1
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
2
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
3
|
Lin S, Mao X, He W. Causal association of circulating cytokines with sepsis: a Mendelian randomization study. Front Immunol 2023; 14:1281845. [PMID: 37915587 PMCID: PMC10616607 DOI: 10.3389/fimmu.2023.1281845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Background Observational studies have reported an association between circulating cytokines and sepsis. However, the precise causal relationship between these factors remains unclear. The objective of this study was to explore the causal link between circulating cytokines and sepsis using genetic data within the framework of Mendelian Randomization (MR). Methods We performed a two-sample MR analysis to investigate this causality relationship in individuals of European ancestry. The publicly available genome-wide association studies (GWAS) statistics were used. We selected eligible instrumental single nucleotide polymorphisms (SNPs) that were significantly related to the circulating cytokines. Multiple MR analysis approaches were carried out, which included inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. Results We found evidence to support the causal role of genetically predicted circulating levels on decreased risk of sepsis, including RANTES (OR = 0.920, 95% CI: 0.849-0.997, P = 0.041) and basic fibroblast growth factor (basic-FGF) (OR = 0.869, 95% CI: 0.766-0.986, P = 0.029). Additionally, MR analysis positive causal association of between beta-nerve growth factor (β-NGF) and sepsis (OR = 1.120, 95% CI: 1.037-1.211, P = 0.004). The results of MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods were consistent with the IVW estimates. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates. Conclusion This MR study provides first novel evidence that genetically predicted causal association of circulating levels of RANTES, basic-FGF, and β-NGF with altered sepsis risk. The findings shed light on the potential involvement of these cytokines in sepsis pathogenesis. Although requiring additional confirmation, the results contribute new insights into cytokine mediators in sepsis and suggest promising future research directions.
Collapse
Affiliation(s)
- Shan Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Cavaillon JM. During Sepsis and COVID-19, the Pro-Inflammatory and Anti-Inflammatory Responses Are Concomitant. Clin Rev Allergy Immunol 2023; 65:183-187. [PMID: 37395985 DOI: 10.1007/s12016-023-08965-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The most severe forms of COVID-19 share many features with bacterial sepsis and have thus been considered to be a viral sepsis. Innate immunity and inflammation are closely linked. While the immune response aims to get rid of the infectious agent, the pro-inflammatory host response can result in organ injury including acute respiratory distress syndrome. On its side, a compensatory anti-inflammatory response, aimed to dampen the inflammatory reaction, can lead to immunosuppression. Whether these two key events of the host inflammatory response are consecutive or concomitant has been regularly depicted in schemes. Initially proposed from 2001 to 2013 to be two consecutive steps, the concomitant occurrence has been supported since 2013, although it was proposed for the first time in 2001. Despite a consensus was reached, the two consecutive steps were still recently proposed for COVID-19. We discuss why the concomitance view could have been initiated as early as 1995.
Collapse
|
5
|
Jiao P, Wang S, Fan W, Zhang H, Yin H, Shang Y, Zhu H, Liu W, Hu R, Sun L. Recombinant porcine interferon cocktail delays the onset and lessens the severity of African swine fever. Antiviral Res 2023; 215:105644. [PMID: 37244381 DOI: 10.1016/j.antiviral.2023.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
African swine fever (ASF) is a highly contagious and deadly disease that affects domestic and wild pigs. No commercial vaccine or antiviral is currently available against ASF. The control of ASF primarily relies on implementing effective biosecurity measures during the breeding process. Here, we evaluated the preventive and therapeutic potential of the interferon (IFN) cocktail (a mixture of recombinant porcine IFN α and γ) on ASF. The IFN cocktail treatment delayed the onset of ASF symptoms and ASF virus (ASFV) replication for approximately one week. However, IFN cocktail treatment could not prevent the death of the pigs. Further analysis showed that IFN cocktail treatment increased the expression of multiple IFN-stimulated genes (ISGs) in porcine peripheral blood mononuclear cells in vivo and in vitro. Additionally, IFN cocktail modulated the expression of pro- and anti-inflammatory cytokines and reduced tissue injury in the ASFV-infected pigs. Collectively, the results suggest that the IFN cocktail restricts the progression of acute ASF by inducing high levels of ISGs, contributing to the pre-establishment of antiviral status, and modulating the balance of pro- and anti-inflammatory mediators to lessen cytokine storm-mediated tissue damage.
