1
|
Xu WB, Wang YF, Meng SY, Zhang XT, Wang YR, Liu ZY. Effects of antibiotic and disinfectant exposure on the mouse gut microbiome and immune function. Microbiol Spectr 2024; 12:e0061124. [PMID: 39292002 PMCID: PMC11536992 DOI: 10.1128/spectrum.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCE Disinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.
Collapse
Affiliation(s)
- Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yun-Fan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiao-Tong Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yi-Rong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Yu J, Li L, Tao X, Chen Y, Dong D. Metabolic interactions of host-gut microbiota: New possibilities for the precise diagnosis and therapeutic discovery of gastrointestinal cancer in the future-A review. Crit Rev Oncol Hematol 2024; 203:104480. [PMID: 39154670 DOI: 10.1016/j.critrevonc.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Gastrointestinal (GI) cancer continues to pose a significant global health challenge. Recent advances in our understanding of the complex relationship between the host and gut microbiota have shed light on the critical role of metabolic interactions in the pathogenesis and progression of GI cancer. In this study, we examined how microbiota interact with the host to influence signalling pathways that impact the formation of GI tumours. Additionally, we investigated the potential therapeutic approach of manipulating GI microbiota for use in clinical settings. Revealing the complex molecular exchanges between the host and gut microbiota facilitates a deeper understanding of the underlying mechanisms that drive cancer development. Metabolic interactions hold promise for the identification of microbial signatures or metabolic pathways associated with specific stages of cancer. Hence, this study provides potential strategies for the diagnosis, treatment and management of GI cancers to improve patient outcomes.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Qiao X, Bao L, Liu G, Cui X. Nanomaterial journey in the gut: from intestinal mucosal interaction to systemic transport. NANOSCALE 2024; 16:19207-19220. [PMID: 39347780 DOI: 10.1039/d4nr02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineered nanomaterials (NMs) are commonly utilized in food additives, cosmetics, and therapeutic applications due to their advantageous properties. Consequently, humans are frequently exposed to exogenous nanomaterials through oral ingestion, thus making the intestinal mucosal system a primary site for these particles. Understanding the interactions between nanomaterials and the intestinal mucosal system is crucial for harnessing their therapeutic potential and mitigating potential health risks from unintended exposure. This review aims to elucidate recent advancements in the dual effects of nanomaterials on the intestinal mucosal system. Upon entering the gut lumen, nanomaterials will interact with diverse intestinal components, including trillions of gut microbiota, mucus layer, intestinal epithelial cells (IECs), and the intestinal immune system. Additionally, the systemic fate and transportation of nanomaterials to distal organs, such as central nervous system, are also highlighted. These interactions result in a distinct biological effect of nanomaterials on the multilayer structure of intestine, thus displaying complex journeys and outcomes of nanomaterials in the living body. This in-depth exploration of the in vivo destiny and immunological implications of nanomaterials encountering the intestine has the potential to propel advancements in oral drug delivery techniques and motivate future investigations in novel toxicology research.
Collapse
Affiliation(s)
- Xin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
4
|
Huang Z, Zhang L, Xuan J, Zhao T, Peng W. Antibacterial and Antiallergic Effects of Three Tea Extracts on Histamine-Induced Dermatitis. Pharmaceuticals (Basel) 2024; 17:1181. [PMID: 39338343 PMCID: PMC11435320 DOI: 10.3390/ph17091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurrent inflammatory skin condition with a genetic basis. However, the fundamental reasons and mechanisms behind this phenomenon remain incompletely understood. While tea extracts are known to reduce histamine-induced skin allergies and inflammation, the specific mechanisms by which various types of Chinese tea provide their protective effects are still not fully elucidated. In this study, a model of skin itching induced by histamine is used to explore the functions and mechanisms of three types of tea extract (Keemun black tea (HC), Hangzhou green tea (LC), and Fujian white tea (BC)) in alleviating histamine-induced dermatitis. The components of three tea extracts are identified by UPLC-Q-TOF-MS, and we found that their main components are alkaloids, fatty acyls, flavonoids, organic acids, and phenols. The inhibitory effects of three types of tea extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in skin injury are investigated by MIC and flow cytometry. The three types of tea extract have an inhibitory effect on the growth of bacterial flora, with HC showing the best inhibitory activity. The effect of the three types of tea extract on histamine-induced dermatitis is also evaluated. Furthermore, itchy skin experiments, HE staining, toluidine blue staining, and immunohistochemical staining of mouse skin tissues were performed to determine the variations of scratching, epidermal thickness, mast cell number, IL-1β, and NGF content after the administration of the tea extracts. The three types of tea extracts all alleviate and inhibit skin itching, epidermal hyperplasia, and allergic dermatitis. BC effectively alleviates epidermal hyperplasia caused by skin allergies, and LC significantly downregulates NGF. HC reduces histamine-induced mast cell infiltration and downregulates IL-1β to alleviate skin itching. Consequently, tea emerges a potent natural product that can inhibit the growth of skin wound bacterial flora and exhibit skin repair effects on histamine-induced allergic dermatitis.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Tiantian Zhao
- Key Laboratory of Functional Foods, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| |
Collapse
|
5
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
6
|
Boven L, Akkerman R, de Vos P. Sustainable diets with plant-based proteins require considerations for prevention of proteolytic fermentation. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38950600 DOI: 10.1080/10408398.2024.2352523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The human diet requires a more plant-based approach due to the exhaustive effects animal-based foods have on the environment. However, plant-based proteins generally miss a few or have a lower variety in essential amino acids and are more difficult to digest. Subsequently they might be prone to fermentation by the microbiome in the proximal colon. Proteolytic fermentation can induce microbial-metabolites with beneficial and negative health effects. We review current insight into how balances in saccharolytic and proteolytic fermentation can be maintained when the diet consists predominantly of plant-based proteins. Some proteolytic fermentation metabolites may negatively impact balances in gut microbiota composition in the large intestine and influence immunity. However, proteolytic fermentation can potentially be prevented in the proximal colon toward more saccharolytic fermentation through the addition of non-digestible carbohydrates in the diet. Knowledge on this combination of plant-based proteins and non-digestible carbohydrates on colonic- and general health is limited. Current data suggest that transitioning toward a more plant-based protein diet should be accompanied with a consumption of increased quantities and more complex structures of carbohydrates or by application of technological strategies to enhances digestibility. This can reduce or prevent proteolytic fermentation which might consequently improve human health.
Collapse
Affiliation(s)
- Lidwien Boven
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Asgari R, Bazzazan MA, Karimi Jirandehi A, Yousefzadeh S, Alaei M, Keshavarz Shahbaz S. Peyer's Patch: Possible target for modulating the Gut-Brain-Axis through microbiota. Cell Immunol 2024; 401-402:104844. [PMID: 38901288 DOI: 10.1016/j.cellimm.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The gastrointestinal (GI) tract and the brain form bidirectional nervous, immune, and endocrine communications known as the gut-brain axis. Several factors can affect this axis; among them, various studies have focused on the microbiota and imply that alterations in microbiota combinations can influence both the brain and GI. Also, many studies have shown that the immune system has a vital role in varying gut microbiota combinations. In the current paper, we will review the multidirectional effects of gut microbiota, immune system, and nervous system on each other. Specifically, this review mainly focuses on the impact of Peyer's patches as a critical component of the gut immune system on the gut-brain axis through affecting the gut's microbial composition. In this way, some factors were discussed as proposed elements of missing gaps in this field.
