1
|
Rathi K, Shukla M, Hassam M, Shrivastava R, Rawat V, Prakash Verma V. Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes. Bioorg Chem 2024; 143:107043. [PMID: 38134523 DOI: 10.1016/j.bioorg.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | | | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan 30300, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India.
| |
Collapse
|
2
|
Hassam M, Singh AS, Yadav DK, Singh C, Puri SK, Verma VP. Reduction of the Double Bond of 6-Arylvinyl-1,2,4-trioxanes Leads to a Remarkable Increase in Their Antimalarial Activity against Multidrug-Resistant Plasmodium yoelii nigeriensis in a Swiss Mice Model. ACS OMEGA 2021; 6:30790-30799. [PMID: 34805707 PMCID: PMC8600630 DOI: 10.1021/acsomega.1c05041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Novel 6-arylethyl-1,2,4-trioxanes6a-i and 7a-i are easily accessible in one step from the diimide reduction of 6-arylvinyl-1,2,4-trioxanes 5a-i. All of these new trioxanes were assessed for their oral antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in a Swiss mice model. Most of the saturated trioxanes 6c, 6f, 6g, 6h, and 6i, the active compounds of the series, provided 100% protection to the malaria-infected mice at a dose of 24 mg/kg × 4 days. Further, trioxane 6i, the most active compound of the series, also showed 100% protection even at a dose of 12 mg/kg × 4 days and 20% protection at a dose of 6 mg/kg × 4 days. In this model, β-arteether provided 100% protection at a dose of 48 mg/kg × 4 days and only 20% protection at a dose of 24 mg/kg × 4 days via the oral route, which was found to exhibit 4-fold antimalarial activity compared with the currently used drug β-arteether.
Collapse
Affiliation(s)
- Mohammad Hassam
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ajit Shankar Singh
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Dinesh Kumar Yadav
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Chandan Singh
- Medicinal
& Process Chemistry Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sunil K. Puri
- Parasitology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| |
Collapse
|
3
|
Woodley CM, Amado PSM, Cristiano MLS, O'Neill PM. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med Res Rev 2021; 41:3062-3095. [PMID: 34355414 DOI: 10.1002/med.21849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-trioxolanes (arterolane and artefenomel) and the 1,2,4,5-tetraoxanes (N205 and E209) based antimalarials, have been explored extensively and are still in active development. In contrast, the most recent publication pertaining to the development of the 1,2-dioxane, Arteflene, and 1,2,4-trioxanes fenozan-50F, DU1301, and PA1103/SAR116242 was published in 2008. This review summarizes the synthesis, biological and clinical evaluation, and mechanistic studies of the most developed synthetic endoperoxide antimalarials, providing an update on those classes still in active development.
Collapse
Affiliation(s)
| | - Patrícia S M Amado
- Department of Chemistry, University of Liverpool, Liverpool, UK.,Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Tiwari MK, Coghi P, Agrawal P, Yadav DK, Yang LJ, Congling Q, Sahal D, Wai Wong VK, Chaudhary S. Novel halogenated arylvinyl-1,2,4 trioxanes as potent antiplasmodial as well as anticancer agents: Synthesis, bioevaluation, structure-activity relationship and in-silico studies. Eur J Med Chem 2021; 224:113685. [PMID: 34303874 DOI: 10.1016/j.ejmech.2021.113685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Herein, we have synthesized a series of lipophilic, halogenated-arylvinyl-1,2,4-trioxanes 8a-g (28 compounds) and assessed for their in vitro anti-plasmodial activity in Plasmodium falciparum culture using SYBRgreen-I fluorescence assay against chloroquine-resistant Pf INDO and artemisinin-resistant Pf Cam 3.1R539T (MRA-1240) strains. Alongside, the cell cytotoxic potential of 8a-g has also been determined against the HEK293 cell line in vitro. Out of twenty-eight halogenated-arylvinyl-1,2,4-trioxanes; ten analogues (8a2, 8a4, 8b2, 8b4, 8d4, 8e1, 8e2, 8e4,8f2, and 8g4) have shown potent in vitro antiplasmodial activity with IC50 < 27 nM (IC50 range = 4.48-26.58 nM). Also, the selectivity index (SI) for these ten analogues were found in the range of 72.00-3972.50 which indicates their selective potential towards Plasmodium cells. Results of the cell cycle stage specificity with two of the most potent compounds 8a4 {(IC50 = 4.48 nM; SI = 3972.50) more potent than chloroquine (IC50 = 546 nM; SI = 36.64) and artesunate (IC50 = 6.6 nM; SI = 4333.33)} and 8e2 (IC50 = 9.69 nM; SI = 1348) against Pf INDO indicated all three stages to be the target of the action of 8e2 while only rings and trophozoites appeared to be targeted by 8a4. Ring stage survival assay against artemisinin-resistant Pf Cam 3.1R539T indicated that 8a4 may be well suited to replace artemisinin from current ACTs which are experiencing in vivo delayed parasite clearance. With intraperitoneal (i.p.) and oral (p.o.) route at the dose of 50 mg/kg/day × 4 days; 8a4 has also shown 100% suppression of parasitemia in P. berghei ANKA infected Balb C mice. Further, the in vitro anticancer activity of 8a-g performed against human lung (A549) and liver (HepG2) cancer cell lines as also against immortalized normal lung (BEAS-2B) and liver (LO2) cell lines has revealed that most of the derivatives are endowed also with promising anticancer activity (IC50 = 0.69-15 μM; SI = 1.02-20.61) in comparison with standard drugs such as chloroquine (IC50 = 100 μM; SI = 0.03), artemisinin (IC50 = 100 μM), and artesunic acid (IC50 = 9.85 μM; SI = 0.76), respectively. All the derivatives have shown moderate anticancer activity against liver (HepG2) cancer cell lines. Arylvinyl-1,2,4-trioxanes 8f2 (IC50 = 0.69 μM; SI = 16.66), the most active compound of the series, has shown ∼145 fold more cytotoxic potential with higher selectivity in comparison to reference drugs chloroquine (IC50 = 100 μM; SI = 0.03) and artemisinin (IC50 = 100 μM), respectively against the lung (A549) cancer cell line. Finally, the in-silico docking studies of the potent halogenated 1,2,4-trioxanes along with reference drug molecules against epidermal growth factor receptor (EGFR; PDB ID: 1M17) have demonstrated the strong virtual interaction.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India
| | - Paolo Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida wai long, Taipa, Macau, China
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067, New Delhi, India
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon city, 406-799, South Korea
| | - Li Jun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiu Congling
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067, New Delhi, India.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur, 302017, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, U.P, 226 002, India.
| |
Collapse
|
5
|
|
6
|
Maurya R, Soni A, Anand D, Ravi M, Raju KSR, Taneja I, Naikade NK, Puri SK, Wahajuddin, Kanojiya S, Yadav PP. Synthesis and antimalarial activity of 3,3-spiroanellated 5,6-disubstituted 1,2,4-trioxanes. ACS Med Chem Lett 2013; 4:165-9. [PMID: 24900640 DOI: 10.1021/ml300188t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/11/2012] [Indexed: 11/30/2022] Open
Abstract
Novel 3,3-spiroanellated 5-aryl, 6-arylvinyl-substituted 1,2,4-trioxanes 19-34 have been synthesized and appraised for their antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in Swiss mice by oral route at doses ranging from 96 mg/kg × 4 days to 24 mg/kg × 4 days. The most active compound of the series (compound 25) provided 100% protection at 24 mg/kg × 4 days, and other 1,2,4-trioxanes 22, 26, 27, and 30 also showed promising activity. In this model, β-arteether provided 100 and 20% protection at 48 mg/kg × 4 days and 24 mg/kg × 4 days, respectively, by oral route. Compound 25 displayed a similar in vitro pharmacokinetic profile to that of reference drug β-arteether. The activity results demonstrated the importance of an aryl moiety at the C-5 position on the 1,2,4-trioxane pharmacophore.
Collapse
Affiliation(s)
- Ranjani Maurya
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Awakash Soni
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Devireddy Anand
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Makthala Ravi
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Kanumuri S. R. Raju
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Isha Taneja
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Niraj K. Naikade
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - S. K. Puri
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Wahajuddin
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Sanjeev Kanojiya
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| | - Prem P. Yadav
- Division of Medicinal & Process Chemistry, ‡Division of Parasitology, §Division of Pharmacokinetics and Metabolism, and ∥Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Lucknow-226001, India
| |
Collapse
|
7
|
Slack RD, Jacobine AM, Posner GH. Antimalarial peroxides: advances in drug discovery and design. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00277a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Tilley L, Charman SA, Vennerstrom JL. Semisynthetic Artemisinin and Synthetic Peroxide Antimalarials. NEGLECTED DISEASES AND DRUG DISCOVERY 2011. [DOI: 10.1039/9781849733496-00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since the discovery of the endoperoxide sesquiterpene lactone artemisinin, numerous second-generation semisynthetic artemisinins and synthetic peroxides have been prepared and tested for their antimalarial properties. Using a case-study approach, we describe the discovery of the investigational semisynthetic artemisinins artelinic acid (8) and artemisone (9), and the structurally diverse synthetic peroxides arteflene (10), fenozan B07 (11), arterolane (12), PA1103/SAR116242 (13), and RKA182 (14).