Collapse
Affiliation(s)
- Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuchao Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130000, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China
| | - Hongyan Yin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yingli Shang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hongfei Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130000, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Fang C, Ma Y. Peripheral Blood Genes Crosstalk between COVID-19 and Sepsis. Int J Mol Sci 2023; 24:ijms24032591. [PMID: 36768914 PMCID: PMC9916586 DOI: 10.3390/ijms24032591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) has led to a rapid increase in death rates all over the world. Sepsis is a life-threatening disease associated with a dysregulated host immune response. It has been shown that COVID-19 shares many similarities with sepsis in many aspects. However, the molecular mechanisms underlying sepsis and COVID-19 are not well understood. The aim of this study was to identify common transcriptional signatures, regulators, and pathways between COVID-19 and sepsis, which may provide a new direction for the treatment of COVID-19 and sepsis. First, COVID-19 blood gene expression profile (GSE179850) data and sepsis blood expression profile (GSE134347) data were obtained from GEO. Then, we intersected the differentially expressed genes (DEG) from these two datasets to obtain common DEGs. Finally, the common DEGs were used for functional enrichment analysis, transcription factor and miRNA prediction, pathway analysis, and candidate drug analysis. A total of 307 common DEGs were identified between the sepsis and COVID-19 datasets. Protein-protein interactions (PPIs) were constructed using the STRING database. Subsequently, hub genes were identified based on PPI networks. In addition, we performed GO functional analysis and KEGG pathway analysis of common DEGs, and found a common association between sepsis and COVID-19. Finally, we identified transcription factor-gene interaction, DEGs-miRNA co-regulatory networks, and protein-drug interaction, respectively. Through ROC analysis, we identified 10 central hub genes as potential biomarkers. In this study, we identified SARS-CoV-2 infection as a high risk factor for sepsis. Our study may provide a potential therapeutic direction for the treatment of COVID-19 patients suffering from sepsis.
Collapse
|
7
|
Frimpong A, Owusu EDA, Amponsah JA, Obeng-Aboagye E, van der Puije W, Frempong AF, Kusi KA, Ofori MF. Cytokines as Potential Biomarkers for Differential Diagnosis of Sepsis and Other Non-Septic Disease Conditions. Front Cell Infect Microbiol 2022; 12:901433. [PMID: 35811678 PMCID: PMC9260692 DOI: 10.3389/fcimb.2022.901433] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis defined as a dysregulated immune response is a major cause of morbidity in children. In sub-Saharan Africa, the clinical features of sepsis overlap with other frequent infections such as malaria, thus sepsis is usually misdiagnosed in the absence of confirmatory tests. Therefore, it becomes necessary to identify biomarkers that can be used to distinguish sepsis from other infectious diseases. We measured and compared the plasma levels of 18 cytokines (Th1 [GM-CSF, IFN-γ, TNF-α, IL-1β, 1L-2, IL-6, IL-8, IL-12/IL-23p40, IL-15], Th2[IL-4, IL-5, IL-13), Th17 [IL17A], Regulatory cytokine (IL-10) and 7 chemokines (MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, Eotaxin/CCL11, MIG/CXCL9 and IP-10/CXCL10 using the Human Cytokine Magnetic 25-Plex Panel in plasma samples obtained from children with sepsis, clinical malaria and other febrile conditions. Children with sepsis had significantly higher levels of IL-1β, IL-12 and IL-17A compared to febrile controls but lower levels of MIP1-β/CCL4, RANTES/CCL5 and IP10/CXCL10 when compared to children with malaria and febrile controls. Even though levels of most inflammatory responses were higher in malaria compared to sepsis, children with sepsis had a higher pro-inflammatory to anti-inflammatory ratio which seemed to be mediated by mostly monocytes. A principal component analysis and a receiver operator characteristic curve analysis, identified seven potential biomarkers; IL-1β, IL-7, IL-12, IL-1RA, RANTES/CCL5, MIP1β/CCL4 and IP10/CXCL10 that could discriminate children with sepsis from clinical malaria and other febrile conditions. The data suggests that sepsis is associated with a higher pro-inflammatory environment. These pro-inflammatory cytokines/chemokines could further be evaluated for their diagnostic potential to differentiate sepsis from malaria and other febrile conditions in areas burdened with infectious diseases.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Augustina Frimpong, ; Michael Fokuo Ofori,
| | - Ewurama D. A. Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jones Amo Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Elizabeth Obeng-Aboagye
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abena Fremaah Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Augustina Frimpong, ; Michael Fokuo Ofori,
| |
Collapse
|
8
|
Liu Z, van ‘t Veer C, Hendriks RW, Roelofs JJTH, van der Poll T, de Vos AF. Bruton's Tyrosine Kinase Deficiency Ameliorates Antimicrobial Host Defense during Peritonitis Induced by Pathogenic Escherichia coli. Infect Immun 2022; 90:e0067421. [PMID: 35587199 PMCID: PMC9202372 DOI: 10.1128/iai.00674-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Peritonitis and abdominal sepsis remain major health problems and challenge for clinicians. Bruton's tyrosine kinase (Btk) is a versatile signaling protein involved in the regulation of B cell development and function, as well as innate host defense. In the current study, we aimed to explore the role of Btk in the host response during peritonitis and sepsis in mice induced by a gradually growing pathogenic strain of Escherichia coli bacteria. We found that Btk deficiency ameliorated antibacterial host defense during the late stage of E. coli-induced peritonitis. Btk was not required for cytokine and chemokine release in response to either E. coli or lipopolysaccharide and did not impact organ damage evoked by E. coli. Btk deficiency also did not alter neutrophil influx to the primary site of infection. However, the absence of Btk modestly enhanced phagocytosis of E. coli by neutrophils. These results indicate that Btk-mediated signaling is superfluous for inflammatory responses and remarkably detrimental for antibacterial defense during E. coli-induced peritonitis.