Collapse
Affiliation(s)
- Reza Asgari
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Mohammad Amin Bazzazan
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Ashkan Karimi Jirandehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Salar Yousefzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
8
|
Shan L, Chelliah R, Rahman SME, Hwan Oh D. Unraveling the gut microbiota's role in Rheumatoid arthritis: dietary pathways to modulation and therapeutic potential. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38832654 DOI: 10.1080/10408398.2024.2362412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Rheumatoid arthritis (RA) is a significant global health issue. Recent research highlights the gut microbiota's critical role in RA's development, noting how dietary factors can alter these microbial communities. This has led to an increased focus on how the gut microbiota (GM) influences RA and the potential for dietary ingredients to offer anti-RA benefits by modifying GM. This review presents a concise examination of the GM associated with RA, identifying specific microbial taxa at various levels that are implicated in the disease. It delves into dietary components known for their anti-RA properties through GM modulation and their mechanisms. Findings from numerous studies, including both animal and human research, show significant differences in the GM composition between individuals with early and established RA. Certain microbes like Tenericutes, Synergistetes, and Proteobacteria have been linked to RA progression, whereas Bacteroidetes and some strains of Lactobacillus are shown to have protective effects against RA. Dietary elements such as fibers, polysaccharides, resistant starch, and peptides have been identified as influential in combating RA. These components work by altering the GM's metabolites and impacting immune cells related to the GM. This review suggests the potential for developing functional foods aimed at treating RA by targeting GM.
Collapse
Affiliation(s)
- LingYue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Syed Mohammad Ehsanur Rahman
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| |
Collapse
|
9
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
10
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
11
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
12
|
Abdi A, Oroojzadeh P, Valivand N, Sambrani R, Lotfi H. Immunological aspects of probiotics for improving skin diseases: Influence on the Gut-Brain-Skin Axis. Biochem Biophys Res Commun 2024; 702:149632. [PMID: 38340656 DOI: 10.1016/j.bbrc.2024.149632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The interplay between gut microbiota and human health, both mental and physical, is well-documented. This connection extends to the gut-brain-skin axis, linking gut microbiota to skin health. Recent studies have underscored the potential of probiotics and prebiotics to modulate gut microbiota, supported by in vivo and clinical investigations. In this comprehensive review, we explore the immunological implications of probiotics in influencing the gut-skin axis for the treatment and prevention of skin conditions, including psoriasis, acne, diabetic ulcers, atopic dermatitis, and skin cancer. Our analysis reveals that probiotics exert their effects by modulating cytokine production, whether administered orally or topically. Probiotics bolster skin defenses through the production of antimicrobial peptides and the induction of keratinocyte differentiation and regeneration. Yet, many questions surrounding probiotics remain unanswered, necessitating further exploration of their mechanisms of action in the context of skin diseases.
Collapse
Affiliation(s)
- Ali Abdi
- Medical Immunology, Aziz Sancar Institute of Experimental Medicine, İstanbul University, Istanbul, Turkey
| | - Parvin Oroojzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roshanak Sambrani
- Clinical Research Development Unit of Razi Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
13
|
Manrai M, Jha AA, Dawra S, Pachisia AV. Biologics, Small Molecules and More in Inflammatory Bowel Disease: The Present and the Future. FUTURE PHARMACOLOGY 2024; 4:279-316. [DOI: 10.3390/futurepharmacol4010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a group of heterogeneous chronic inflammatory diseases of the gut presenting with intestinal and extraintestinal manifestations. Most cases fit in predominantly two types, namely, ulcerative colitis and Crohn’s disease. The incidence of IBD has been increasing steadily in the past three decades. Focused research has resulted in many therapeutic options. Biologics (derived from humans or animals) and small molecules have emerged as the cornerstone in the management of IBD and have become widely available. Currently, monoclonal antibodies against tumor necrosis factor-alpha (infliximab, adalimumab, certolizumab, and golimumab), integrins (vedolizumab and natalizumab), and interleukin (IL)-12 and IL-23 antagonists (ustekinumab), along with small molecules (tofacitinib), are approved for use. This article summarizes various aspects of these drugs, like clinical pharmacology, indications for use in IBD, safety in pregnancy and lactation, and the adverse effects profile based on the studies leading to their approval. This review also focuses on the recent advances and future perspectives specific to biologics in IBD.
Collapse
Affiliation(s)
- Manish Manrai
- Department of Gastroenterology, Command Hospital, Lucknow Pin 226002, Uttar Pradesh, India
| | - Atul Abhishek Jha
- Department of Gastroenterology, Command Hospital, Lucknow Pin 226002, Uttar Pradesh, India
| | - Saurabh Dawra
- Department of Gastroenterology, Command Hospital, Pune Pin 411040, Maharashtra, India
| | - Aditya Vikram Pachisia
- Department of Gastroenterology, Command Hospital, Bengaluru Pin 560007, Karnataka, India
| |
Collapse
|
14
|
Kahrizi MS, Nasiri K, Ebrahimzadeh F, Yaseri AF, Ghodratizadeh S, Gholamrezaei M, Rahat Dahmardeh A, Adili A, Amjidifar R, Hemmatzadeh M, Arabi M, Maghsoudi MR, Mohammadi H. Lymphopenia associated with survivin and its downstream pathway in COVID-19 serving as a potential route in COVID-19 pathogenesis. Adv Med Sci 2024; 69:190-197. [PMID: 38521459 DOI: 10.1016/j.advms.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Starting in 2019, coronavirus disease 2019 (COVID-19) caused an epidemic that was growing rapidly and has harmed millions of people globally. It has been demonstrated that survivin regulates lymphocyte survival, a main route involved in COVID-19 pathogenesis. Survivin belongs to the inhibitor of apoptosis protein (IAP) family, and its primary functions comprise regulating mitosis and inhibiting apoptosis. Since lower survivin expression has been shown to increase the sensitivity of lymphocytes to apoptotic induction, we looked into the function of survivin and its corresponding pathways in COVID-19 pathogenesis. MATERIALS AND METHODS The expression of survivin, X-linked inhibitor of apoptosis protein (XIAP), caspases 3, 7, 9, and poly (ADP-ribose) polymerase (PARP) was evaluated at both mRNA and protein levels in peripheral blood mononuclear cells (PBMCs) derived from healthy donors and patients with severe and moderate COVID-19 by qRT-PCR and Western blotting, respectively. Then, we enforced apoptosis to COVID-19 patient-derived lymphocytes, and the percent was assessed by flow cytometry. RESULTS Survivin and XIAP were less expressed in PBMCs derived from COVID-19 patients as apoptosis inhibitors than PARP, cleaved-PARP, caspase 9, and cleaved caspases 3 and 7, according to the results of real-time PCR and Western blot analysis. Additionally, according to the flow cytometry results, the down-regulation of survivin served as a potential factor in the lymphocyte depletion observed in patients with COVID-19. CONCLUSION The role of survivin and its related pathway was first discovered in the development of COVID-19 and may serve as a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soroush Ghodratizadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Gholamrezaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Rahat Dahmardeh
- Department of Anesthesiology and Critical Care, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran; Senior Adult Oncology Department, Moffitt Cancer Center, University of South, Florida, USA
| | - Rosita Amjidifar
- Department of Microbiology, Islamic Azad University of Iran, Ahar, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Arabi
- Department of Physiology, Pharmacology and Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Maghsoudi
- Faculty of Emergency Medicine & Toxicology, Emergency Department, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
15
