the traditional drug sensitivity test, we proposed a rapid electrochemical drug sensitivity test method which can effectively identify the drug sensitivity of Escherichia coli. The sensitivity of four E. coli isolates to ciprofloxacin, gentamicin, and ampicillin was tested by an electrochemical drug sensitivity test. The respiratory activity value %RA was used as an indicator of bacterial resistance by electrochemical method.
Collapse
Affiliation(s)
- Rongshuai Duan
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China.,Qilu Medical University, Jinan, China
| | - Xiao Fang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China
| | - Dongliang Wang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, China.,Dong-E E-Jiao Co. Ltd., Liaocheng, China
| |
Collapse
|
22
|
Fan B, Wang Q, Wu W, Zhou Q, Li D, Xu Z, Fu L, Zhu J, Karimi-Maleh H, Lin CT. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. BIOSENSORS-BASEL 2021; 11:bios11050155. [PMID: 34068869 PMCID: PMC8153556 DOI: 10.3390/bios11050155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Indigo is a plant dye that has been used as an important dye by various ancient civilizations throughout history. Today, due to environmental and health concerns, plant indigo is re-entering the market. Strobilanthes cusia (Nees) Kuntze is the most widely used species in China for indigo preparation. However, other species under Strobilanthes have a similar feature. In this work, 12 Strobilanthes spp. were analyzed using electrochemical fingerprinting technology. Depending on their electrochemically active molecules, they can be quickly identified by fingerprinting. In addition, the fingerprint obtained under different conditions can be used to produce scattered patter and heatmap. These patterns make plant identification more convenient. Since the electrochemically active components in plants reflect the differences at the gene level to some extent, the obtained electrochemical fingerprints are further used for the discussion of phylogenetics.
Collapse
Affiliation(s)
- Boyuan Fan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Qiong Wang
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weihong Wu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Qinwei Zhou
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Dongling Li
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zenglai Xu
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
- Correspondence:
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 611731, China;
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
23
|
Li J, Zhang S, Zhang L, Zhang Y, Zhang H, Zhang C, Xuan X, Wang M, Zhang J, Yuan Y. A Novel Graphene-Based Nanomaterial Modified Electrochemical Sensor for the Detection of Cardiac Troponin I. Front Chem 2021; 9:680593. [PMID: 34055747 PMCID: PMC8162784 DOI: 10.3389/fchem.2021.680593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction has a high clinical mortality rate. The initial exclusion or diagnosis is important for the timely treatment of patients with acute myocardial infarction. As a marker, cardiac troponin I (cTnI) has a high specificity, high sensitivity to myocardial injury and a long diagnostic window. Therefore, its diagnostic value is better than previous markers of myocardial injury. In this work, we propose a novel aptamer electrochemical sensor. This sensor consists of silver nanoparticles/MoS2/reduced graphene oxide. The combination of these three materials can provide a synergistic effect for the stable immobilization of aptamer. Our proposed aptamer electrochemical sensor can detect cTnl with high sensitivity. After optimizing the parameters, the sensor can provide linear detection of cTnl in the range of 0.3 pg/ml to 0.2 ng/ml. In addition, the sensor is resistant to multiple interferents including urea, glucose, myoglobin, dopamine and hemoglobin.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Shenwei Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Hua Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Chuanxi Zhang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xuexi Xuan
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mingjie Wang
- Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiqiang Yuan
- Department of Cardiology, Chest Hospital of Henan Provincial, Zhengzhou, China
| |
Collapse
|
24
|
Wu Z, Liu J, Liang M, Zheng H, Zhu C, Wang Y. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Front Chem 2021; 9:670074. [PMID: 33968906 PMCID: PMC8100453 DOI: 10.3389/fchem.2021.670074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
The establishment of a monitoring technique for imatinib is necessary in clinical and environmental toxicology. Leaf extracts of Lycoris longituba were used as reducing agent for the one-step synthesis of reduced graphene oxide-Ag nanocomposites. This nanocomposite was characterized by TEM, FTIR, XRD, and other instruments. Then, the graphene/Ag nanocomposite was used as a modifier to be cemented on the surface of the glassy carbon electrode. This electrode exhibited excellent electrochemical sensing performance. Under the optimal conditions, the proposed electrode could detect imatinib at 10 nM−0.28 mM with a low limit of detection. This electrochemical sensor also has excellent anti-interference performance and reproducibility.