Collapse
Affiliation(s)
- Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van ‘t Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joris J. T. H. Roelofs
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Wang S, Wang D, Duan Y, Zhou Z, Gao W, Zhang L. Cellular Nanosponges for Biological Neutralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107719. [PMID: 34783078 DOI: 10.1002/adma.202107719] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Biological neutralization represents a general strategy that deploys therapeutic agents to bind with harmful molecules or infectious pathogens, block their bioactivity, and thus prevent them from causing the diseases. Here, a comprehensive review of using cell-membrane-coated nanoparticles, namely "cellular nanosponges," as host decoys for a wide range of biological neutralization applications is provided. Compared to traditional neutralization strategies, the cellular nanosponges stand out by mimicking susceptible host cells rather than accommodating the structures of the causative agents for the design of therapeutics. As all pathological agents must interact with host cells for bioactivity, nanosponges bypass the diversity of these agents and create function-driven and broad-spectrum neutralization solutions. The review focuses on the recent progress of using this new nanomedicine platform for neutralization against five primary pathological agents, including bacterial toxins, chemical toxicants, inflammatory cytokines, pathological antibodies, and viruses. Existing studies have established cellular nanosponges as versatile tools for biological neutralization. A thorough review of the cellular nanosponge technology is expected to inspire more refined cellular nanosponge designs and unique neutralization applications to address unsolved medical problems.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Pharmacodynamic and immunomodulatory effects of polymyxin B in combination with fosfomycin against KPC-2-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2022; 59:106566. [DOI: 10.1016/j.ijantimicag.2022.106566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
12
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Vázquez AC, Arriaga-Pizano L, Ferat-Osorio E. Cellular Markers of Immunosuppression in Sepsis. Arch Med Res 2021; 52:828-835. [PMID: 34702587 DOI: 10.1016/j.arcmed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a pathological condition frequently caused by invasion of a pathogen and the subsequent unregulated response that threatens the patient's life through diverse organ failure. The incidence of sepsis is increasing, and there is no specific therapy. Despite technological contributions to treat sepsis or increased knowledge of its molecular pathophysiology, mortality remains high, and sepsis is a global health problem. Knowledge of the role of the cells involved in the host response through the synthesis of inflammatory mediators and their different effects on cells, tissues or systems is key to the development of medical treatments that regulate systems involved in such responses to pathogens. This review addresses new insights into the role of cells, their mediators, and the interaction between them that lead to the development of a state of immunosuppression.
Collapse
Affiliation(s)
- Arturo Cérbulo Vázquez
- Servicio de Medicina Genómica, Hospital General de México, Dr Eduardo Liceaga, Ciudad de México, México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica de la Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
14
|
Lin L, Long N, Qiu M, Liu Y, Sun F, Dai M. The Inhibitory Efficiencies of Geraniol as an Anti-Inflammatory, Antioxidant, and Antibacterial, Natural Agent Against Methicillin-Resistant Staphylococcus aureus Infection in vivo. Infect Drug Resist 2021; 14:2991-3000. [PMID: 34385822 PMCID: PMC8352600 DOI: 10.2147/idr.s318989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Antibiotics wee widely used as feed additives in animal husbandry. With the increase of drug resistance of bacteria, there is an urgent need to find alternatives to antibiotics. Clinically, methicillin-resistant Staphylococcus aureus (MRSA) infections account for about 25% to 50% of Staphylococcus aureus infections worldwide. Similarly, it is also one of the pathogens that cause serious animal infections. Methods We established a mouse model of systemic infection of MRSA to study the preventive effect of geraniol on MRSA and the immunomodulatory effect of geraniol. The mice in the experiment were injected with geraniol by intramuscular injection and were fed intraperitoneally with minimum lethal dose of MRSA. Then, the survival rate, inflammatory cytokines, oxidative stress factors in serum were measured. These values were used to estimate the bacterial load in different organs and to assess histopathological changes in the lungs, liver and kidneys. Results The above-mentioned two ways of using geraniol could prevent MRSA infection in vivo in mice and showed a significant dose–response relationship. In other words, geraniol significantly decreased the concentrations of inflammatory cytokines and oxidative stress factors in MRSA-infected mice. At the same time, the level of glutathione peroxidase also increased in a dose–proportional relationship. In the group of mice treated with geraniol, their superoxide dismutase levels were significantly higher than those in the vancomycin. After treatment with geraniol, the burden of MRSA decreased. No obvious histopathological abnormalities were found in the liver and kidney of MRSA-infected mice. In addition, geraniol improved the inflammatory changes in the lungs. Conclusion The results indicated that geraniol was a natural substance that could be used as an anti-inflammatory, antioxidant and antibacterial substance to protect mice from MRSA systemic infection. Generally, the research shows that as a natural medicine, geraniol has broad potential in the development and application of antibiotic substitutes.