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Song Y, Yu J, Wang B, Wen Q, Zhong Y, Wu M, Zheng X. Effect of fecal microbiota transplantation on early intestinal immune function and histomorphology of immune organs in chicks. Lett Appl Microbiol 2023; 76:ovad140. [PMID: 38111204 DOI: 10.1093/lambio/ovad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The intestinal microbiota drives the maturation of the immune system, which is essential for maintaining lifetime homeostasis. Whether fecal microbiota transplantation can promote the development of the immune system in chicks? On days 1, 3, and 5, the post-hatch Hy-line Brown chicks were treated with fecal suspension from breeding hens. Intestinal length, blood biochemical indicators, the morphology of immune organs, and intestinal immunity-related indicators were focused on days 7 and 14. Short-chain fatty acids were determined by gas chromatography. We discovered that fecal microbial transplantation significantly increased the area of the follicles and medulla from the bursa of Fabricius, as well as the area of the medulla, cortex, and both ratios from the thymus on 14 d, the concentration of butyric acid in feces, the levels of immunologically active substances (transforming growth factor-β, interleukin 10, forkhead box protein P3, G-Protein Coupled Receptor 43, immunoglobulin A, etc.) in serum or the intestine, and the number of goblet cells. Correlation analysis indicated that short-chain fatty acids, as metabolites of the gut microbiota, were correlated with intestinal immunity. In short, fecal microbiota transplantation regulated early intestinal immunity, which provided the possibility for the processing and utilization of gut microbiota as germplasm resources. IMPACT STATEMENT Modern management of eggs causes the normal vertical transmission of microbiota from hens to be significantly reduced. The risk of environmental threats to newborn chicks is raised. The microbial community helps to mature the immune system of chicks and protect them from pathogen invasion. We still have doubts about whether transplanting the microbiota can regulate gut immunity. Using the gut microbiota of hens as an excellent resource to improve the immunity of chicks may provide new ideas for the development of the poultry industry.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Jing Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Baolin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Qiongyi Wen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| |
Collapse
|
17
|
Hirose M, Sekar P, Eladham MWA, Albataineh MT, Rahmani M, Ibrahim SM. Interaction between mitochondria and microbiota modulating cellular metabolism in inflammatory bowel disease. J Mol Med (Berl) 2023; 101:1513-1526. [PMID: 37819377 PMCID: PMC10698103 DOI: 10.1007/s00109-023-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Priyadharshini Sekar
- Sharjah Institute of Medical Research, RIMHS, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohammad T Albataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Mohamed Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
18
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Na K, Oh BC, Jung Y. Multifaceted role of CD14 in innate immunity and tissue homeostasis. Cytokine Growth Factor Rev 2023; 74:100-107. [PMID: 37661484 DOI: 10.1016/j.cytogfr.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
CD14 is a co-receptor of Toll-like receptor (TLR)- 4, with a critical role in innate immune responses. CD14 recognizes bacterial lipopolysaccharides, pathogen-, and damage-associated molecular patterns, thereby facilitating inflammatory immune responses. In addition to its well-established association with TLR4, CD14 is also implicated in TLR4-independent signaling, which leads to the apoptotic death of differentiated dendritic cells and activation of the noncanonical inflammasome pathway. CD14 also has a role beyond that of the immune responses. It contributes to tissue homeostasis by promoting the clearance of various apoptotic cells via recognizing externalized phosphatidylinositol phosphates. CD14 also has context-dependent roles, particularly in barrier tissues that include the skin and gastrointestinal tract. For example, CD14+ dendritic cells in the skin can induce immunostimulatory or immunosuppressive responses. In the gastrointestinal system, CD14 is involved in producing inflammatory cytokines in inflammatory bowel disease and maintaining of intestinal integrity. This review focuses on the multifaceted roles of CD14 in innate immunity and its potential regulatory functions in barrier tissues characterized by rapid cell renewal. By providing insights into the diverse functions of CD14, this review offers potential therapeutic implications for this versatile molecule in immune modulation and tissue homeostasis.
Collapse
Affiliation(s)
- Kunhee Na
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea
| | - Byung-Chul Oh
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea; Department of Physiology, College of Medicine, Gachon University, Incheon 21999, the Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, the Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, the Republic of Korea.
| |
Collapse
|
20
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2023:1-11. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
21
|
Ralli T, Saifi Z, Tyagi N, Vidyadhari A, Aeri V, Kohli K. Deciphering the role of gut metabolites in non-alcoholic fatty liver disease. Crit Rev Microbiol 2023; 49:815-833. [PMID: 36394607 DOI: 10.1080/1040841x.2022.2142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Arya Vidyadhari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Vidhu Aeri
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Research and Publications, Llyod Institute of Management and Technology, Greater Noida, India
| |
Collapse
|
22
|
Aljabbari A, Kihara S, Rades T, Boyd BJ. The biomolecular gastrointestinal corona in oral drug delivery. J Control Release 2023; 363:536-549. [PMID: 37776905 DOI: 10.1016/j.jconrel.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The formation of a biomolecular corona on exogenous particles in plasma is well studied and is known to dictate the biodistribution and cellular interactions of nanomedicine formulations. In contrast, while the oral route is the most favorable administration method for pharmaceuticals, little is known about the formation and composition of the corona formed by biomolecules on particles within the gastrointestinal tract. This work reviews the current literature understanding of (1) the formation of drug particles after oral administration, (2) the formation of a biomolecular corona within the gastrointestinal tract ("the gastrointestinal corona"), and (3) the possible implications of the formation of a gastrointestinal corona on the interactions of drug particles with their biological environment. In doing so, this work aims to establish the significance of the formation of a gastrointestinal corona in oral drug delivery to ultimately arrive at new avenues to control the behavior of orally administered pharmaceuticals.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
23
|
Serrano I, Luque A, Ruiz-Cerulla A, Navas S, Blom AM, Rodríguez de Córdoba S, Fernández FJ, Cristina Vega M, Rodríguez-Moranta F, Guardiola J, Aran JM. C4BP(β-)-mediated immunomodulation attenuates inflammation in DSS-induced murine colitis and in myeloid cells from IBD patients. Pharmacol Res 2023; 197:106948. [PMID: 37806602 DOI: 10.1016/j.phrs.2023.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(β-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(β-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(β-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(β-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(β-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ana Luque
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alexandra Ruiz-Cerulla
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sergio Navas
- Structural Biology of Host-Pathogen Interactions Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, 21428 Malmö, Sweden
| | - Santiago Rodríguez de Córdoba
- Molecular Pathology/Genetics of Complement Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC) and Ciber de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | | | - M Cristina Vega
- Structural Biology of Host-Pathogen Interactions Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Francisco Rodríguez-Moranta
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Jordi Guardiola
- Department of Digestive Diseases, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Josep M Aran
- Immune-inflammatory Processes and Gene Therapeutics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
24
|
Sun C, Zhang L, Zhang M, Wang J, Rong S, Lu W, Dong H. Zinc pyrithione induces endothelium-dependent hyperpolarization-mediated mesenteric vasorelaxation in healthy and colitic mice. Biochem Pharmacol 2023; 217:115828. [PMID: 37774954 DOI: 10.1016/j.bcp.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Although Zinc pyrithione (ZPT) could lower blood pressure by inducing vasorelaxation, it is unclear if it is able to induce vasorelaxation of mesenteric arterioles in health and ulcerative colitis (UC) to exert anti-colitic action. METHODS The vasorelaxation of the second-order branch of the mesenteric artery from wide type (WT) mice, TRPV1-/-(KO) mice, and TRPV4-/-(KO) mice was determined using a Mulvany-style wire myograph. Calcium imaging and patch clamp were applied to analyze the actions of ZPT in human vascular endothelial cells. Mouse model of UC was used to evaluate the anti-colitic action of ZPT. RESULTS ZPT dose-dependently induced mesenteric vasorelaxation predominately through endothelium-dependent hyperpolarization (EDH), which could be attenuated by intracellular Zn2+ and Ca2+ chelators TPEN and BAPTA-AM. The ZPT/EDH-mediated vasorelaxation via TRPV1, TRPV4 and TRPA1 channels was verified by a combination of selective pharmacological inhibitors and TRPV1-KO and TRPV4-KO mice. Moreover. ZPT induced Ca2+ entry via vascular endothelial TRPV1/4 and TRPA1 channels and enhanced membrane non-selective currents through these channels. Notably, ZPT exerted anti-colitic effects by rescuing the impaired acetylcholine (ACh)-induced mesenteric vasorelaxation in colitic mice. CONCLUSIONS ZPT/Zn2+ induces EDH-mediated mesenteric vasorelaxation through activating endothelial multiple TRPV1/4 and TPPA1 channels in health, and rescues the impaired ACh-induced vasorelaxation to exert anti-colitic action. Our study may open a new avenue of potential vessel-specific targeted therapy for UC.