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Centre of Excellence for Coherent X-rayScience, La Trobe University Melbourne, Victoria 3086 Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | - Jonathan L. Vennerstrom
- College of Pharmacy University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha NE USA
| |
Collapse
|
9
|
6-(4′-Aryloxy-phenyl)vinyl-1,2,4-trioxanes: A new series of orally active peroxides effective against multidrug-resistant Plasmodium yoelii in Swiss mice. Bioorg Med Chem Lett 2010; 20:4459-63. [DOI: 10.1016/j.bmcl.2010.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/26/2010] [Accepted: 06/08/2010] [Indexed: 11/18/2022]
|
10
|
Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules 2010; 15:1378-97. [PMID: 20335987 PMCID: PMC6257283 DOI: 10.3390/molecules15031378] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 11/17/2022] Open
Abstract
Artemisinins have become essential antimalarial drugs for increasingly widespread drug-resistant malaria strains. Although tremendous efforts have been devoted to decipher how this class of molecules works, their exact antimalarial mechanism is still an enigma. Several hypotheses have been proposed to explain their actions, including alkylation of heme by carbon-centered free radicals, interference with proteins such as the sarcoplasmic/endoplasmic calcium ATPase (SERCA), as well as damaging of normal mitochondrial functions. Besides artemisinins, other endoperoxides with various backbones have also been synthesized, some of which showed comparable or even higher antimalarial effects. It is noteworthy that among these artemisinin derivatives, some enantiomers displayed similar in vitro malaria killing efficacy. In this article, the proposed mechanisms of action of artemisinins are reviewed in light of medicinal chemistry findings characterized by efficacy-structure studies, with the hope of gaining more insight into how these potent drugs work.
Collapse
|
11
|
Gemma S, Martí F, Gabellieri E, Campiani G, Novellino E, Butini S. Synthetic studies toward 1,2-dioxanes as precursors of potential endoperoxide-containing antimalarials. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.07.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Bernat V, Saffon N, Maynadier M, Vial H, André-Barrès C. α-Spiro endoperoxides: synthesis and evaluation of their antimalarial activities. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Progress in the development of peroxide-based anti-parasitic agents. Drug Discov Today 2009; 14:793-803. [DOI: 10.1016/j.drudis.2009.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 03/05/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022]
|
14
|
de Ridder S, van der Kooy F, Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. JOURNAL OF ETHNOPHARMACOLOGY 2008; 120:302-14. [PMID: 18977424 DOI: 10.1016/j.jep.2008.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 05/03/2023]
Abstract
Malaria is a vector-borne infectious disease caused by the protozoan Plasmodium parasites. Each year, it causes disease in approximately 515 million people and kills between one and three million people, the majority of whom are young children in sub-Saharan Africa. It is widespread in tropical and subtropical regions, including parts of the Americas, Asia, and Africa. Due to climate change and the gradual warming of the temperate regions the future distribution of the malaria disease might include regions which are today seen as safe. Currently, malaria control requires an integrated approach comprising of mainly prevention, including vector control and the use of effective prophylactic medicines, and treatment of infected patients with antimalarials. The antimalarial chloroquine, which was in the past a mainstay of malaria control, is now ineffective in most malaria areas and resistance to other antimalarials is also increasing rapidly. The discovery and development of artemisinins from Artemisia annua have provided a new class of highly effective antimalarials. ACTs are now generally considered as the best current treatment for uncomplicated Plasmodium falciparum malaria. This review gives a short history of the malaria disease, the people forming a high risk group and the botanical aspects of A. annua. Furthermore the review provides an insight in the use of ART and its derivatives for the treatment of malaria. Its mechanism of action and kinetics will be described as well as the possibilities for a self-reliant treatment will be revealed. This self-reliant treatment includes the local production practices of A. annua followed by the possibilities for using traditional prepared teas from A. annua as an effective treatment for malaria. Finally, HMM will be described and the advantages and disadvantages discussed.
Collapse
Affiliation(s)
- Sanne de Ridder
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | | |
Collapse
|
15
|
Artemisinin-based combination therapy for uncomplicated malaria in sub-Saharan Africa: the efficacy, safety, resistance and policy implementation since Abuja 2000. Trans R Soc Trop Med Hyg 2008; 102:621-7. [PMID: 18499204 DOI: 10.1016/j.trstmh.2008.03.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022] Open
Abstract
Following increased resistance of malaria parasites to conventional drugs in the malarial regions of the world, the WHO is promoting artemisinin-based combination therapy (ACT) for treating uncomplicated malaria. The objective of this report is to review the available scientific information on the efficacy, safety, resistance and policy implementation of ACT as it relates to sub-Saharan Africa since the Abuja 2000 Roll Back Malaria initiative. To achieve this, a Medline search was performed to identify scientific publications relevant to the review. The data reviewed indicated that ACT proved very effective in the treatment of uncomplicated Plasmodium falciparum malaria in the region. ACT was shown to be effective, safe and tolerable and no resistance has been detected so far. However, the major challenges to its widespread use in the region include its high cost, low drug quality and poor healthcare delivery systems, among others. It is absolutely imperative for sub-Saharan African countries to establish an effective national antimalarial drug policy which will provide safe, effective, high-quality, accessible and affordable antimalarial drugs such as ACT to the populations at risk of malaria but, at the same time, promote rational drug use in order to delay or prevent the development of antimalarial drug resistance.