Collapse
Affiliation(s)
- Lin Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yao Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Du Y, Zhang H, Guo Y, Song K, Zeng L, Chen Y, Xie Z, Li R. CD38 deficiency up-regulated IL-1β and MCP-1 through TLR4/ERK/NF-κB pathway in sepsis pulmonary injury. Microbes Infect 2021; 23:104845. [PMID: 34098107 DOI: 10.1016/j.micinf.2021.104845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
As a disease with high mortality,many cytokines and signaling pathways are associated with sepsis.The pro-inflammatory cytokines and chemokines are participating in the pathogenesis of sepsis, especially in early stage. Moreover, the releases and expressions of cytokines are regulated by numerous signaling pathways, including TLR4/ERK pathway. But despite many studies have expounded the pathogenesis of sepsis and the regulation of cytokines in sepsis, how CD38 influence the expressions of related molecules in sepsis are still unknown. The aim of this study is illuminating the alteration of cytokines and signaling pathways in CD38-/- mice injected with Escherichia coli.Compared with WT mice, E. coli infection results in more severe pulmonary injuries and higher mRNA expressions of cytokines. Compared with E. coli infected WT mice,CD38 knockout leads to aggravated pulmonary injury, increasedphosphorylated ERK1/2, p38 and NF-κB p65, and enhancedlevels of IL-1β, iNOS and MCP-1.While compared with E. coli infected CD38-/- mice, TLR4 mutation results in alleviated pulmonary injury, down-regulated phosphorylated ERK1/2 and NF-κB p65, and decreased expressions of IL-1β and MCP-1.CD38 deficiency increased the expressions of IL-1β andMCP-1and aggravated pulmonary injury through TLR4/ERK/NF-κB pathway in sepsis.
Collapse
Affiliation(s)
- Yuna Du
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Huiqing Zhang
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yujie Guo
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Kuangyu Song
- Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lifeng Zeng
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Yiguo Chen
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Zhengyu Xie
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Rong Li
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China.
| |
Collapse
|
16
|
Gabarin RS, Li M, Zimmel PA, Marshall JC, Li Y, Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun 2021; 13:323-332. [PMID: 34004605 PMCID: PMC8613564 DOI: 10.1159/000515740] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis is defined as organ dysfunction due to a dysregulated systemic host response to infection. During gram-negative bacterial infection and other acute illness such as absorption from the gut infection, lipopolysaccharide (LPS) is a major mediator in sepsis. LPS is able to trigger inflammation through both intracellular and extracellular pathways. Classical interactions between LPS and host cells first involve LPS binding to LPS binding protein (LBP), a carrier. The LPS-LBP complex then binds to a receptor complex including the CD14, MD2, and toll-like receptor 4 (TLR4) proteins, initiating a signal cascade which triggers the secretion of pro-inflammatory cytokines. However, it has been established that LPS is also internalized by macrophages and endothelial cells through TLR4-independent pathways. Once internalized, LPS is able to bind to the cytosolic receptors caspases-4/5 in humans and the homologous caspase-11 in mice. Bound caspases-4/5 oligomerize and trigger the assembly of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome followed by the activation of inflammatory caspase-1 resulting in subsequent release of interleukin-1β. Caspases-4/5 also activate the perforin gasdermin D and purinergic receptor P2X7, inducing cell lysis and pyroptosis. Pyroptosis is a notable source of inflammation and damage to the lung endothelial barrier during sepsis. Thus, inhibition of caspases-4/5/1 or downstream effectors to block intracellular LPS signaling may be a promising therapeutic approach in adjunction with neutralizing extracellular LPS for treatment of sepsis.
Collapse
Affiliation(s)
- Ramy S Gabarin
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - Manshu Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Paige A Zimmel
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yimin Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Neumann A, Happonen L, Karlsson C, Bahnan W, Frick IM, Björck L. Streptococcal protein SIC activates monocytes and induces inflammation. iScience 2021; 24:102339. [PMID: 33855284 PMCID: PMC8027542 DOI: 10.1016/j.isci.2021.102339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pyogenes is a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g. TNFα and INFγ). In human plasma, SIC binds clusterin and histidine-rich glycoprotein, and whole plasma, and these two purified plasma proteins enhanced the activation of monocytes by SIC. Isolates of the M55 serotype secrete an SIC homolog, but this protein did not activate monocytes. M1 isolates are common in cases of invasive S. pyogenes infections characterized by massive inflammation, and the results of this study indicate that the pro-inflammatory property of SIC contributes to the pathology of these severe clinical conditions.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| |
Collapse
|
18
|
Cavaillon JM. Once upon a time, inflammation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200147. [PMID: 33889184 PMCID: PMC8040910 DOI: 10.1590/1678-9199-jvatitd-2020-0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammation has accompanied humans since their first ancestors appeared on Earth. Aulus Cornelius Celsus (25 BC-50 AD), a Roman encyclopedist, offered a still valid statement about inflammation: "Notae vero inflammationis sunt quatuor: rubor et tumor cum calore and dolore", defining the four cardinal signs of inflammation as redness and swelling with heat and pain. While inflammation has long been considered as a morbid phenomenon, John Hunter (18th century) and Elie Metchnikoff (19th century) understood that it was a natural and beneficial event that aims to address a sterile or an infectious insult. Many other famous scientists and some forgotten ones have identified the different cellular and molecular players, and deciphered the different mechanisms of inflammation. This review pays tribute to some of the giants who made major contributions, from Hippocrates to the late 19th and first half of the 20th century. We particularly address the discoveries related to phagocytes, diapedesis, chemotactism, and fever. We also mention the findings of the various inflammatory mediators and the different approaches designed to treat inflammatory disorders.