Collapse
Affiliation(s)
- Zhen Wu
- Day Chemotherapy Unit, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Liu
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | | | | - Chuansheng Zhu
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yan Wang
- Hematology Department, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
Yan S, Yue Y, Zeng L, Su L, Hao M, Zhang W, Wang X. Preparation of Graphene Oxide-Embedded Hydrogel as a Novel Sensor Platform for Antioxidant Activity Evaluation of Scutellaria baicalensis. Front Chem 2021; 9:675346. [PMID: 33937209 PMCID: PMC8087177 DOI: 10.3389/fchem.2021.675346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Antioxidation is very important in medicine and food. The current evaluation technologies often have many shortcomings. In this work, an improved electrochemical sensing platform for the evaluation of antioxidant activity has been proposed. A hydrogel was prepared based on graphene oxide, zinc ions, and chitosan. Zinc ions play the role of crosslinking agents in hydrogels. The structure of chitosan can be destroyed by injecting hydrogen peroxide into the hydrogel, and the free zinc ions can diffuse to the surface of the electrode to participate in the electrochemical reaction. This electrochemical sensor can evaluate the antioxidant activity by comparing the current difference of zinc reduction before and after adding the antioxidant. With the help of graphene oxide, this hydrogel can greatly enhance the sensing effect. We conducted tests on 10 real samples. This proposed electrochemical platform has been successfully applied for evaluating the antioxidant activity of Scutellaria baicalensis, and the results were compared to those obtained from the 2,2-diphenyl-1-picrylhydrazyl-based traditional analysis technique.
Collapse
Affiliation(s)
- Shuai Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yinzi Yue
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zeng
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
26
|
Wang J, Liu L, Jiang J. Investigation of the spectroelectrochemical behavior of quercetin isolated from Zanthoxylum bungeanum. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Flavonoids are common bioactive components in plants. Quercetin is the most abundant flavonoid in the human diet, accounting for more than half of the total daily consumption of flavonoids. In this study, adsorption and electrocatalytic activities of quercetin isolated from Zanthoxylum bungeanum on an electrode was studied via homemade electrodes. An in situ UV-Visible thin-layer spectroelectrochemical method was used to study the electrochemical behavior of quercetin in detail and to explore its electrochemical reaction mechanism. This experiment proves that UV-Vis thin-layer spectroelectrochemistry is a feasible way for studying the electrochemical reaction mechanism of flavonoids in plants.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, The Hospital of Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Linxiang Liu
- Department of Pharmacy, The Hospital of Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Jianwei Jiang
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) , Hangzhou , Zhejiang 310022 , China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China
| |
Collapse
|
27
|
Polyethylene Terephthalate-Based Materials for Lithium-Ion Battery Separator Applications: A Review Based on Knowledge Domain Analysis. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6694105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As the key material of lithium battery, separator plays an important role in isolating electrons, preventing direct contact between anode and cathode, and allowing free passage of lithium ions in the electrolyte. Polyethylene terephthalate (PET) has excellent mechanical, thermodynamic, and electrical insulation properties. This review aims to identify the research progress and development trends of PET-based material for separator application. We retrieved published papers (2004–2019) from the Scientific Citation Index Expanded (SCIE) database of the WoS with a topic search related to PET-based material for separator application. The research progress and development trends were analyzed based on the CiteSpace software of text mining and visualization.
Collapse
|
28
|
Zhao L. Horseradish Peroxidase Labelled-Sandwich Electrochemical Sensor Based on Ionic Liquid-Gold Nanoparticles for Lactobacillus brevis. MICROMACHINES 2021; 12:75. [PMID: 33445448 PMCID: PMC7827081 DOI: 10.3390/mi12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Lactobacillus brevis is the most common bacteria that causes beer spoilage. In this work, a novel electrochemical immunosensor was fabricated for ultra-sensitive determination of L. brevis. Gold nanoparticles (AuNPs) were firstly electro-deposited on the electrode surface for enhancing the electro-conductivity and specific surface area. Ionic liquid was used for improving the immobilization performance of the immunosensor. After optimization, a linear regression equation can be observed between the ∆current and concentration of L. brevis from 104 CFU/mL to 109 CFU/mL. The limit of detection can be estimated to be 103 CFU/mL.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|