Collapse
|
16
|
Tripathi R, Mishra D, Rizvi A, Singh C. Evaluation of some adamantane-based synthetic trioxanes against Plasmodium knowlesi in rhesus monkeys. Life Sci 2007; 81:1544-8. [DOI: 10.1016/j.lfs.2007.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/18/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
17
|
Singh C, Sharma U, Saxena G, Puri SK. Orally active antimalarials: Synthesis and bioevaluation of a new series of steroid-based 1,2,4-trioxanes against multi-drug resistant malaria in mice. Bioorg Med Chem Lett 2007; 17:4097-101. [PMID: 17548195 DOI: 10.1016/j.bmcl.2007.05.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/09/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
A new series of steroid-based 1,2,4-trioxanes 7a-f, 8a-f and 9b-e have been synthesized and evaluated for their antimalarial activity against multi-drug resistant Plasmodium yoelii in Swiss mice by oral route. The biological activity shows a strong dependence on the size and the nature of the steroidal side chain. Pregnane-based trioxanes 8a-f show better activity profile than trioxanes 7a-f and 9b-e, derived from cholesterol and tigogenine, respectively.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow 226001, India.
| | | | | | | |
Collapse
|
18
|
Singh C, Kanchan R, Sharma U, Puri SK. New Adamantane-Based Spiro 1,2,4-Trioxanes Orally Effective against Rodent and Simian Malaria. J Med Chem 2007; 50:521-7. [PMID: 17266204 DOI: 10.1021/jm0610043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New 6-arylvinyl- and 6-adamantylvinyl-substituted 1,2,4-trioxanes (13a-g and 14a,b) have been prepared and evaluated for antimalarial activity against multidrug resistant Plasmodium yoelii nigeriensis in mice by both oral and intramuscular routes. While all the 6-arylvinyl-substituted trioxanes, 13a-f, showed promising activity, none of the 6-adamantylvinyl-substituted trioxanes, 13g and 14a,b, exhibited significant activity. Trioxane, 13f, the most active compound of the series, provided 100% and 80% protection to malaria-infected mice at 48 mg/kg x 4 days and 24 mg/kg x 4 days, respectively, by oral route. In this model, beta-arteether (3) provided 100% protection at 48 mg/kg x 4 days and only 20% protection at 24 mg/kg x 4 days. Trioxane 13f also showed complete suppression of parasitaemia at 10 mg/kg x 4 days by oral route in rhesus monkeys infected with P. cynomolgi. None of these trioxanes, except 13f, showed significant activity by the intramuscular route.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal and Process Chemistry and Division of Parasitology, Central Drug Research Institute, Lucknow-226001, India.
| | | | | | | |
Collapse
|
19
|
Tripathi R, Jefford CW, Dutta GP. Blood schizontocidal activity of selected 1,2,4-trioxanes (Fenozans) against the multidrug-resistant strain of Plasmodium yoelii nigeriensis (MDR) in vivo. Parasitology 2006; 133:1-9. [PMID: 16764736 DOI: 10.1017/s0031182006009905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/09/2005] [Accepted: 01/04/2006] [Indexed: 11/07/2022]
Abstract
Blood schizontocidal activity of 10 selected cis-fused cyclopenteno-1,2,4-trioxanes (namely Fenozan compound nos 6, 7, 11, 27, 32, 39, 44, 45, 48 and 51) have been re-investigated to establish their curative doses against the multidrug-resistant Plasmodium yoelii nigeriensis strain, which is lethal in Swiss mice. Freshly prepared formulations of these compounds prepared either in neutral groundnut (peanut) oil or in dimethyl sulfoxide (DMSO)-Tween-water, were compared for their antimalarial activity. Only 2 compounds, namely Fenozan derivatives 11 and 45, formulated in neutral groundnut oil for oral administration, showed highest activity with 100% cure rate in MDR P. yoelii nigeriensis-infected mice, while the DMSO-Tween-water formulations were inactive. Fenozan-48 produced 72.2% cure, when administered orally in groundnut oil (formulation) while its DMSO-Tween formulation was inactive. In the case of Fenozan 7, the oil and DMSO-Tween formulations produced 92.3 and 76.0% cures respectively. Fenozan derivatives nos 6, 27, 32, 39, 44 and 51 were not protective either in groundnut oil or DMSO-Tween oral formulations. The present study has applied more rigorous criteria for selection of active compounds, and has identified the 3,3-spirocyclopentane derivative Fenozan 11, and the 3,3-spirohydropyran derivative Fenozan 45, as potential blood schizontocides which can completely eliminate multidrug-resistant malaria infection in mice. Both these compounds are candidates for pre-clinical development. The present study advocates the preferred use of an oil vehicle for oral evaluation of potential antimalarial trioxanes/fenozans instead of the DMSO formulation, which gives inferior curative efficacy.