Collapse
|
19
|
Patel A, Khande H, Periasamy H, Mokale S. Immunomodulatory Effect of Doxycycline Ameliorates Systemic and Pulmonary Inflammation in a Murine Polymicrobial Sepsis Model. Inflammation 2021; 43:1035-1043. [PMID: 31955291 PMCID: PMC7224120 DOI: 10.1007/s10753-020-01188-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute lung injury is an inflammatory condition developed after severe sepsis in response to excessive secretion of pro-inflammatory cytokines. Doxycycline is widely reported to possess immunomodulatory activity through inhibition of various inflammatory pathways. Considering the broad spectrum of anti-inflammatory activity, protective effect of doxycycline was evaluated in clinically relevant murine polymicrobial sepsis model induced by caecal ligation and puncture (CLP). In this model, sepsis is accompanied with infection and therefore ceftriaxone at sub-protective dose was combined to retard the bacterial growth. Three hours after CLP challenge, mice were administered vehicle, ceftriaxone (100 mg/kg subcutaneously) alone and in combination with immunomodulatory dose of doxycycline (50 mg/kg, intraperitoneal) and survival were monitored for 5 days. Bacterial count in blood and peritoneal fluid along with cytokines [interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α] and myeloperoxidase (MPO) in plasma and lung homogenate were measured at 18 h post-CLP. Plasma glutathione (GSH) was also determined. Doxycycline in presence of ceftriaxone improved survival of septic mice by significantly reducing the plasma and lung pro-inflammatory cytokines and MPO levels. It also increased plasma GSH levels. Doxycycline did not improve antibacterial effect of ceftriaxone in combination, suggesting that the protective effect of doxycycline was due to its immunomodulatory activity. Doxycycline in the presence of ceftriaxone demonstrated improved survival of septic mice by modulating the immune response.
Collapse
Affiliation(s)
- Anasuya Patel
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Marg, Aurangabad, Maharashtra, India
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Hemant Khande
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Santosh Mokale
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Marg, Aurangabad, Maharashtra, India.
| |
Collapse
|
20
|
Inhibition of Aerobic Glycolysis Promotes Neutrophil to Influx to the Infectious Site Via CXCR2 in Sepsis. Shock 2021; 53:114-123. [PMID: 30829852 DOI: 10.1097/shk.0000000000001334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent evidences suggest that metabolic reprogramming plays an important role in the regulation of innate inflammatory response; however, the specific mechanism is unclear. In this study, we found that glycolytic inhibitor 2-deoxyglucose (2-DG) significantly improved the survival rate in cecal ligation and puncture (CLP)-induced septic mice. 2-DG-treated mice developed increased neutrophil migration to the infectious site and more efficient bacterial clearance than untreated mice. 2-DG reversed the down-regulation of chemokine receptor 2 (CXCR2) and the impaired chemotaxis induced by CLP in mice or lipopolysaccharides (LPS) in human neutrophils. Furthermore, 2-DG reversed the down-regulation of CXCR2 in neutrophils by decreasing the expression of G protein-coupled receptor kinase-2 (GRK2), a serin-threonine protein kinase that mediated the internalization of chemokine receptors, which was induced via the inhibition of extracellular regulated protein kinases (ERK) phosphorylation and the promotion of P38 phosphorylation. Finally, SB225002, a CXCR2 antagonist, partially blocked the protective effects of 2-DG in sepsis. Together, we found a novel mechanism for the migration of neutrophils regulated by metabolism and suggested that aerobic glycolysis might be a potential target of intervention in sepsis.
Collapse
|
21
|
Osuchowski MF, Aletti F, Cavaillon JM, Flohé SB, Giamarellos-Bourboulis EJ, Huber-Lang M, Relja B, Skirecki T, Szabó A, Maegele M. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020; 54:416-437. [PMID: 32433217 PMCID: PMC7363382 DOI: 10.1097/shk.0000000000001565] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Approximately 3 billion people around the world have gone into some form of social separation to mitigate the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The uncontrolled influx of patients in need of emergency care has rapidly brought several national health systems to near-collapse with deadly consequences to those afflicted by Coronavirus Disease 2019 (COVID-19) and other critical diseases associated with COVID-19. Solid scientific evidence regarding SARS-CoV-2/COVID-19 remains scarce; there is an urgent need to expand our understanding of the SARS-CoV-2 pathophysiology to facilitate precise and targeted treatments. The capacity for rapid information dissemination has emerged as a double-edged sword; the existing gap of high-quality data is frequently filled by anecdotal reports, contradictory statements, and misinformation. This review addresses several important aspects unique to the SARS-CoV-2/COVID-19 pandemic highlighting the most relevant knowledge gaps and existing windows-of-opportunity. Specifically, focus is given on SARS-CoV-2 immunopathogenesis in the context of experimental therapies and preclinical evidence and their applicability in supporting efficacious clinical trial planning. The review discusses the existing challenges of SARS-CoV-2 diagnostics and the potential application of translational technology for epidemiological predictions, patient monitoring, and treatment decision-making in COVID-19. Furthermore, solutions for enhancing international strategies in translational research, cooperative networks, and regulatory partnerships are contemplated.
Collapse
Affiliation(s)
- Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
| |
Collapse
|
22
|
Rasid O, Chevalier C, Camarasa TMN, Fitting C, Cavaillon JM, Hamon MA. H3K4me1 Supports Memory-like NK Cells Induced by Systemic Inflammation. Cell Rep 2020; 29:3933-3945.e3. [PMID: 31851924 DOI: 10.1016/j.celrep.2019.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/06/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are unique players in innate immunity and, as such, an attractive target for immunotherapy. NK cells display immune memory properties in certain models, but the long-term status of NK cells following systemic inflammation is unknown. Here we show that following LPS-induced endotoxemia in mice, NK cells acquire cell-intrinsic memory-like properties, showing increased production of IFNγ upon specific secondary stimulation. The NK cell memory response is detectable for at least 9 weeks and contributes to protection from E. coli infection upon adoptive transfer. Importantly, we reveal a mechanism essential for NK cell memory, whereby an H3K4me1-marked latent enhancer is uncovered at the ifng locus. Chemical inhibition of histone methyltransferase activity erases the enhancer and abolishes NK cell memory. Thus, NK cell memory develops after endotoxemia in a histone methylation-dependent manner, ensuring a heightened response to secondary stimulation.
Collapse
Affiliation(s)
- Orhan Rasid
- G5 Chromatine et Infection, Institut Pasteur, Paris, France; Unité Cytokines & Inflammation, Institut Pasteur, Paris, France.
| | | | - Tiphaine Marie-Noelle Camarasa
- G5 Chromatine et Infection, Institut Pasteur, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | |
Collapse
|
23
|
Prince N, Penatzer JA, Dietz MJ, Boyd JW. Localized cytokine responses to total knee arthroplasty and total knee revision complications. J Transl Med 2020; 18:330. [PMID: 32867801 PMCID: PMC7461261 DOI: 10.1186/s12967-020-02510-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Background The study of localized immune-related factors has proven beneficial for a variety of conditions, and one area of interest in the field of orthopaedics is the impact of implants and localized infections on immune response. Several cytokines have shown increased systemic concentrations (in serum/plasma) in response to implants and infection, but tissue-level cytokines have not been investigated as thoroughly. Methods This exploratory study investigated tissue-level cytokines in a cohort of patients (N = 17) in response to total knee arthroplasty and total knee revision to better understand the immune response to implants and localized infection (e.g., prosthetic joint infection). The overall goal of this study was to provide insight into the localized cytokine response of tissues and identify tissue-level markers specific to inflammation caused by implants vs. inflammation caused by infection. Tissues were collected across several anatomical locations and assayed with a panel of 20 human inflammatory cytokines to understand spatial differences in cytokine levels. Results In this study, six cytokines were elevated in implanted joints, as compared to native joints: IL-10, IL-12p70, IL-13, IL-17A, IL-4, and TNF-α (p < 0.05). Seven cytokines showed infection-dependent increases in localized tissues: IL-1α, IL-1β, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β (p < 0.05). Conclusions This study demonstrated that differences exist in tissue-level cytokines in response to presence of implant, and some cytokines were specifically elevated for infection; these responses may be informative of overall tissue health. These results highlight the utility of investigating localized cytokine concentrations to offer novel insights for total knee arthroplasty and total knee revision procedures, as well as their complications. Ultimately, this information could provide additional, quantitative measurements of tissue to aid clinical decision making and patient treatment options.
Collapse
Affiliation(s)
- Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, 64 Medical Center Drive, 3900 HSS, P.O. Box 9196, Morgantown, WV, 26506-9196, USA.,Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julia A Penatzer
- C. Eugene Bennett Department of Chemistry, West Virginia University, 64 Medical Center Drive, 3900 HSS, P.O. Box 9196, Morgantown, WV, 26506-9196, USA.,Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Matthew J Dietz
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jonathan W Boyd
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA. .,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
24
|
Bauquier J, Tudor E, Bailey S. Effect of the p38 MAPK inhibitor doramapimod on the systemic inflammatory response to intravenous lipopolysaccharide in horses. J Vet Intern Med 2020; 34:2109-2116. [PMID: 32700419 PMCID: PMC7517855 DOI: 10.1111/jvim.15847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Doramapimod, a p38 MAPK inhibitor, is a potent anti‐inflammatory drug that decreases inflammatory cytokine production in equine whole blood in vitro. It may have benefits for treating systemic inflammation in horses. Objective To determine whether doramapimod is well tolerated when administered IV to horses, and whether it has anti‐inflammatory effects in horses in a low‐dose endotoxemia model. Animals Six Standardbred horses. Methods Tolerability study, followed by a blinded, randomized, placebo‐controlled cross‐over study. Horses were given doramapimod, and clinical and clinicopathological variables were monitored for 24 hours. Horses then were treated with doramapimod or placebo, followed by a low dose infusion of lipopolysaccharide (LPS). Clinical variables (heart rate, rectal temperature, noninvasive blood pressure), leukocyte count and tumor necrosis factor alpha (TNF‐α) and interleukin‐1 beta (IL‐1β) concentrations were measured at multiple time points until 6 hours post‐LPS infusion. Results No adverse effects or clinicopathological changes were seen in the safety study. When treated with doramapimod as compared to placebo, horses had significantly lower heart rates (P = .03), rectal temperatures (P = .03), and cytokine concentrations (P = .03 for TNF‐α and IL‐1β), and a significantly higher white blood cell count (P = .03) after LPS infusion. Conclusions and Clinical Importance Doramapimod has clinically relevant anti‐inflammatory effects in horses, likely mediated by a decrease in leukocyte activation and decrease in the release of pro‐inflammatory cytokines. To evaluate its potential as a novel treatment for systemic inflammatory response syndrome in horses, clinical trials will be necessary to determine its efficacy in naturally occurring disease.
Collapse
Affiliation(s)
- Jennifer Bauquier
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Elizabeth Tudor
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Simon Bailey
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Impact of Cytokines and Phosphoproteins in Response to Chronic Joint Infection. BIOLOGY 2020; 9:biology9070167. [PMID: 32708756 PMCID: PMC7407198 DOI: 10.3390/biology9070167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
The early cellular response to infection has been investigated extensively, generating valuable information regarding the mediators of acute infection response. Various cytokines have been highlighted for their critical roles, and the actions of these cytokines are related to intracellular phosphorylation changes to promote infection resolution. However, the development of chronic infections has not been thoroughly investigated. While it is known that wound healing processes are disrupted, the interactions of cytokines and phosphoproteins that contribute to this dysregulation are not well understood. To investigate these relationships, this study used a network centrality approach to assess the impact of individual cytokines and phosphoproteins during chronic inflammation and infection. Tissues were taken from patients undergoing total knee arthroplasty (TKA) and total knee revision (TKR) procedures across two tissue depths to understand which proteins are contributing most to the dysregulation observed at the joint. Notably, p-c-Jun, p-CREB, p-BAD, IL-10, IL-12p70, IL-13, and IFN-γ contributed highly to the network of proteins involved in aseptic inflammation caused by implants. Similarly, p-PTEN, IL-4, IL-10, IL-13, IFN-γ, and TNF-α appear to be central to signaling disruptions observed in septic joints. Ultimately, the network centrality approach provided insight into the altered tissue responses observed in chronic inflammation and infection.
Collapse
|
26
|
Im Y, Yoo H, Lee JY, Park J, Suh GY, Jeon K. Association of plasma exosomes with severity of organ failure and mortality in patients with sepsis. J Cell Mol Med 2020; 24:9439-9445. [PMID: 32639098 PMCID: PMC7417686 DOI: 10.1111/jcmm.15606] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
Current sepsis biomarkers may be helpful in determining organ failure and evaluating patient clinical course; however, direct molecular biomarkers to predict subsequent organ failure have not yet been discovered. Exosomes, a small population of extracellular vesicles, play an important role in the inflammatory response, coagulation process and cardiac dysfunction in sepsis. Nonetheless, the association of plasma exosome with severity and mortality of sepsis is not well known. Therefore, the overall levels of plasma exosome in sepsis patients were assessed and whether exosome levels were associated with organ failure and mortality was evaluated in the present study. Plasma level of exosomes was measured by ELISA. Among 220 patients with sepsis, 145 (66%) patients were diagnosed with septic shock. A trend of increased exosome levels in control, sepsis and septic shock groups was observed (204 µg/mL vs 525 µg/mL vs 802 µg/mL, P < 0.001). A positive linear relationship was observed between overall exosome levels and Sequential Organ Failure Assessment (SOFA) score in the study cohorts (r value = 0.47). When patients were divided into two groups according to best cut‐off level, a statistical difference in 28‐ and 90‐day mortality between patients with high and low plasma exosomes was observed. Elevated levels of plasma exosomes were associated with severity of organ failure and predictive of mortality in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Young Lee
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junseon Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gee Young Suh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Troia R, Mascalzoni G, Agnoli C, Lalonde-Paul D, Giunti M, Goggs R. Cytokine and Chemokine Profiling in Cats With Sepsis and Septic Shock. Front Vet Sci 2020; 7:305. [PMID: 32548135 PMCID: PMC7273843 DOI: 10.3389/fvets.2020.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Sepsis is a life-threatening condition associated with an exacerbated production of both pro- and anti-inflammatory cytokines that can promote a hyperactive response to infection or induce immunoparalysis. Data regarding the immune response to sepsis in cats are scarce. Establishing the profiles of cytokines and chemokines in feline sepsis to characterize the nature of the immune responses to sepsis might enable individualized treatments to be developed and targeted. Objective: To evaluate the cytokine and chemokine network in cats with sepsis and septic shock, and to investigate the associations of these analytes with disease severity and outcome. Methods: Blood samples prospectively collected at presentation of cats with sepsis and septic shock to two veterinary teaching hospitals were analyzed. Forty healthy cats were included as controls. A 19-plex feline cytokine/chemokine magnetic bead assay system was used to measure analytes in citrated plasma samples. Cytokine concentrations were compared between groups using the Kruskal-Wallis test with Dunn's post-hoc correction for multiple comparisons. Cytokine concentrations were compared between survivors and non-survivors with the Mann-Whitney U test. Odds ratios were calculated using logistic regression. A multivariable logistic regression model for prediction of septic shock was constructed. Results: The study enrolled 35 septic cats. Many cytokines were undetectable in both sick and healthy control cats and were excluded from subsequent analyses. Comparisons of cytokine concentrations among healthy controls, cats with sepsis (n = 12) and cats with septic shock (n = 23) revealed that sick cats (sepsis or septic shock) had significantly higher plasma concentrations of IL-6, IL-8, KC-like, and RANTES compared to healthy controls. The combination of MCP-1, Flt-3L, and IL-12 was predictive of septic shock. None of the cytokines analyzed was predictive of outcome in this study population. Conclusion: Plasma concentrations of IL-6, IL-8, KC-like, and RANTES are increased in cats with sepsis and may play important roles in pathogenesis. Multivariable modeling suggested that analysis of cytokines might aid differentiation of septic shock from sepsis. None of the cytokines analyzed was predictive of outcome. Measurement of these cytokines might enable future studies to better diagnose and characterize feline sepsis and septic shock.
Collapse
Affiliation(s)
- Roberta Troia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giulia Mascalzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Denise Lalonde-Paul
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Massimo Giunti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
28
|
Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med 2020; 12:e10128. [PMID: 32176432 PMCID: PMC7136965 DOI: 10.15252/emmm.201810128] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.
Collapse
Affiliation(s)
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care MedicineUniversity College LondonLondonUK
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care MedicineCentre of Postgraduate Medical EducationWarsawPoland
| |
Collapse
|
29
|
Wang Z, Kong L, Tan S, Zhang Y, Song X, Wang T, Lin Q, Wu Z, Xiang P, Li C, Gao L, Liang X, Ma C. Zhx2 Accelerates Sepsis by Promoting Macrophage Glycolysis via Pfkfb3. THE JOURNAL OF IMMUNOLOGY 2020; 204:2232-2241. [DOI: 10.4049/jimmunol.1901246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 01/08/2023]
|
30
|
Zeng Y, Shi Y, Zhan H, Liu W, Cai G, Zhong H, Wang Y, Chen S, Huang S, Wu W. Reduction of Silent Information Regulator 1 Activates Interleukin-33/ST2 Signaling and Contributes to Neuropathic Pain Induced by Spared Nerve Injury in Rats. Front Mol Neurosci 2020; 13:17. [PMID: 32116550 PMCID: PMC7028692 DOI: 10.3389/fnmol.2020.00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as key factors in inflammatory diseases. Moreover, accumulating evidence has suggested that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory cascade. SIRT1 has been shown to suppress the expression of inflammatory cytokines. However, the effects of SIRT1 on IL-33/ST2 signaling and initiation of the inflammatory cascade via modulation of TNF-α and IL-1β by IL-33 remain unclear. In the present study, we found that the dorsal root ganglion (DRG) IL-33 and ST2 were upregulated in a rat model of spared nerve injury (SNI) and intrathecal injection of either IL-33 or ST2 antibodies alleviated mechanical allodynia and downregulated TNF-α and IL-1β induced by SNI. In addition, activation of SIRT1 decreased enhanced DRG IL-33/ST2 signaling in SNI rats. