1
|
Arvanitakis K, Koufakis T, Popovic D, Maltese G, Mustafa O, Doumas M, Giouleme O, Kotsa K, Germanidis G. GLP-1 Receptor Agonists in Obese Patients with Inflammatory Bowel Disease: from Molecular Mechanisms to Clinical Considerations and Practical Recommendations for Safe and Effective Use. Curr Obes Rep 2023:10.1007/s13679-023-00506-3. [PMID: 37081371 DOI: 10.1007/s13679-023-00506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW To discuss current literature and provide practical recommendations for the safe and effective use of glucagon-like peptide 1 receptor agonists (GLP-1 RA) in people with inflammatory bowel disease (IBD) and type 2 diabetes (T2D) and/or obesity. The molecular mechanisms that justify the potential benefits of GLP-1 RA in IBD and the links between IBD, obesity, and cardiovascular disease are also discussed. RECENT FINDINGS Preliminary data suggest that GLP-1 RA can modulate crucial pathways in the pathogenesis of IBD, such as chronic inflammation circuits, intestinal tight junctions, and gut microbiome dysbiosis, setting the stage for human trials to investigate the role of these agents in the treatment of IBD among people with or without diabetes and obesity. However, gastrointestinal side effects related to GLP-1 RA need appropriate clinical management to mitigate risks and maximize the benefits of therapy in people with IBD. GLP-1 RA originally emerged as drugs for the treatment of hyperglycemia and are currently licensed for the management of T2D and/or overweight/obesity. However, their wealth of pleiotropic actions soon raised expectations that they might confer benefits on non-metabolic disorders. Future studies are expected to clarify whether GLP-1 RA deserve an adjunct place in the arsenal of drugs against IBD.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Djordje Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Giuseppe Maltese
- Department of Diabetes and Endocrinology, Epsom & St Helier University Hospitals, Surrey, SM5 1AA, UK
- Unit for Metabolic Medicine, Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College, London, UK
| | - Omar Mustafa
- Department of Diabetes, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
- King's College London, London, UK
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Giouleme
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
2
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
3
|
Zatorski H, Salaga M, Zielińska M, Mokrowiecka A, Jacenik D, Krajewska WM, Małecka-Panas E, Fichna J. Colonic inflammation induces changes in glucose levels through modulation of incretin system. Pharmacol Rep 2021; 73:1670-1679. [PMID: 34535873 PMCID: PMC8599322 DOI: 10.1007/s43440-021-00327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Background The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn’s disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor. Methods We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients. Results Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups. Conclusions Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD.
Collapse
Affiliation(s)
- Hubert Zatorski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.,Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanda Małgorzata Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
4
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
5
|
Hunt JE, Holst JJ, Jeppesen PB, Kissow H. GLP-1 and Intestinal Diseases. Biomedicines 2021; 9:biomedicines9040383. [PMID: 33916501 PMCID: PMC8067135 DOI: 10.3390/biomedicines9040383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence implicates glucagon-like peptide-1 (GLP-1) to have, beyond glucose maintenance, a beneficial role in the gastrointestinal tract. Here, we review emerging data investigating GLP-1 as a novel treatment for intestinal diseases, including inflammatory bowel diseases, short-bowel syndrome, intestinal toxicities and coeliac disease. Possible beneficial mechanisms for these diseases include GLP-1′s influence on gastric emptying, its anti-inflammatory properties and its intestinotrophic effect. The current knowledge basis derives from the available GLP-1 agonist treatments in experimental animals and small clinical trials. However, new novel strategies including dual GLP-1/GLP-2 agonists are also in development for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Palle Bekker Jeppesen
- Department of Medical Gastroenterology and Hepatology, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (J.E.H.); (J.J.H.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
6
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
7
|
Yacoubi N, Saulnier L, Bonnin E, Devillard E, Eeckhaut V, Rhayat L, Ducatelle R, Van Immerseel F. Short-chain arabinoxylans prepared from enzymatically treated wheat grain exert prebiotic effects during the broiler starter period. Poult Sci 2018; 97:412-424. [PMID: 29140465 DOI: 10.3382/ps/pex297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate-degrading multi-enzyme preparations (MEP) are used to improve broiler performances. Their mode of action is complex and not fully understood. In this study, we compared the effect of water-soluble fractions isolated at the pilot scale from wheat grain incubated with (WE) and without (WC) MEP. The fractions were incorporated in a wheat-based diet (0.1% w/w) to feed Ross PM3 broilers and compared with a non-supplemented control group (NC). The body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) until d 14 were determined. At d 14, ileal and cecal contents and tissue samples were collected from euthanized animals. The intestinal contents were used to measure the short-chain fatty acids (SCFA) concentration using gas chromatography and to determine the abundance and composition of microbiota using 16S sequencing. Villi length of ileal samples was measured, while L-cell and T-cell densities were determined using immuno-histochemistry. The MEP treatment increased the amount of water-soluble arabinoxylans (AX) and reduced their molecular weight while retaining their polymer behavior. The WE fraction significantly (P < 0.05) increased FI by 13.8% and BWG by 14.7% during the first wk post hatch when compared to NC. No significant effect on FCR was recorded during the trial. The WE increased the abundance of Enterococcus durans and Candidatus arthromitus in the ileum and of bacteria within the Lachnospiraceae and Ruminococcaceae families, containing abundant butyrate-producing bacteria, in the ceca. It also increased the concentration of SCFA in the ceca, decreased the T-lymphocyte infiltration in the intestinal mucosa, and increased the glucagon-like-peptide-2 (GLP-2)-producing L-cell density in the ileal epithelium compared with WC and NC. No significant effects were observed on villi length. These results showed that AX present in the WE fraction altered the microbiota composition towards butyrate producers in the ceca. Butyrate may be responsible for the reduction of inflammation, as suggested by the decrease in T-lymphocyte infiltration, which may explain the higher feed intake leading to improved animal growth.
Collapse
Affiliation(s)
- N Yacoubi
- INRA, UR1268 Biopolymers Interactions Assemblies, BP 71627, F-44316 Nantes, France.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.,Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - L Saulnier
- INRA, UR1268 Biopolymers Interactions Assemblies, BP 71627, F-44316 Nantes, France
| | - E Bonnin
- INRA, UR1268 Biopolymers Interactions Assemblies, BP 71627, F-44316 Nantes, France
| | - E Devillard
- Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - V Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - L Rhayat
- Adisseo France SAS, Center of Expertise and Research in Nutrition, F-03600 Commentry, France
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
8
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
9
|
Duan L, Rao X, Braunstein Z, Toomey AC, Zhong J. Role of Incretin Axis in Inflammatory Bowel Disease. Front Immunol 2017; 8:1734. [PMID: 29270177 PMCID: PMC5723660 DOI: 10.3389/fimmu.2017.01734] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
The inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory conditions of the gastrointestinal tract and involve a complicated reciprocity of environmental, genetic, and immunologic factors. Despite substantial advances in the foundational understanding of the immunological pathogenesis of IBD, the detailed mechanism of the pathological progression in IBD remains unknown. In addition to Th1/Th2 cells, whose role in IBD has been previously well defined, recent evidence indicates that Th17 cells and Tregs also play a crucial role in the development of IBD. Diets which contain excess sugars, salt, and fat may also be important actors in the pathogenesis of IBD, which may be the cause of high IBD incidence in western developed and industrialized countries. Up until now, the reason for the variance in prevalence of IBD between developed and developing countries has been unknown. This is partly due to the increasing popularity of western diets in developing countries, which makes the data harder to interpret. The enterocrinins glucagon-like peptides (GLPs), including GLP-1 and GLP-2, exhibit notable benefits on lipid metabolism, atherosclerosis formation, plasma glucose levels, and maintenance of gastric mucosa integrity. In addition to the regulation of nutrient metabolism, the emerging role of GLPs and their degrading enzyme dipeptidyl peptidase-4 (DPP-4) in gastrointestinal diseases has gained increasing attention. Therefore, here we review the function of the DPP-4/GLP axis in IBD.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Baldassano S, Amato A, Mulè F. Influence of glucagon-like peptide 2 on energy homeostasis. Peptides 2016; 86:1-5. [PMID: 27664588 DOI: 10.1016/j.peptides.2016.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released from enteroendocrine L-type cells together with glucagon like peptide-1 in response to dietary nutrients. GLP-2 acts through a specific receptor, the GLP-2 receptor, mainly located in the gut and in the brain. Classically, GLP-2 is considered a trophic hormone involved in the maintenance of intestinal epithelial morphology and function. This role has been targeted for therapies promoting repair and adaptive growth of the intestinal mucosa. Recently, GLP-2 has been shown to exert beneficial effects on glucose metabolism specially in conditions related to increased uptake of energy, such as obesity. Several actions of GLP-2 are related to a positive energy balance: GLP-2 increases not only the absorptive surface, but also expression and activity of epithelial brush-border nutrient transporters and digestive enzymes, intestinal blood flow, postprandial chylomicron secretion and it inhibits gastrointestinal motility, providing the opportunity to increase absorption of nutrients. Other actions, including anorexigenic effects, appear in opposition to the energy intake. In this review, we discuss the GLP-2 functions related to energy homeostasis. GLP-2 could be considered an hormone causing positive energy balance, which, however has the role to mitigate the metabolic dysfunctions associated with hyper-adiposity.
Collapse
Affiliation(s)
- Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| |
Collapse
|
11
|
Amato A, Baldassano S, Mulè F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol 2016; 229:R57-66. [PMID: 27048234 DOI: 10.1530/joe-16-0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| |
Collapse
|
12
|
He L, Wong CK, Cheung KK, Yau HC, Fu A, Zhao HL, Leung KM, Kong AP, Wong GW, Chan PK, Xu G, Chan JC. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J Diabetes Investig 2013; 4:382-92. [PMID: 24843684 PMCID: PMC4020234 DOI: 10.1111/jdi.12063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/08/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Aims/Introduction Type 2 diabetes is characterized by dysregulation of immunity, oxidative stress and reduced incretin effects. Experimental studies suggest that glucagon‐like peptide (GLP‐1) might have immunomodulating effects. We hypothesize that GLP‐1 receptor agonist, exendin‐4, might reduce inflammatory response in type 2 diabetes. Materials and Methods Using peripheral blood mononuclear cells (PBMC) sampled from 10 type 2 diabetes and 10 sex‐ and age‐matched control subjects and supernatants from PBMC culture, the expression of phospho‐mitogen activated protein kinase (MAPK) signaling pathways in CD4+ T helper lymphocytes and monocytes was analyzed using flow cytometry. Cytokines/chemokines and superoxide anion before and after treatment with exendin‐4 were measured by cytometric bead array and chemiluminesence assay, respectively. Results Compared with control subjects, PBMC from type 2 diabetes patients showed activated MAPK (P38, c‐Jun NH2‐terminal protein kinase and extracellular signal‐regulated kinase) signaling pathway, elevated superoxide anion, increased pro‐inflammatory cytokines (tumor necrosis factor‐α, interleukin‐1β, interleukin‐6) and chemokines (CCL5/regulated on activation normal T‐cell expressed and secreted and CXCL10/interferon‐γ‐induced protein 10). These changes were attenuated by exendin‐4, possibly through the suppression of p38 MAPK. Conclusions These results suggest that exendin‐4 might downregulate pro‐inflammatory responses and reduce oxidative stress by suppressing MAPK signaling pathways in type 2 diabetes.
Collapse
Affiliation(s)
- Lan He
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Chun Kwok Wong
- Department of Chemical Pathology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Kitty Kt Cheung
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Ho Chung Yau
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Anthony Fu
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Hai-Lu Zhao
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Karen Ml Leung
- Department of Chemical Pathology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Alice Ps Kong
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Gary Wk Wong
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Paul Ks Chan
- Department of Microbiology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Gang Xu
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| |
Collapse
|
13
|
Janssen P, Rotondo A, Mulé F, Tack J. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment Pharmacol Ther 2013; 37:18-36. [PMID: 23121085 DOI: 10.1111/apt.12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/09/2012] [Accepted: 09/29/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent advancements in understanding the roles and functions of glucagon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for targeting these peptides in therapeutic strategies. AIM To summarise the preclinical and clinical research supporting the discovery of new therapeutic molecules targeting GLP-1 and GLP-2. METHODS This review is based on a comprehensive PubMed search, representing literature published during the past 30 years related to GLP-1 and GLP-2. RESULTS Although produced and secreted together primarily from L cells of the intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit distinctive biological functions that are governed by the expression of their respective receptors, GLP-1R and GLP-2R. Through widespread expression in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an incretin effect along with effects on appetite and satiety. GLP-1 analogues resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipeptidyl peptidase-IV have been developed to aid treatment of diabetes and obesity. The GLP-2R is expressed almost exclusively in the stomach and bowel. The most apparent role for GLP-2 is its promotion of growth and function of intestinal mucosa, which has been targeted for therapies that promote repair and adaptive growth. These are used as treatments for intestinal failure and related conditions. CONCLUSIONS Our growing understanding of the biology and function of GLP-1, GLP-2 and corresponding receptors has fostered further discovery of fundamental biological function as well as new categories of potent therapeutic medicines.
Collapse
Affiliation(s)
- P Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVES Glucagon-like peptide 2 (GLP2) is an intestinal growth factor that has been shown to stimulate intestinal growth and reduce disease severity in preclinical models of short bowel syndrome and inflammatory bowel disease. Teduglutide, a recombinant human GLP2 variant (GLP2-2G), has increased half-life and stability as compared to the native GLP2 peptide, but still requires twice daily dosing in preclinical models and daily dosing in the clinic. The goal of this study was to produce and characterize the preclinical pharmacokinetic and therapeutic properties of GLP2-2G-XTEN, a novel, long-acting form of GLP2-2G. METHODOLOGY AND RESULTS A GLP2-2G-XTEN fusion protein with extended exposure profile was produced by genetic fusion of GLP2-2G peptide to XTEN, a long, unstructured, non-repetitive, hydrophilic sequence of amino acids. The serum half-life of GLP2-2G-XTEN in mice, rats and monkeys was 34, 38 and 120 hours, respectively. Intestinotrophic effects were demonstrated in normal rats, where GLP2-2G-XTEN administration resulted in a significant increase in both small intestine weight and length. Efficacy of the GLP2-2G-XTEN protein was compared to that of GLP2-2G peptide in a rat Crohn's disease model, indomethacin-induced inflammation. Prophylactic administration of GLP2-2G-XTEN significantly increased the length, reduced the number of trans-ulcerations and adhesions, and reduced the TNFα content of the small intestine. GLP2-2G-XTEN demonstrated greater in vivo potency as compared to GLP2-2G peptide, and improvement in histopathology supported the GLP2-2G-XTEN treatment effects. CONCLUSIONS AND SIGNIFICANCE GLP2-2G-XTEN is intestinotrophic and demonstrates efficacy in a rat Crohn's disease model requiring a lower molar dose and less frequent dosing relative to GLP2-2G peptide. Allometric scaling based on pharmacokinetics from mouse, rat and monkey projects a human half-life of 240 hours. These improvements in preclinical pharmacokinetics and dosing indicate that GLP2-2G-XTEN may offer a superior therapeutic benefit for treatment of gastrointestinal diseases including Crohn's disease.
Collapse
|
15
|
Buchman AL, Katz S, Fang JC, Bernstein CN, Abou-Assi SG. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease. Inflamm Bowel Dis 2010; 16:962-73. [PMID: 19821509 DOI: 10.1002/ibd.21117] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Teduglutide, an analog of glucagon-like peptide-2 (GLP-2), is associated with trophic effects on gut mucosa. Its role in the treatment of active Crohn's disease (CD) was assessed in a pilot, randomized, placebo-controlled, double-blinded, dose-ranging study. METHODS Subjects with moderate-to-severe CD were randomized 1:1:1:1 to placebo or 1 of 3 doses of teduglutide (0.05, 0.10, or 0.20 mg/kg daily) delivered as a daily subcutaneous injection for 8 weeks. The primary outcome measure was the percentage of subjects in each group that responded to treatment, defined as a decrease in Crohn's Disease Activity Index (CDAI) score to <150 or a decrease of > 100 points. At week 8 there was an optional 12-week open-label period of treatment with teduglutide 0.10 mg/kg/d. RESULTS One hundred subjects were enrolled and 71 completed the study. The mean baseline CDAI score was 290.8 +/- 57.6 and was similar across groups. There were numerically higher response and remission rates in all teduglutide-treated groups as compared with placebo, although the percentage of subjects who achieved a clinical response or remission was more substantial, and seen as early as week 2 of treatment in the highest dose (0.2 mg/kg/d) group (44% response and 32% remission versus 32% response and 20% remission in the placebo group). Of subjects who had not achieved remission during the 8-week placebo-controlled phase in the higher-dose group, 50% achieved remission during the more prolonged, open-label treatment phase. Plasma citrulline was similar across groups at baseline, but increased substantially over time in all teduglutide groups when compared with placebo at week 8. Adverse events were not different between placebo and active treatment groups. CONCLUSIONS Teduglutide is a novel and potentially effective therapy for inducing remission and mucosal healing in patients with active moderate-to-severe CD. Further clinical investigation of this growth factor is warranted.
Collapse
Affiliation(s)
- Alan L Buchman
- Division of Gastroenterology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kristensen NN, Olsen J, Gad M, Claesson MH. Genome-wide expression profiling during protection from colitis by regulatory T cells. Inflamm Bowel Dis 2008; 14:75-87. [PMID: 17924563 DOI: 10.1002/ibd.20277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the adoptive transfer model of colitis it has been shown that regulatory T cells (Treg) can hinder disease development and cure already existing mild colitis. The mechanisms underlying this regulatory effect of CD4(+)CD25(+) Tregs are not well understood. METHODS To identify pathways of importance for immune regulation in protected mice we studied the genome-wide expression profile in the inflamed rectum of SCID mice with CD4(+) T cell transfer colitis and in the uninflamed rectum of mice protected from colitis by Treg cells. We used DNA microarray technology (Affymetrix GeneChip Mouse Genome 430 2.0 Array), which enabled an analysis of a complete set of RNA transcript levels in each sample. Array results were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS Data were analyzed using combined projections to latent structures and functional annotation analysis. The colitic samples were clearly distinguishable from samples from normal mice by a vast number of inflammation- and growth factor-related transcripts. In contrast, the Treg-protected animals could not be distinguished from either the normal BALB/c mice or the normal SCID mice. mRNA expression profiles of cytokine, chemokine, and growth factor genes were significantly altered in colitic as opposed to noncolitic mice. In particular, the transcription factors STAT3, GATA2, and NFkappaB, the cytokine IL1beta, and the chemokine receptors CXCR3 and CCR1 as well as their ligands all seemingly play central roles in the inflammatory processes. CONCLUSIONS We suggest that these molecules alone or in combination could be future therapeutic targets.
Collapse
Affiliation(s)
- Nanna Ny Kristensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Panum Institute, Denmark.
| | | | | | | |
Collapse
|
17
|
Wallis K, Walters JRF, Forbes A. Review article: glucagon-like peptide 2--current applications and future directions. Aliment Pharmacol Ther 2007; 25:365-72. [PMID: 17217448 DOI: 10.1111/j.1365-2036.2006.03193.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucagon-like peptide 2 (GLP-2) is an important peptide growth factor secreted from the human intestine. The trophic properties of GLP-2 are very specific to the gut where it is pivotal in the regulation of mucosal morphology, function and integrity. AIMS This review details the current understanding of the molecular biology of GLP-2, its mechanisms of action and physiological properties. A major focus is the discussion of recent clinical data evaluating the use of GLP-2 as a therapeutic agent. METHODS Relevant articles were identified using Medline searches and from the reference lists of key papers. RESULTS AND CONCLUSIONS In the treatment of short bowel syndrome, GLP-2 has been shown to be highly effective in improving fluid absorption. In Crohn's disease, GLP-2 is superior to placebo in the induction of remission. Early data also suggest that the effects of GLP-2 on bone metabolism can provide a new treatment approach for patients with osteoporosis. In the future, the positive effects of GLP-2 on intestinal barrier function, splanchnic perfusion and mucosal healing could be utilized to expand its therapeutic application to other causes of intestinal injury. However, important safety aspects need to be considered when using this potent growth-promoting agent for a long term.
Collapse
Affiliation(s)
- K Wallis
- Division of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
18
|
Martin GR, Beck PL, Sigalet DL. Gut hormones, and short bowel syndrome: The enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation. World J Gastroenterol 2006; 12:4117-29. [PMID: 16830359 PMCID: PMC4087358 DOI: 10.3748/wjg.v12.i26.4117] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Short bowel syndrome (SBS) refers to the malabsorption of nutrients, water, and essential vitamins as a result of disease or surgical removal of parts of the small intestine. The most common reasons for removing part of the small intestine are due to surgical intervention for the treatment of either Crohn's disease or necrotizing enterocolitis. Intestinal adaptation following resection may take weeks to months to be achieved, thus nutritional support requires a variety of therapeutic measures, which include parenteral nutrition. Improper nutrition management can leave the SBS patient malnourished and/or dehydrated, which can be life threatening. The development of therapeutic strategies that reduce both the complications and medical costs associated with SBS/long-term parenteral nutrition while enhancing the intestinal adaptive response would be valuable.
Currently, therapeutic options available for the treatment of SBS are limited. There are many potential stimulators of intestinal adaptation including peptide hormones, growth factors, and neuronally-derived components. Glucagon-like peptide-2 (GLP-2) is one potential treatment for gastrointestinal disorders associated with insufficient mucosal function. A significant body of evidence demonstrates that GLP-2 is a trophic hormone that plays an important role in controlling intestinal adaptation. Recent data from clinical trials demonstrate that GLP-2 is safe, well-tolerated, and promotes intestinal growth in SBS patients. However, the mechanism of action and the localization of the glucagon-like peptide-2 receptor (GLP-2R) remains an enigma. This review summarizes the role of a number of mucosal-derived factors that might be involved with intestinal adaptation processes; however, this discussion primarily examines the physiology, mechanism of action, and utility of GLP-2 in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- G-R Martin
- Department of Gastrointestinal Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW., Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
19
|
Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst JJ, Hadsell D, Hadsell DL, Nichols BL, Burrin DG. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 2006; 130:150-64. [PMID: 16401478 DOI: 10.1053/j.gastro.2005.11.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 10/06/2005] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive hormone that exerts diverse actions in the gastrointestinal tract, including enhancing epithelial cell survival and proliferation, mucosal blood flow, and nutrient uptake and suppressing gastric motility and secretion. These actions are mediated by the G-protein-coupled receptor, GLP-2R. Cellular localization of the GLP-2R and the nature of its signaling network in the gut, however, are poorly defined. Thus, our aim was to establish cellular localization of GLP-2R and functional connection to vascular action of GLP-2 in the gut. METHODS Intestinal cellular GLP-2R localization was determined with real-time, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of laser capture microdissected subtissue and fluorescence in situ hybridization and also with double and/or triple immunostaining of human and pig tissue using a validated GLP-2R polyclonal antibody. Superior mesenteric arterial blood flow and intestinal eNOS expression and phosphorylation were measured in TPN-fed pigs acutely (4 h) infused with GLP-2. RESULTS We show that the porcine GLP-2R mRNA was expressed in the villus epithelium and myenteric plexus. GLP-2R protein was co-localized by confocal immunohistochemistry with serotonin in enteroendocrine cells and also with endothelial nitric oxide synthase (eNOS)-expressing and vasoactive intestinal polypeptide-positive enteric neurons. In neonatal pigs, GLP-2 infusion dose-dependently stimulated intestinal blood flow and coordinately upregulated the expression of intestinal eNOS mRNA, protein, and phosphorylation (eNOS-Ser1117). CONCLUSIONS We conclude that the GLP-2-induced stimulation of blood flow is mediated by vasoactive neurotransmitters that are colocalized with GLP-2R in 2 functionally distinct cell types within the gastrointestinal tract.
Collapse
Affiliation(s)
- Xinfu Guan
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Møller PL, Paerregaard A, Gad M, Kristensen NN, Claesson MH. Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells. Inflamm Bowel Dis 2005; 11:814-9. [PMID: 16116315 DOI: 10.1097/01.mib.0000175906.77340.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp. METHODS Colitic scid mice were treated for 1 week with antibiotics (vancomycin/meropenem) followed or not followed by a 3-week administration of Lactobacillus reuteri DSM-12246 and Lactobacillus rhamnosus 19070-2 at 2x10 live bacteria/mouse/24 hours. After 12 weeks, the rectums were removed for histology, and CD4 T cells from the mesenteric lymph nodes (MLN) were polyclonally activated for cytokine measurements. RESULTS Irrespective of no treatment or treatments with antibiotics and probiotics, all mice transplanted with T cell blasts lost 10% of their body weight during the 12-week experimental period, whereas the nontransplanted mice had a 10% weight increase (P<0.001). All mice treated with antibiotics but not fed probiotics showed severe gut inflammation, whereas only 2 of the 7 mice fed probiotics showed signs of severe colitis (P<0.05). MLN-derived CD4 T cells from this latter group of mice showed lower levels of interleukin-4 secretion (P<0.05) and a tendency to higher interferon-gamma production than mice not fed probiotics. CONCLUSIONS Our data suggest that probiotics added to the drinking water may ameliorate local histopathological changes and influence local cytokine levels in colitic mice but not alter the colitis-associated weight loss.
Collapse
Affiliation(s)
- Peter Lange Møller
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, and Department of Pediatrics, H:S Hvidovre Hospital, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
21
|
Arthur GL, Schwartz MZ, Kuenzler KA, Birbe R. Glucagonlike peptide-2 analogue: a possible new approach in the management of inflammatory bowel disease. J Pediatr Surg 2004; 39:448-52; discussion 448-52. [PMID: 15017568 DOI: 10.1016/j.jpedsurg.2003.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND/PURPOSE Glucagonlike peptide-2alpha (GLP-2alpha) has been shown to be a growth factor for the small intestine. This study investigated the benefits of intravenous and intraluminal administration of GLP-2alpha using a rat model of inflammatory bowel disease (IBD). METHODS Normal Fisher rats and HLA-B27 (IBD) rats were treated for 14 days as follows: Fisher, intravenous saline (n = 6); HLA-B27, intravenous saline (n = 6); HLA-B27, intravenous GLP-2alpha (50 microg/kg/d; n = 5); Fisher, intraluminal saline (n = 5); HLA-B27, intraluminal saline (n = 5); or intraluminal GLP-2alpha (50 microg/kg/d; n = 5). Rats were evaluated for frequency of diarrhea, and the bowel was analyzed for gross and microscopic lesions. Statistical evaluations were determined using analysis of variance (ANOVA). A P value of.05 was significant. RESULTS Intravenous GLP-2alpha decreased diarrhea and the number of bowel lesions (P <.05). Microscopic inflammation was reduced by 24% but was not statistically significant. Intraluminal GLP-2alpha decreased the number of small intestine lesions (P <.05) and the microscopic inflammation (P <.05) but did not significantly reduce diarrhea or the overall number of bowel lesions. CONCLUSIONS GLP-2alpha ameliorates the signs of IBD in HLA-B27 rats. Intravenous GLP-2alpha reduces diarrhea more effectively than intraluminal administration, and both routes are equally effective in ameliorating inflammation. GLP-2alpha potentially provides a new modality for the treatment of IBD.
Collapse
Affiliation(s)
- Grier L Arthur
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107-5587, USA
| | | | | | | |
Collapse
|
22
|
Walsh NA, Yusta B, DaCambra MP, Anini Y, Drucker DJ, Brubaker PL. Glucagon-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology 2003; 144:4385-92. [PMID: 12960094 DOI: 10.1210/en.2003-0309] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) increases small intestinal growth and function in rodents and human subjects. GLP-2 exerts its effects through a seven-transmembrane domain, G protein-coupled receptor (GLP-2R), stimulating cAMP generation and activating protein kinase A signaling in heterologous cell lines transfected with the GLP-2R. As intestinal cell lines expressing the GLP-2R have not been identified, we developed methods for studying GLP-2R signaling in the rat small intestinal mucosa in vitro. Isolated rat intestinal mucosal cells expressed mRNA transcripts for the GLP-2R, as well as for chromogranin A and beta-tubulin III, markers for enteroendocrine and neural cells, respectively. cAMP production in response to [Gly2]GLP-2, a degradation-resistant analog of GLP-2, was maximal at 10-11 m (268 +/- 93% of control, P < 0.001), with reduced cAMP accumulation observed at higher doses. The cAMP response was diminished by pretreatment with 10-9 m GLP-2, and was abolished by pretreatment with 10-6 m GLP-2 (P < 0.05), indicating receptor desensitization. GLP-2 treatment of isolated mucosal cells increased 3H-thymidine incorporation (to 128 +/- 8% of controls, P < 0.05), and this was prevented by inhibition of the protein kinase A pathway with H89. In contrast, GLP-2 did not affect p44/p42 MAPK phosphorylation or the levels of cytosolic calcium in the mucosal cell preparation. These results provide the first evidence that activation of the endogenous rat mucosal GLP-2 receptor is linked to activation of a cAMP/protein kinase A-dependent, growth-promoting pathway in vitro.
Collapse
Affiliation(s)
- Natalie A Walsh
- Department of Physiology, University of Toronto, Toronto, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Glucagon-like peptide 2 (GLP-2) is a member of family of peptides derived from the proglucagon gene expressed in the intestines, pancreas and brain. Tissue-specific posttranslational processing of proglucagon leads to GLP-2 and GLP-1 secretion from the intestine and glucagon secretion from the pancreas. GLP-2 and GLP-1 are co-secreted from the enteroendocrine L-cells located in distal intestine in response to enteral nutrient ingestion, especially carbohydrate and fat. GLP-2 secretion is mediated by direct nutrient stimulation of the L-cells and indirect action from enteroendocrine and neural inputs, including GIP, gastrin-releasing peptide (GRP) and the vagus nerve. GLP-2 is secreted as a 33-amino acid peptide and is rapidly cleaved by dipeptidylpeptidase IV (DPP-IV) to a truncated peptide which acts as a weak agonist with competitive antagonistic properties. GLP-2 acts to enhance nutrient absorption by inhibiting gastric motility and secretion and stimulating nutrient transport. GLP-2 also suppresses food intake when infused centrally. The trophic actions of GLP-2 are specific for the intestine and occur via stimulation of crypt cell proliferation and suppression of apoptosis in mucosal epithelial cells. GLP-2 reduces gut permeability, bacterial translocation and proinflammatory cytokine expression under conditions of intestinal inflammation and injury. The effects of GLP-2 are mediated by a G-protein-linked receptor that is localized to the intestinal mucosa and hypothalamus. The intestinal localization of the GLP-2R to neural and endocrine cells, but not enterocytes, suggests that its actions are mediated indirectly via a secondary signaling mechanism. The implications of GLP-2 in domestic animal production are largely unexplored. However, GLP-2 may have therapeutic application in treatment of gastrointestinal injury and diarrheal diseases that occur in developing neonatal and weanling animals.
Collapse
Affiliation(s)
- D G Burrin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
24
|
Bamba T, Kanauchi O, Andoh A, Fujiyama Y. A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroenterol Hepatol 2002; 17:818-24. [PMID: 12164955 DOI: 10.1046/j.1440-1746.2002.02709.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A germinated barley foodstuff (GBF) containing glutamine-rich protein and hemicellulose-rich fiber was made from brewer's spent grain, by physical isolation. Our previous studies demonstrated that GBF supported maintenance of epithelial cell populations, facilitated epithelial repair, and suppressed epithelial nuclear factor kappaB-DNA-binding activity through generating increased short-chain fatty acid (especially butyrate) production by luminal microflora, which includes Bifidobacterium and Eubacterium, thereby preventing experimental colonic injury. The fiber fraction also modulates stool water content because of its high water-holding capacity. The patients with mild to moderate active ulcerative colitis who had been unresponsive to or intolerant of standard treatment received 20-30 g GBF, feeding daily in a non-randomized, open-label fashion. At 4 weeks, this treatment resulted in a significant clinical and endoscopic improvement. The improvement was associated with an increase in stool butyrate concentrations. These results indicate that GBF feeding is a potentially new, attractive prebiotic treatment in patients with ulcerative colitis. The potency of GBF on modulating microflora, as well as the high water-holding capacity, may play an important role in treatment and prolongation of remission in ulcerative colitis.
Collapse
Affiliation(s)
- Tadao Bamba
- Department of Internal Medicine, Shiga University of Medical Science, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Investigators have increasingly appreciated the importance of the breakdown of the epithelial barrier in the pathogenesis of inflammatory bowel disease. Epithelial cells secrete trefoil factors, heat shock proteins, and secretory leukocyte proteinase inhibitors that protect the integrity of the epithelial barrier. Other agents, including growth factors, regulate the repair of the epithelium after injury has occurred. Drugs that would either enhance protection of barrier function from injury or accelerate repair after injury would have therapeutic potential in inflammatory bowel disease.
Collapse
Affiliation(s)
- W F Stenson
- Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|