Collapse
Affiliation(s)
- R Tripathi
- Division of Parasitology, Central Drug Research Institute, Lucknow, India.
| | | | | |
Collapse
|
20
|
Maraschiello C, Vilageliu J, Dorronsoro I, Martinez A, Floriano P, Gómez-Acebo E. Enantioselective LC/MS method for the determination of an antimalarial agent Fenozan B07 in dog plasma. Chirality 2006; 18:297-305. [PMID: 16521090 DOI: 10.1002/chir.20253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A chiral liquid chromatography/mass spectrometry (LC/MS) bioanalytical procedure has been developed for the analysis of the antimalaric agent Fenozan B07 in dog plasma. Normal-phase chromatography involving a phenylcarbamate derivative of cellulose coated on silica gel as the chiral stationary phase was used to resolve (-)-(S,S)-B07 from (+)-(R,R)-B07. The enantiomers were detected by a mass spectrometer equipped with an atmospheric pressure chemical ionization (APCI) interface operated in the negative ion mode. A mass spectrum, characterized by a base peak of m/z 285, was obtained for each enantiomer. The m/z 285 ion was very specific for the analysis of both enantiomers in the plasma. The selected ion monitoring analysis of the plasma samples was therefore performed at m/z 285 for quantitative purposes. The enantiomers were extracted from the plasma in a basic medium and purified by solid-phase extraction using a hydrophilic-lipophilic balanced sorbent. A lower limit of quantification of 2 ng/mL in plasma was achieved for both enantiomers. The quantitative procedure reported in this study was highly specific and sensitive, and was validated according to the FDA guidance on bioanalytical method validation.
Collapse
Affiliation(s)
- Ciriaco Maraschiello
- Department of Pharmacokinetics and Analytical Chemistry, Centro de Investigación y Desarrollo Aplicado, S.A.L., Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Tripathi R, Dhawan S, Dutta GP. Blood schizontocidal activity of azithromycin and its combination with α/β arteether against multi-drug resistantPlasmodium yoelii nigeriensis, a novel MDR parasite model for antimalarial screening. Parasitology 2005; 131:295-301. [PMID: 16178350 DOI: 10.1017/s003118200500778x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many different drug-resistant lines of rodent malaria are available as screening models. It is obligatory to screen new compounds for antimalarial activity against a series of resistant lines in order to identify a compound with potential for the treatment of multi-drug resistant (MDR) malaria infections. Instead of using a battery of resistant lines, a single MDRPlasmodium yoelii nigeriensisstrain that shows a wide spectrum of drug resistance to high doses of chloroquine, mepacrine, amodiaquine, mefloquine, quinine, quinidine, halofantrine as well as tetracyclines, fluoroquinolines and erythromycin, was used to assess the blood schizontocidal efficacy of a new macrolide azithromycin and other antibiotics. The present study shows that only azithromycin has the potential to control an MDRP. y. nigeriensisinfection in Swiss mice, provided the treatment with a dose of 50–100 mg/kg/day by oral route is continued for a period of 7 days. Tetracycline, oxytetracycline, doxycyline, erythromycin, ciprofloxacin and norfloxacin, although activein vitro, failed to protect the mice. Tetracycline, ciprofloxacin and norfloxacin combinations with chloroquine did not control the infection. Additionally, the antimalarial efficacy of azithromycin can be potentiated with the addition of arteether, which is an ethyl ether derivative of artemisinin. A total (100%) curative effect has been obtained with a shorter regimen of 4 days only.
Collapse
Affiliation(s)
- R Tripathi
- Division of Parasitology, P.O. Box No. 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow, 226001, India.
| | | | | |
Collapse
|
22
|
Photooxygenation of 3-aryl-2-cyclohexenols: synthesis of a new series of antimalarial 1,2,4-trioxanes. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2004.11.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Jefford CW, Kohmoto S, Jaggi D, Timári G, Rossier JC, Rudaz M, Barbuzzi O, Gérard D, Burger U, Kamalaprija P, Mareda J, Bernardinelli G, Manzanares I, Canfield CJ, Feck SL, Robinson BL, Peters W. Synthesis, Structure, and Antimalarial Activity of Some Enantiomerically Pure,cis-fused cyclopenteno-1,2,4-trioxanes. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19950780312] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Singh C, Malik H, Puri SK. Synthesis and antimalarial activity of a new series of trioxaquines. Bioorg Med Chem 2004; 12:1177-82. [PMID: 14980628 DOI: 10.1016/j.bmc.2003.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Trioxanes 8a-b, easily accessible in two steps from allylic alcohol 6a-b, on reductive amination with 4-aminoquinolines 4a-c furnish a new series of trioxaquines 9a-b, 10a-b, 11a-b in 32-77% yields. Dicitrate salts of these trioxaquines have been evaluated for antimalarial activity against multidrug resistant Plasmodium yoelii in mice model.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow-226001, India.
| | | | | |
Collapse
|
25
|
Ferrer-Rodríguez I, Pérez-Rosado J, Gervais GW, Peters W, Robinson BL, Serrano AE. PLASMODIUM YOELII: IDENTIFICATION AND PARTIAL CHARACTERIZATION OF ANMDR1GENE IN AN ARTEMISININ-RESISTANT LINE. J Parasitol 2004; 90:152-60. [PMID: 15040683 DOI: 10.1645/ge-3225] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms by which the malarial parasite has managed to develop resistance to many antimalarial drugs remain to be completely elucidated. Mutations in the pfmdr1 gene of Plasmodium falciparum, as well as an increase in pfmdr1 copy number, have been associated with resistance to the quinoline-containing antimalarial drugs. We investigated the mechanisms of drug resistance in Plasmodium using a collection of P. yoelii lines with different drug resistance profiles. The mdr1 gene of P. yoelii (pymdr1) was identified and characterized. A 2- to 3-fold increase in the pymdr1 gene copy number was observed in the P. yoelii ART line (artemisinin resistant) when compared with the NS parental line. The pymdr1 gene was mapped to a chromosome of 2.1 Mb in all lines analyzed. Reverse transcriptase-polymerase chain reaction and Western blot experiments confirmed the expression of the gene at the RNA and protein levels.