Collapse
Affiliation(s)
- Chensijin Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Luyun Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Jianxin Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Shaoya Rong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
25
|
Fan S, Jiang Z, Zhang Z, Xing J, Wang D, Tang D. Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy. J Cancer Res Clin Oncol 2023; 149:13477-13494. [PMID: 37491636 DOI: 10.1007/s00432-023-05199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Cancer immunotherapy has emerged as a groundbreaking method of treating malignancies. However, cancer immunotherapy can only benefit a small percentage of patients, and the numerous side effects that might develop during treatment reduce its effectiveness or even put patients' lives in jeopardy. Surprisingly, the gut microbiome Akkermansia muciniphila (A. muciniphila) can significantly inhibit carcinogenesis and improve anti-tumor effects, thus increasing the effectiveness of cancer immunotherapy and decreasing the likelihood of side effects. In this review, we focus on the effects of A. muciniphila on the human immune system and the positive impacts of A. muciniphila on cancer immunotherapy, which can build on strengths and improve weaknesses of cancer immunotherapy. The potential clinical applications of A. muciniphila on cancer immunotherapy are also proposed, which have great prospects for anti-tumor therapy.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
26
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
27
|
Hey GE, Vedam-Mai V, Beke M, Amaris M, Ramirez-Zamora A. The Interface between Inflammatory Bowel Disease, Neuroinflammation, and Neurological Disorders. Semin Neurol 2023; 43:572-582. [PMID: 37562450 DOI: 10.1055/s-0043-1771467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a complex, chronic inflammatory condition affecting the gastrointestinal tract. IBD has been associated with a variety of neurologic manifestations including peripheral nerve involvement, increased risk of thrombotic, demyelinating and events. Furthermore, an evolving association between IBD and neurodegenerative disorders has been recognized, and early data suggests an increased risk of these disorders in patients diagnosed with IBD. The relationship between intestinal inflammatory disease and neuroinflammation is complex, but the bidirectional interaction between the brain-gut-microbiome axis is likely to play an important role in the pathogenesis of these disorders. Identification of common mechanisms and pathways will be key to developing potential therapies. In this review, we discuss the evolving interface between IBD and neurological conditions, with a focus on clinical, mechanistic, and potentially therapeutic implications.
Collapse
Affiliation(s)
- Grace E Hey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Vinata Vedam-Mai
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Matthew Beke
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida
| | - Manuel Amaris
- Department of Gastroenterology, University of Florida, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Akosile OA, Kehinde FO, Oni AI, Oke OE. Potential Implication of in ovo Feeding of Phytogenics in Poultry Production. Transl Anim Sci 2023; 7:txad094. [PMID: 37701128 PMCID: PMC10494881 DOI: 10.1093/tas/txad094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Hatchery's goals include maximizing revenue by achieving high hatchability with day-old birds of excellent quality. The advancement of technology has benefited the poultry sector since breeding and genetics technology have increased the rates of meat maturation in developing birds in a short period of time. Excessive use of in-feed antibiotics has been shown in studies to increase the chance of resistance to human infections. Bacterial resistance and antibiotic residues in animal products raised concerns about using antibiotics as growth promoters, eventually leading to a prohibition on using in-feed antibiotics in most industrialized nations. In ovo technology is a novel method for delivering bioactive chemicals to developing avian embryos. In ovo feeding technologies may provide additional nutrients to the embryos before hatching. The introduction of bioactive compounds has the potential to assist in decreasing and eventually eliminating the problems associated with traditional antibiotic delivery in chicken production. Phytobiotics were advocated as an alternative by researchers and dietitians. So far, several studies have been conducted on the use of phytogenic feed additives in poultry and swine feeding. They have primarily demonstrated that phytobiotics possess antibacterial, antioxidant, anti-inflammatory, and growth-stimulating properties. The antioxidant effect of phytobiotics can improve the stability of animal feed and increase the quality and storage duration of animal products. In general, the existing documentation indicates that phytobiotics improve poultry performance. To effectively and efficiently use the in ovo technique in poultry production and advance research in this area, it is important to have a thorough understanding of its potential as a means of nutrient delivery during the critical stage of incubation, its effects on hatching events and posthatch performance, and the challenges associated with its use. Overall, this review suggests that in ovo feeding of phytobiotics has the potential to improve the antioxidant status and performance of chickens.
Collapse
Affiliation(s)
| | - Festus Olasehinde Kehinde
- Department of Animal and Environmental Biology, Faculty of Natural Science, Kogi State University, Anyigba, Nigeria
| | - Aderanti Ifeoluwa Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
29
|
Muniz AKOA, Vianna EO, Padilha LL, Nascimento JXPT, Batista RFL, Barbieri MA, Bettiol H, Ribeiro CCC. Sugar-Sweetened Beverages and Allergy Traits at Second Year of Life: BRISA Cohort Study. Nutrients 2023; 15:3218. [PMID: 37513636 PMCID: PMC10383806 DOI: 10.3390/nu15143218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Sugar-Sweetened Beverage (SSBs) consumption has risen in early life and it is plausible that it might increase children's risk of allergies. In this paper, we analyzed the association of SSB consumption with allergies in children's second year of life. This study analyzed data from a São Luís BRISA prenatal cohort in the follow-up of children (n = 1144) in their second year of life. Allergy Traits were a latent variable deduced from medical diagnoses of allergic rhinitis, atopic dermatitis, and food allergies. SSBs were investigated as a percentage of daily calories based on 24 h recalls, including industrialized fruit juices, soft drinks, and ready-made chocolate milk. Other variables analyzed were socioeconomic status, age, body mass index z-score, episodes of diarrhea, and breastfeeding. Our finds were that higher consumption of daily calories from SSBs was associated with higher Allergy Trait values (SC = 0.174; p = 0.025); older age (SC = -0.181; p = 0.030) was associated with lower Allergy Trait values; and episodes of diarrhea were correlated with Allergy Traits (SC = 0.287; p = 0.015). SSB exposure was associated with Allergy Traits in children's second year of life; thus, abstaining from these beverages may also confer additional advantages in curtailing allergic diseases during early childhood.
Collapse
Affiliation(s)
| | - Elcio Oliveira Vianna
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Luana Lopes Padilha
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| | | | - Rosangela Fernandes Lucena Batista
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| | - Marco Antonio Barbieri
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Heloisa Bettiol
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Cecilia Claudia Costa Ribeiro
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| |
Collapse
|
30
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
31
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
32
|
Wei YH, Bi RT, Qiu YM, Zhang CL, Li JZ, Li YN, Hu B. The gastrointestinal-brain-microbiota axis: a promising therapeutic target for ischemic stroke. Front Immunol 2023; 14:1141387. [PMID: 37342335 PMCID: PMC10277866 DOI: 10.3389/fimmu.2023.1141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemic stroke is a highly complex systemic disease characterized by intricate interactions between the brain and gastrointestinal tract. While our current understanding of these interactions primarily stems from experimental models, their relevance to human stroke outcomes is of considerable interest. After stroke, bidirectional communication between the brain and gastrointestinal tract initiates changes in the gastrointestinal microenvironment. These changes involve the activation of gastrointestinal immunity, disruption of the gastrointestinal barrier, and alterations in gastrointestinal microbiota. Importantly, experimental evidence suggests that these alterations facilitate the migration of gastrointestinal immune cells and cytokines across the damaged blood-brain barrier, ultimately infiltrating the ischemic brain. Although the characterization of these phenomena in humans is still limited, recognizing the significance of the brain-gastrointestinal crosstalk after stroke offers potential avenues for therapeutic intervention. By targeting the mutually reinforcing processes between the brain and gastrointestinal tract, it may be possible to improve the prognosis of ischemic stroke. Further investigation is warranted to elucidate the clinical relevance and translational potential of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- *Correspondence: Ya-nan Li, ; Bo Hu,
| | - Bo Hu
- *Correspondence: Ya-nan Li, ; Bo Hu,
| |
Collapse
|
33
|
Ebersole JL, Kirakodu S, Gonzalez O. Differential oral microbiome in nonhuman primates from periodontitis-susceptible and periodontitis-resistant matrilines. Mol Oral Microbiol 2023; 38:93-114. [PMID: 35837817 DOI: 10.1111/omi.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Rhesus monkeys (n = 36) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Bacterial samples were collected at baseline, 0.5, 1, and 3 months of disease and at 5 months for disease resolution. The animals were distributed into two groups (18/group): 3-7 years (young) and 12-23 years (adult) and stratified based upon matriline susceptibility to periodontitis (PDS, susceptible; PDR, resistant). A total of 444 operational taxonomic units (OTUs) with 100 microbes representing a core microbiome present in ≥75% of the samples were identified. Only 48% of the major phylotypes overlapped in the PDS and PDR samples. Different OTU abundance patterns were seen in young animals from the PDS and PDR matrilines, with qualitative similarities during disease and the relative abundance of phylotypes becoming less diverse. In adults, 23 OTUs were increased during disease in PDS samples and 24 in PDR samples; however, only five were common between these groups. Greater diversity of OTU relative abundance at baseline was observed with adult compared to young oral samples from both the PDS and PDR groups. With disease initiation (2 weeks), less diversity of relative abundance and some distinctive increases in specific OTUs were noted. By 1 month, there was considerable qualitative homogeneity in the major OTUs in both groups; however, by 3 months, there was an exacerbation of both qualitative and quantitative differences in the dominant OTUs between the PDS and PDR samples. These results support that some differences in disease expression related to matriline (familial) periodontitis risk may be explained by microbiome features.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Octovio Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Mazzotta V, Scorzolini L, Falasca L, Lionetti R, Aguglia C, Kontogiannis D, Colombo D, Colavita F, De Palo MG, Carletti F, Mondi A, Pinnetti C, Maffongelli G, Garbuglia AR, Baldini F, Corpolongo A, Maggi F, D'Offizi G, Girardi E, Vaia F, Nicastri E, Del Nonno F, Antinori A. Lymphofollicular lesions associated with monkeypox (Mpox) virus proctitis. Int J Infect Dis 2023; 130:48-51. [PMID: 36858309 PMCID: PMC10013572 DOI: 10.1016/j.ijid.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In the recent 2022 monkeypox (Mpox) global outbreak, cases have been mostly documented among men who have sex with men. Proctitis was reported in almost 14% of cases. In this study, four Mpox-confirmed cases requiring hospitalizations for severe proctitis were characterized by clinical, virological, microbiological, endoscopic, and histological aspects. The study showed the presence of lymphofollicular lesions associated with Mpox virus rectal infection for the first time.
Collapse
Affiliation(s)
- Valentina Mazzotta
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Laura Scorzolini
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Raffaella Lionetti
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Camilla Aguglia
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Dimitra Kontogiannis
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Maria Grazia De Palo
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Gaetano Maffongelli
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesco Baldini
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Angela Corpolongo
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
36
|
Compositional Alteration of Gut Microbiota in Psoriasis Treated with IL-23 and IL-17 Inhibitors. Int J Mol Sci 2023; 24:ijms24054568. [PMID: 36902001 PMCID: PMC10002560 DOI: 10.3390/ijms24054568] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Alterations in the gut microbiota composition and their associated metabolic dysfunction exist in psoriasis. However, the impact of biologics on shaping gut microbiota is not well known. This study aimed to determine the association of gut microorganisms and microbiome-encoded metabolic pathways with the treatment in patients with psoriasis. A total of 48 patients with psoriasis, including 30 cases who received an IL-23 inhibitor (guselkumab) and 18 cases who received an IL-17 inhibitor (secukinumab or ixekizumab) were recruited. Longitudinal profiles of the gut microbiome were conducted by using 16S rRNA gene sequencing. The gut microbial compositions dynamically changed in psoriatic patients during a 24-week treatment. The relative abundance of individual taxa altered differently between patients receiving the IL-23 inhibitor and those receiving the IL-17 inhibitor. Functional prediction of the gut microbiome revealed microbial genes related to metabolism involving the biosynthesis of antibiotics and amino acids were differentially enriched between responders and non-responders receiving IL-17 inhibitors, as the abundance of the taurine and hypotaurine pathway was found to be augmented in responders treated with the IL-23 inhibitor. Our analyses showed a longitudinal shift in the gut microbiota in psoriatic patients after treatment. These taxonomic signatures and functional alterations of the gut microbiome could serve as potential biomarkers for the response to biologics treatment in psoriasis.
Collapse
|
37
|
di Vito R, Di Mezza A, Conte C, Traina G. The Crosstalk between Intestinal Epithelial Cells and Mast Cells Is Modulated by the Probiotic Supplementation in Co-Culture Models. Int J Mol Sci 2023; 24:ijms24044157. [PMID: 36835568 PMCID: PMC9963420 DOI: 10.3390/ijms24044157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The intestinal epithelium constitutes a selectively permeable barrier between the internal and external environment that allows the absorption of nutrients, electrolytes, and water, as well as an effective defense against intraluminal bacteria, toxins, and potentially antigenic material. Experimental evidence suggest that intestinal inflammation is critically dependent on an imbalance of homeostasis between the gut microbiota and the mucosal immune system. In this context, mast cells play a crucial role. The intake of specific probiotic strains can prevent the development of gut inflammatory markers and activation of the immune system. Here, the effect of a probiotic formulation containing L. rhamnosus LR 32, B. lactis BL04, and B. longum BB 536 on intestinal epithelial cells and mast cells was investigated. To mimic the natural host compartmentalization, Transwell co-culture models were set up. Co-cultures of intestinal epithelial cells interfaced with the human mast cell line HMC-1.2 in the basolateral chamber were challenged with lipopolysaccharide (LPS), and then treated with probiotics. In the HT29/HMC-1.2 co-culture, the probiotic formulation was able to counteract the LPS-induced release of interleukin 6 from HMC-1.2, and was effective in preserving the epithelial barrier integrity in the HT29/Caco-2/ HMC-1.2 co-culture. The results suggest the potential therapeutic effect of the probiotic formulation.
Collapse
|
38
|
Yan X, Zhang Y, Lang H, Huang Z, Chen X, He H, Zhao Q, Wang J. Research on the mechanism of prednisone in the treatment of ITP via VIP/PACAP-mediated intestinal immune dysfunction. Eur J Med Res 2023; 28:67. [PMID: 36750876 PMCID: PMC9906942 DOI: 10.1186/s40001-023-00987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
RATIONALE Immune thrombocytopenia (ITP) is thought to be a result of immune dysfunction, which is treated by glucocorticoids such as prednisone. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) have immunomodulatory properties, but their role in intestinal immune control is unclear. The major goal of this study was to look at the effects of prednisone on platelet, VIP, and PACAP levels in ITP mice, as well as the regulatory system that controls intestinal immunity. METHODS Eighteen BALB/c mice were randomly divided into three groups: blank control group, model control group, and prednisone group, with six mice in each group. The ITP animal model control group and the prednisone group were injected with anti-platelet serum (APS) to replicate the ITP animal model. The prednisone group began prednisone intervention on the 8th day. Platelet count was dynamically measured before APS injection, on the 4th day of injection, on the 1st day of administration, on the 4th day of administration, and at the end of the experiment. After the experiment, the expression of p53 protein in mouse mesenteric lymph node lymphocytes was detected by immunohistochemistry. The changes in lymphocyte apoptosis rate in mouse mesenteric lymph nodes were detected by in situ terminal transferase labeling (TUNEL). The contents of VIP and PACAP in the mouse brain, colon, and serum were detected by enzyme-linked immunosorbent assay (ELISA). The contents of IFN-γ, IL-4, IL-10, IL-17A in the mouse spleen were detected by ELISA. RESULTS ①Changes of peripheral platelet count: there was no significant difference in platelet count among the three groups before modeling; on the 4th day, the platelet count decreased in the model control group and prednisone group; on the 8th day, the number of platelets in model control group and prednisone group was at the lowest level; on the 12th day, the platelet count in prednisone group recovered significantly; on the 15th day, the platelet count in prednisone group continued to rise. ②Changes of VIP, PACAP: compared with the blank control group, VIP and PACAP in the model control group decreased significantly in the brain, colon, and serum. Compared with the model control group, the levels of VIP and PACAP in the brain, colon, and serum in the prednisone group were increased except for serum PACAP. ③Changes of mesenteric lymphocytes: the expression of p53 protein in the mesenteric lymph nodes of model control group mice was significantly higher than that of blank control group mice. After prednisone intervention, the expression of p53 protein decreased significantly.④Changes of cytokines in spleen: compared with blank control group, IFN- γ, IL-17A increased and IL-4 and IL-10 decreased in model control group. After prednisone intervention, IFN- γ, IL-17A was down-regulated and IL-4 and IL-10 were upregulated. CONCLUSIONS Prednisone-upregulated VIP and PACAP levels decreased P53 protein expression and apoptosis rate in mesenteric lymph node lymphocytes and affected cytokine expression in ITP model mice. Therefore, we speculate that the regulation of intestinal immune function may be a potential mechanism of prednisone in treating ITP.
Collapse
Affiliation(s)
- Xiang Yan
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yayue Zhang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Lang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Huang
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Chen
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao He
- grid.508540.c0000 0004 4914 235XXi’an Medical University, Xi An, Shaanxi China
| | - Qian Zhao
- grid.24695.3c0000 0001 1431 9176Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China. .,Department of Hematology, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Yang L, Shen WW, Shao W, Zhao Q, Pang GZ, Yang Y, Tao XF, Zhang WP, Mei Q, Shen YX. MANF ameliorates DSS-induced mouse colitis via restricting Ly6C hiCX3CR1 int macrophage transformation and suppressing CHOP-BATF2 signaling pathway. Acta Pharmacol Sin 2023; 44:1175-1190. [PMID: 36635421 DOI: 10.1038/s41401-022-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum stress-inducible secreting protein, has evolutionarily conserved immune-regulatory function that contributes to the negative regulation of inflammation in macrophages. In this study, we investigated the profiles of MANF in the macrophages of the patients with active inflammatory bowel disease (IBD) and the mice with experimental colitis, which was induced in both myeloid cell-specific MANF knockout mice and wild-type mice by 3% dextran sodium sulfate (DSS) for 7 days. We found that MANF expression was significantly increased in intestinal macrophages from both the mice with experimental colitis and patients with active IBD. DSS-induced colitis was exacerbated in myeloid cell-specific MANF knockout mice. Injection of recombinant human MANF (rhMANF, 10 mg·kg-1·d-1, i.v.) from D4 to D6 significantly ameliorated experimental colitis in DSS-treated mice. More importantly, MANF deficiency in myeloid cells resulted in a dramatic increase in the number of Ly6ChiCX3CRint proinflammatory macrophages in colon lamina propria of DSS-treated mice, and the proinflammatory cytokines and chemokines were upregulated as well. Meanwhile, we demonstrated that MANF attenuated Th17-mediated immunopathology by inhibiting BATF2-mediated innate immune response and downregulating CXCL9, CXCL10, CXCL11 and IL-12p40; MANF functioned as a negative regulator in inflammatory macrophages via inhibiting CHOP-BATF2 signaling pathway, thereby protecting against DSS-induced mouse colitis. These results suggest that MANF ameliorates colon injury by negatively regulating inflammatory macrophage transformation, which shed light on a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wen-Wen Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Qing Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Gao-Zong Pang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.,First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiao-Fang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei-Ping Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
40
|
Liu X, Ma Z, Wang Y, Li L, Jia H, Zhang L. Compound probiotics can improve intestinal health by affecting the gut microbiota of broilers. J Anim Sci 2023; 101:skad388. [PMID: 37982805 PMCID: PMC10724112 DOI: 10.1093/jas/skad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/18/2023] [Indexed: 11/21/2023] Open
Abstract
Probiotics, as a widely used additive, have played a unique advantage in replacing antibiotic products. As a result, the probiotic effects on broiler development, intestinal flora, intestinal barrier, and immunity were assessed by this investigation. Four hundred and eighty 1-day-old Arbor Acres broilers were randomly allotted to 4 groups of 5 replicates with 24 broilers each. The control was fed only a basal corn-soybean meal diet. Probiotics I, probiotics II, and probiotics III were fed basal diet and 1, 5, and 10 g/kg compound probiotics (Lactobacillus casei: Lactobacillus acidophilus: Bifidobacterium = 1:1:2), respectively. We found that broilers in the compound probiotic group exhibited better growth performance and carcass characteristics compared with control, especially among probiotics III group. The intestinal barrier-related genes relative expression of Claudin, Occludin, MUC2, and ZO-1 mRNA in the probiotic group increased at 21 and 42 d compared with control, especially among probiotics III group (P < 0.05). The early gut immune-related genes (TLR2, TLR4, IL-1β, and IL-2) mRNA increased compared with control, while the trend at 42 d was completely opposite to that in the earlier stage (P < 0.05). Among them, probiotics III group showed the most significant changes compared to probiotics II group and probiotics I group. Select probiotics III group and control group for 16S rDNA amplicon sequencing analysis. The 16S rDNA amplicon sequencing results demonstrated that probiotics increased the relative abundance of beneficial microbes such as o_Bacteroidales, f_Rikenellaceae, and g_Alistipes and improved the cecum's gut microbiota of 42-day-old broilers. Additionally, adding the probiotics decreased the relative abundance of harmful microbes such as Proteobacteria. PICRUSt2 functional analysis revealed that most proteins were enriched in DNA replication, transcription, and glycolysis processes. Therefore, this study can provide theoretical reference value for probiotics to improve production performance, improve intestinal barrier, immunity, intestinal flora of broilers, and the application of probiotics.
Collapse
Affiliation(s)
- Xuan Liu
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenhua Ma
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yanfei Wang
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Li Li
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hao Jia
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lihuan Zhang
- Shanxi Key Laboratory for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
41
|
Moin K, Funk C, Josephs M, Coombes K, Yeakle M, Gala D, Ahmed-Khan M. Gut-brain axis: Review on the association between Parkinson's disease and plant lectins. Arch Clin Cases 2022; 9:177-183. [PMID: 36628158 PMCID: PMC9769076 DOI: 10.22551/2022.37.0904.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) involvement in the pathogenesis of Parkinson's Disease (PD) has been widely recognized and supported in recent literature. Prospective and retrospective studies found non-motor symptoms within the GI, specifically constipation, precede cardinal signs and cognitive decline by almost 20 years. In 2002, Braak et al. were the first to propose that PD is a six-stage propagating neuropathological process originating from the GI tract (GIT). Aggregated α-synuclein (α-syn) protein from the GIT is pathognomonic for the development of PD. This article reviews the current literature from the past 10 years as well as original research found in PubMed on the combined effects of enteric glial cells and lectins on the development of Parkinson's Disease. Studies have found that these aggregated and phosphorylated proteins gain access to the brain via retrograde transport through fast and slow fibers of intestinal neurons. Plant lectins, commonly found within plant-based diets, have been found to induce Leaky Gut Syndrome and can activate enteric glial cells, causing the release of pro-inflammatory cytokines. Oxidative stress on the enteric neurons, caused by a chronic neuro-inflammatory state, can cause a-syn aggregation and lead to Lewy Body formation, a hallmark finding in PD. Although the current literature provides a connection between the consumption of plant lectins and the pathophysiology of PD, further research is required to evaluate confounding variables such as food antigen mimicry and other harmful substances found in our diets.
Collapse
Affiliation(s)
- Kayvon Moin
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles,Correspondence: Kayvon Moin, American University of the Caribbean, School of Medicine, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten, Netherlands Antilles.
| | - Carly Funk
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Meagan Josephs
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Kyle Coombes
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Madeleine Yeakle
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Dhir Gala
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Mohammad Ahmed-Khan
- Danbury Hospital-Yale University, School of Medicine, Danbury, Netherlands Antilles
| |
Collapse
|
42
|
Huang Z, Huang Y, Chen J, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jia B. The role and therapeutic potential of gut microbiome in severe burn. Front Cell Infect Microbiol 2022; 12:974259. [DOI: 10.3389/fcimb.2022.974259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
Severe burn is a serious acute trauma that can lead to significant complications such as sepsis, multiple organ failure, and high mortality worldwide. The gut microbiome, the largest microbial reservoir in the human body, plays a significant role in this pathogenic process. Intestinal dysbiosis and disruption of the intestinal mucosal barrier are common after severe burn, leading to bacterial translocation to the bloodstream and other organs of the body, which is associated with many subsequent severe complications. The progression of some intestinal diseases can be improved by modulating the composition of gut microbiota and the levels of its metabolites, which also provides a promising direction for post-burn treatment. In this article, we summarised the studies describing changes in the gut microbiome after severe burn, as well as changes in the function of the intestinal mucosal barrier. Additionally, we presented the potential and challenges of microbial therapy, which may provide microbial therapy strategies for severe burn.
Collapse
|
43
|
Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed Pharmacother 2022; 151:113158. [PMID: 35644116 DOI: 10.1016/j.biopha.2022.113158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are caused by the overactivity of the immune system towards self-constituents. Risk factors of autoimmune diseases are multiple and include genetic, epigenetic, environmental, and psychological. Autoimmune chronic inflammatory bowel diseases, including celiac and inflammatory diseases (Crohn's disease and ulcerative colitis), constitute a significant health problem worldwide. Besides the complexity of the symptoms of these diseases, their treatments have only been palliative. Numerous investigations showed that natural phytochemicals could be promising strategies to fight against these autoimmune diseases. In this respect, plant-derived natural compounds such as flavonoids, phenolic acids, and terpenoids exhibited significant effects against three autoimmune diseases affecting the intestine, particularly bowel diseases. This review focuses on the role of natural compounds obtained from medicinal plants in modulating inflammatory auto-immune diseases of the intestine. It covers the most recent literature related to the effect of these natural compounds in the treatment and prevention of auto-immune diseases of the intestine.
Collapse
|
44
|
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7:71. [PMID: 35764661 PMCID: PMC9239993 DOI: 10.1038/s41541-022-00485-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.
Collapse
Affiliation(s)
- Sodiq A. Hameed
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Stephane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Giann Kerwin Y. Dellosa
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dolores Jaraquemada
- grid.7080.f0000 0001 2296 0625Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
| | - Muhammad Bashir Bello
- grid.412771.60000 0001 2150 5428Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2346 Sokoto, Nigeria
| |
Collapse
|
45
|
Lee HR, Sung JH. Multi-Organ-on-a-Chip for Realization of Gut-Skin Axis. Biotechnol Bioeng 2022; 119:2590-2601. [PMID: 35750599 DOI: 10.1002/bit.28164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
The concept of physiological link between the gut and the skin, known as the gut-skin axis, has been gaining more evidence recently. Although experimental data from animal and human studies support the existence of the gut-skin axis, in vitro model platforms that can test the hypothesis are lacking. Organ-on-a-chip offers the possibility of connecting different tissues and recapitulating interactions between them. In this study, we report a multi-organ chip that can capture the basic inter-organ communication between the gut and the skin. Its modular design enables separate culture and differentiation of the gut and skin tissues, and after assembly the two organs are connected via microfluidic channels than enables perfusion and mass transfer. We showed that the impairment of the gut barrier function exacerbated the adverse effect of fatty acids on skin cells, with decreased viability, increased level of cytokine secretion and human β-defensin-2 (hBD-2), an inflammatory dermal disease marker. Based on these results, we believe that our multi-organ chip can be a novel in vitro platform for recapitulating complex mechanisms underlying the gut-skin axis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hye Ri Lee
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| |
Collapse
|
46
|
Ebersole JL, Nagarajan R, Kirakodu SS, Gonzalez OA. Immunoglobulin gene expression profiles and microbiome characteristics in periodontitis in nonhuman primates. Mol Immunol 2022; 148:18-33. [PMID: 35665658 DOI: 10.1016/j.molimm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Colonization of mucosal tissues throughout the body occurs by a wide array of bacteria in the microbiome that stimulate the cells and tissues, as well as respond to changes in the local milieu. A feature of periodontitis is the detection of adaptive immune responses to members of the oral microbiome that show specificity and changes with disease and treatment. Thus, variations in antibody responses are noted across the population and affected by aging, albeit, data are still unclear as to how these differences relate to disease risk and expression. This study used a nonhuman primate model of experimental periodontitis to track local microbiome changes as they related to the use and expression of a repertoire of immunoglobulin genes in gingival tissues. Gingival tissue biopsies from healthy tissues and following ligature-placement for disease initiation and progression provided gene expression analysis. Additionally, following removal of the ligatures, clinical healing occurs with gene expression in disease resolved tissues. Groups of 9 animals (young: <3 yrs., adolescent: 3-7 yrs., adult -12 to 15 yrs.; aged: 17-22 yrs) were used in the investigation. In healthy tissues, young and adolescent animals showed levels of expression of 78 Ig genes that were uniformly less than adults. In contrast, ⅔ of the Ig genes were elevated by > 2-fold in the aged samples. Specific increases in an array of the Ig gene transcripts were detected in adults at disease initiation and throughout progression, while increases in young and adolescent animals were observed only with disease progression, and in aged samples primarily late in disease progression. Resolved lesions continued to demonstrate elevated levels of Ig gene expression in only young, adolescent and adult animals. The array of Ig genes significantly correlated with inflammatory, tissue biology and hypoxia genes in the gingival tissues, with variations associated with age. In the young group of animals, specific members of the oral microbiome positively correlated with Ig gene expression, while in the older animals, many of these correlations were negative. Significant correlations were observed with a select assortment of bacterial OTUs and multiple Ig genes in both younger and older animal samples, albeit the genera/species showed little overlap. Incorporating this array of microbes and host responses clearly discriminated the various time points in transition from health to disease and resolution in both the young and adult animals. The results support a major importance of adaptive immune responses in the kinetics of periodontal lesion formation, and support aging effects on the repertoire of Ig genes that may relate to the increased prevalence and severity of periodontitis with age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA; Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA; Division of Periodontology, College of Dentistry, University of Kentucky, USA
| |
Collapse
|
47
|
Wang Q, Wang XF, Xing T, Li JL, Zhu XD, Zhang L, Gao F. The combined impact of xylo-oligosaccharides and gamma-irradiated astragalus polysaccharides on the immune response, antioxidant capacity and intestinal microbiota composition of broilers. Poult Sci 2022; 101:101996. [PMID: 35841635 PMCID: PMC9293642 DOI: 10.1016/j.psj.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
The present study investigated the individual and combined effects of xylo-oligosaccharides (XOS) and gamma-irradiated astragalus polysaccharides (IAPS) on the immune response, antioxidant capacity and intestinal microbiota composition of broiler chickens. A total of 240 newly hatched Ross 308 chicks were randomly allocated into 5 dietary treatments including the basal diet (control), or the basal diet supplemented with 50 mg/kg chlortetracycline (CTC), 100 mg/kg XOS (XOS), 600 mg/kg IAPS (IAPS), and 100 mg/kg XOS + 600 mg/kg IAPS (XOS + IAPS) respectively. The results showed that birds in the control group had lower the thymus index and serum lysozyme activity than those in the other 4 groups (P < 0.05). Moreover, there was an interaction between XOS and IAPS treatments on increasing the serum lysozyme activity (P < 0.05). Birds in the CTC and XOS + IAPS groups had lower serum malondialdehyde concentration and higher serum total antioxidant capacity activity and mucosal interleukin 2 mRNA expression of jejunum than those in the control group (P < 0.05). In addition, birds in the control groups had lower duodenal and jejunal IgA-producing cells number than these in other 4 groups (P < 0.05). As compared with the CTC group, dietary individual XOS or IAPS administration increased duodenal IgA-producing cells number (P < 0.05). Meanwhile, there was an interaction between XOS and IAPS treatments on increasing duodenal and jejunal IgA-Producing cells numbers (P < 0.05). Dietary CTC administration increased the proportion of Bacteroides, and decreased the proportion of Negativibacillus (P < 0.05). However, dietary XOS + IAPS administration increased Firmicutes to Bacteroidetes ratio, the proportion of Ruminococcaceae, as well as decreased the proportion of Barnesiella and Negativibacillus (P < 0.05). In conclusion, the XOS and IAPS combination could improve intestinal mucosal immunity and barrier function of broilers by enhancing cytokine gene expression, IgA-producing cell production and modulates cecal microbiota, and the combination effect of XOS and IAPS is better than that of individual effect of CTC, XOS, or IAPS in the current study.
Collapse
Affiliation(s)
- Q Wang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Zhou W, Xie M, Xie Y, Liang H, Li M, Ran C, Zhou Z. Effect of dietary supplementation of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 124:332-342. [PMID: 35430347 DOI: 10.1016/j.fsi.2022.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to evaluate the effects of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fingerling GIFTs (n = 120; initial weight 1.33 ± 0.00 g) were randomly assigned to twelve 90-L tanks (four tanks per diet, 10 fish per tank) with three groups: control group (basal high fat diet), 1% XMX-1 group and 2% XMX-1 group (basal diet supplemented with 10 and 20 g XMX-1/kg feed respectively). After 49 days feeding trial, the growth performance and gut and liver health parameters of tilapia were evaluated. Also the gut microbiota and virome were detected by sequencing. 2% XMX-1 fermentation product had no effect on growth performance. For gut health, the expression of hypoxia-inducible factor-lα (Hif-1α) tend to increase in 1% XMX-1 group (P = 0.053). The expression of intestinal interleukin-6 (IL-6) and tumor growth factor β (TGF-β) was significantly down-regulated in 1% and 2% XMX-1 groups (P < 0.05), and the intestinal expression of interleukin-1β (IL-1β) had a trend to decrease (P = 0.08) in 1% XMX-1 group versus control. 1% and 2% XMX-1 groups also increased the intestinal expression of tight junction genes Claudin (P = 0.06 and 0.07, respectively). For liver health, XMX-1 fermentation product significantly decreased liver TAG (P < 0.05). Furthermore, the hepatic expression of lipid synthesis gene fatty acid synthase (FAS) was significantly decreased and the expression of lipid catabolism related-gene uncoupling protein 2 (UCP2) was significantly increased in 1% XMX-1 and 2% XMX-1 groups (P < 0.01). And the hepatic expression of IL-1β and IL-6 significantly decreased in 1% XMX-1 and 2% XMX-1 groups (P < 0.05). XMX-1 fermentation product increased the abundance of Fusobacteria in the gut microbiota and 2% XMX-1 group led to alteration in the virome composition at family level. Lastly, the time of tilapia death post Aeromoans challenge was delayed in 1% XMX-1 and 2% XMX-1 groups compared with control. To sum up, our results show that the dietary supplementation of XMX-1 fermentation product can improve the gut and liver health as well as the resistance against pathogenic bacteria of tilapia.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
49
|
Gupta B, Rai R, Oertel M, Raeman R. Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Semin Liver Dis 2022; 42:122-137. [PMID: 35738255 PMCID: PMC9307091 DOI: 10.1055/s-0042-1748037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ravi Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Itani M, Kaur N, Roychowdhury A, Mellnick VM, Lubner MG, Dasyam AK, Khanna L, Prasad SR, Katabathina VS. Gastrointestinal Manifestations of Immunodeficiency: Imaging Spectrum. Radiographics 2022; 42:759-777. [PMID: 35452341 DOI: 10.1148/rg.210169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a wide spectrum of hereditary and acquired immunodeficiency disorders that are characterized by specific abnormalities involving a plethora of humoral, cellular, and phagocytic immunologic pathways. These include distinctive primary immunodeficiency syndromes due to characteristic genetic defects and secondary immunodeficiency syndromes, such as AIDS from HIV infection and therapy-related immunosuppression in patients with cancers or a solid organ or stem cell transplant. The gut mucosa and gut-associated lymphoid tissue (the largest lymphoid organ in the body), along with diverse commensal microbiota, play complex and critical roles in development and modulation of the immune system. Thus, myriad gastrointestinal (GI) symptoms are common in immunocompromised patients and may be due to inflammatory conditions (graft versus host disease, neutropenic enterocolitis, or HIV-related proctocolitis), opportunistic infections (viral, bacterial, fungal, or protozoal), or malignancies (Kaposi sarcoma, lymphoma, posttransplant lymphoproliferative disorder, or anal cancer). GI tract involvement in immunodeficient patients contributes to significant morbidity and mortality. Along with endoscopy and histopathologic evaluation, imaging plays an integral role in detection, localization, characterization, and distinction of GI tract manifestations of various immunodeficiency syndromes and their complications. Select disorders demonstrate characteristic findings at fluoroscopy, CT, US, and MRI that permit timely and accurate diagnosis. While neutropenic enterocolitis affects the terminal ileum and right colon and occurs in patients receiving chemotherapy for hematologic malignancies, Kaposi sarcoma commonly manifests as bull's-eye lesions in the stomach and duodenum. Imaging is invaluable in treatment follow-up and long-term surveillance as well. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Neeraj Kaur
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Abhijit Roychowdhury
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Vincent M Mellnick
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Meghan G Lubner
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Anil K Dasyam
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Lokesh Khanna
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Srinivasa R Prasad
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| | - Venkata S Katabathina
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.I., V.M.M.); Department of Radiology, University of Louisville, Louisville, Ky (N.K.); Department of Radiology, VA Medical Center, Fayetteville, NC (A.R.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); Department of Radiology, Division of Abdominal Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.); Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (L.K., V.S.K.); and Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (S.R.P.)
| |
Collapse
|