Collapse
Affiliation(s)
- Iván Ferrer-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, P.O. Box 365067, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
26
|
Singh C, Malik H, Puri SK. Orally active amino functionalized antimalarial 1,2,4-trioxanes. Bioorg Med Chem Lett 2004; 14:459-62. [PMID: 14698181 DOI: 10.1016/j.bmcl.2003.10.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using readily available trioxanes 6a-b, a new series of amino functionalized 1,2,4-trioxanes 8a-e and 9a-e have been prepared and evaluated for antimalarial activity against multi-drug resistant Plasmodium yoelii in Swiss mice model. Several of these novel trioxanes are orally more active than the parent trioxanes 6a-b. Antimalarial activity of amino functionalized trioxane 9a, the most potent compound in the series, is very close to that of beta-arteether.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal Chemistry, Central Drug Research Institute, -226001, Lucknow, India.
| | | | | |
Collapse
|
27
|
|
28
|
Bachi MD, Korshin EE, Hoos R, Szpilman AM, Ploypradith P, Xie S, Shapiro TA, Posner GH. A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic beta-sulfonyl-endoperoxides. J Med Chem 2003; 46:2516-33. [PMID: 12773055 DOI: 10.1021/jm020584a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R(1) = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). beta-Sulfenyl peroxides 9 and 10 (R(1) = OH) are converted into beta-sulfinyl and beta-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the tert-hydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure beta-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC(50) = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of beta-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of beta-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.
Collapse
Affiliation(s)
- Mario D Bachi
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Borstnik K, Paik IH, Shapiro TA, Posner GH. Antimalarial chemotherapeutic peroxides: artemisinin, yingzhaosu A and related compounds. Int J Parasitol 2002; 32:1661-7. [PMID: 12435451 DOI: 10.1016/s0020-7519(02)00195-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based rational design and gram-scale chemical synthesis have produced some new trioxane and endoperoxide antimalarial drug candidates that are efficacious and safe. This review summarises recent achievements in this area of peroxide drug development for malaria chemotherapy.
Collapse
Affiliation(s)
- Kristina Borstnik
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
30
|
Kapetanaki S, Varotsis C. Fourier transform infrared investigation of non-heme Fe(III) and Fe(II) decomposition of artemisinin and of a simplified trioxane alcohol. J Med Chem 2001; 44:3150-6. [PMID: 11543684 DOI: 10.1021/jm010848d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared spectra are reported for the Fe(III)- and Fe(II)-mediated activation of the antimalarial agents artemisinin 1 and its simplified synthetic analogue, trioxane alcohol 2. By monitoring the frequencies of the newly established marker lines in the FTIR spectra, the products of the Fe(II) and Fe(III) reactions have been characterized. In both reactions, artemisinin is activated giving a product mixture of a ring-contracted tetrahydrofuran acetatal 3, C(4)-hydroxy deoxyartemisinin 4, and deoxyartemisinin 5. These data illustrate that the oxidation state of the iron places no restrictions on the endoperoxide reduction mechanism. The FTIR difference (light - dark) spectra indicate that the endoperoxide moiety of artemisinin is photolabile and that the resulted products have the same vibrational characteristics as those observed in the reactions with Fe(II) and Fe(III). The use of 18O-18O enriched endoperoxide in 2 has allowed us to identify two oxygen sensitive modes in the reactions with Fe(II). The reduction of the peroxide bond by Fe(II) in trioxane alcohol 2 follows both the C-C cleavage and 1,5-H shift pathways and produces a ring-contracted tetrahydrofuran acetal 6 which is converted to tetrahydrofuran aldehyde 7 and C(4)-hydroxy deoxytrioxane alcohol 8, respectively. The cleavage of the O-O bond in 1 and 2 by iron and the ability to correlate vibrational properties of the reaction products with structural properties of the isolated products suggest that infrared spectroscopy is an appropriate tool to study the mode of action of antimalarial endoperoxides.
Collapse
Affiliation(s)
- S Kapetanaki
- Department of Chemistry, University of Crete, 71409 Heraklion, Crete, Greece
| | | |
Collapse
|
31
|
Dhingra V, Vishweshwar Rao K, Lakshmi Narasu M. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci 2000; 66:279-300. [PMID: 10665980 DOI: 10.1016/s0024-3205(99)00356-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artemisinin is a promising and a potent antimalarial drug, which meets the dual challenge posed by drug-resistant parasites and rapid progression of malarial illness. This review article focuses on the progress achieved during the last years in the production of artemisinin from Artemisia annua. The structure, biosynthesis and analysis of artemisinin and its mode of action are described. The review also focuses on clinical studies, toxicity studies, pharmacokinetics and activity of artemisinin related compounds. The production strategies including organic synthesis, extraction from plants, in vitro cultures and alternative strategies for enhancing the yields are also discussed.
Collapse
Affiliation(s)
- V Dhingra
- School of Biotechnology, Institute of Post Graduate Studies & Research, Jawaharlal Nehru Technological University, Mahaveer marg, Hyderabad, India
| | | | | |
Collapse
|
32
|
Jefford CW, Jin SJ, Bernardinelli G. The Diastereoselective Formation of 1,2,4-Trioxanes and 1,3-Dioxolanes by the reaction of endoperoxides with chiral cyclohexanones. Helv Chim Acta 1997. [DOI: 10.1002/hlca.19970800813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
|
34
|
Jefford CW, Vicente MGH, Jacquier Y, Favarger F, Mareda J, Millasson-Schmidt P, Brunner G, Burger U. The Deoxygenation and Isomerization of Artemisinin and Artemether and Their Relevance to Antimalarial Action. Helv Chim Acta 1996. [DOI: 10.1002/hlca.19960790520] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev 1996; 60:301-15. [PMID: 8801435 PMCID: PMC239445 DOI: 10.1128/mr.60.2.301-315.1996] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Artemisinin and its derivatives are endoperoxide-containing compounds which represent a promising new class of antimalarial drugs. In the presence of intraparasitic iron, these drugs are converted into free radicals and other electrophilic intermediates which then alkylate specific malaria target proteins. Combinations of available derivatives and other antimalarial agents show promise both as first-line agents and in the treatment of severe disease.
Collapse
Affiliation(s)
- S R Meshnick
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor 48109-2029, USA.
| | | | | |
Collapse
|
36
|
Cumming JN, Ploypradith P, Posner GH. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism(s) of action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 37:253-97. [PMID: 8891104 DOI: 10.1016/s1054-3589(08)60952-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J N Cumming
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
37
|
Moore JC, Lai H, Li JR, Ren RL, McDougall JA, Singh NP, Chou CK. Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett 1995. [DOI: 10.1016/s0304-3835(06)80014-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
in vivo potent antimalarial 1,2,4-trioxanes: Synthesis and activity of 8-(α-arylvinyl)-6,7,10-trioxaspiro[4,5]decanes and 3-(α-arylvinyl)-1,2,5-trioxaspiro[5,5]undecanes against Plasmodium berghei in mice. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00322-k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Lai H, Singh NP. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 1995; 91:41-6. [PMID: 7750093 DOI: 10.1016/0304-3835(94)03716-v] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid cell death, as evidenced by a decrease in cell counts, was observed when molt-4-lymphoblastoid cells, a human leukemia cell line, were exposed to holotransferrin (12 microM) and dihydroartemisinin (1-200 microM). Incubation with either compound alone was significantly less effective. Significantly less cell death was observed when normal human lymphocytes were exposed to a combination of these 2 drugs. Probit analysis of dose-response functions shows that the drug combination is approximately 100 times more effective on molt-4 cells than lymphocytes (LD50s for molt-4 and lymphocytes were 2.59 microM and 230 microM, respectively). This drug combination may provide a novel approach for cancer treatment.
Collapse
Affiliation(s)
- H Lai
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
40
|
Jefford CW, Favarger F, Vicente MDGH, Jacquier Y. The Decomposition ofcis-Fused Cyclopenteno-1,2,4-Trioxanes induced by Ferrous Salts and some oxophilic reagents. Helv Chim Acta 1995. [DOI: 10.1002/hlca.19950780216] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Woerdenbag HJ, Pras N, van Uden W, Wallaart TE, Beekman AC, Lugt CB. Progress in the research of artemisinin-related antimalarials: an update. PHARMACY WORLD & SCIENCE : PWS 1994; 16:169-80. [PMID: 7951130 DOI: 10.1007/bf01872865] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Artemisinin, a sesquiterpene lactone endoperoxide isolated from Artemisia annua L., and a number of its semisynthetic derivatives have shown to possess antimalarial properties. They are all effective against Plasmodium parasites that are resistant to the newest and commonly used antimalarial drugs. This article gives a survey of the literature dealing with artemisinin-related antimalarial issues that have appeared from the end of 1989 up to the beginning of 1994. A broad range of medical and pharmaceutical disciplines is covered, including phytochemical aspects like the selection of high-producing plants, analytical procedures, and plant biotechnology. Furthermore, the organic synthesis of artemisinin derivatives is discussed, as well as their mechanism of action and antimalarial activity, metabolism and pharmacokinetics, clinical studies, side-effects and toxicology, and biological activities other than antimalarial activity.
Collapse
Affiliation(s)
- H J Woerdenbag
- Department of Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Jefford CW, Misra D, Dishington AP, Timari G, Rossier JC, Bernardinelli G. The osmium-catalyzed asymmetric dihydroxylation of cis-fused cyclopenteno-1,2,4-trioxanes. Tetrahedron Lett 1994. [DOI: 10.1016/s0040-4039(00)73410-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Jefford CW, Velarde JA, Bernardinelli G, Bray DH, Warhurst DC, Milhous WK. Synthesis, Structure, and Antimalarial Activity of Tricyclic 1,2,4-Trioxanes Related to Artemisinin. Helv Chim Acta 1993. [DOI: 10.1002/hlca.19930760804] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Peters W, Robinson BL, Tovey G, Rossier JC, Jefford CW. The chemotherapy of rodent malaria. L. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites. Part 3: Observations on 'Fenozan-50F', a difluorinated 3,3'-spirocyclopentane 1,2,4-trioxane. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1993; 87:111-23. [PMID: 8561518 DOI: 10.1080/00034983.1993.11812745] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel difluorinated 3,3'-spirocyclopentane 1,2,4-trioxane ('Fenozan-50F') is a potent blood schizontocide against drug-sensitive and drug-resistant rodent malaria parasites. It also exerts some action against pre-erythrocytic schizogony, is a potent gametocytocide, and exerts a direct sporontocidal effect in infected mosquitoes. In the '4-day test' the ED90s are 6.8 and 6.0 mg/kg/day for four consecutive days by the subcutaneous and oral routes respectively against drug-sensitive Plasmodium berghei N, and 6.3 and 25 mg/kg against chloroquine-resistant P. yoelii NS in vivo. By the oral route against P. berghei N infection in mice, Fenozan-50F is about half as active as arteether but nearly three times as active as sodium artesunate. The activity of Fenozan-50F is retained against a wide spectrum of drug-resistant parasite lines, although those highly resistant to quinine or to artemisinin are less responsive at the ED90 level. At the ultrastructural level the compound, when administered to infected mice, causes marked changes in the membranes and ribosomes of trophozoites and young schizonts and of immature gametocytes, although few changes are apparent in mature gametocytes. Its toxicity appears to be very low when it is administered to mice by either the oral or subcutaneous route. Fenozan-50F is considered to be a good candidate for eventual use as a therapeutic agent for infection with polyresistant malaria in man.
Collapse
Affiliation(s)
- W Peters
- CAB International Institute of Parasitology, St. Albans, Herfordshire, U.K
| | | | | | | | | |
Collapse
|
45
|
Peters W, Robinson BL, Rossier JC, Misra D, Jefford CW, Rossiter JC. The chemotherapy of rodent malaria. XLIX. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites. Part 2: Structure-activity studies on cis-fused cyclopenteno-1,2,4-trioxanes (fenozans) against drug-sensitive and drug-resistant lines of Plasmodium berghei and P. yoelii ssp. NS in vivo. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1993; 87:9-16. [PMID: 8346994 DOI: 10.1080/00034983.1993.11812734] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The activity of 51 synthetic cis-fused cyclopenteno-1,2,4-trioxanes has been examined against drug-sensitive and chloroquine-resistant malaria parasites in vivo. Some of them display high levels of blood schizontocidal activity when administered orally or subcutaneously. They retain their activity against lines of parasites that are resistant to widely differing antimalarials such as 4-aminoquinolines, aminoalcohols, dihydrofolate reductase inhibitors and artemisinin. The most potent compound of the present series is cis-(+/-)-4a,7a-dihydro-6,7a-di(p-fluorophenyl)spiro [cyclopentane-3,3'-7H-cyclopenta-1,2,4-trioxin], otherwise known as Fenozan-50F.
Collapse
Affiliation(s)
- W Peters
- CAB International Institute of Parasitology, St. Albans, Hertfordshire, U.K
| | | | | | | | | | | |
Collapse
|
46
|
Peters W, Robinson BL, Rossier JC, Jefford CW. The chemotherapy of rodent malaria. XLVIII. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites. Part 1: Studies leading to the development of novel cis-fused cyclopenteno derivatives. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1993; 87:1-7. [PMID: 8346987 DOI: 10.1080/00034983.1993.11812733] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The new Chinese antimalarial blood schizontocide, artemisinin, derived from the plant Artemisia annua, displays a high level of activity against polyresistant Plasmodium falciparum. Several synthetic 1,2,4-trioxanes were examined in a search for compounds that exhibit a similar type of action against drug-resistant parasites. This paper, the first of a series, describes the examination of these trioxanes against drug-sensitive and drug-resistant malaria parasites in a rodent model, using artemisinin and arteether as comparison standards. Cis-fused cyclohexeno-1,2,4-trioxanes (10-17) substituted with various side-chains revealed for the most part variable but weak antimalarial activity. On the other hand, cis-fused cyclopenteno-1,2,4-trioxanes (18-19) showed greater activity, 19 showing about 1/30th of the activity of arteether against drug-sensitive Plasmodium berghei in vivo, thereby providing a clue to the structure-activity relationship.
Collapse
Affiliation(s)
- W Peters
- CAB International Institute of Parasitology, St. Albans, Hertfordshire, U.K
| | | | | | | |
Collapse
|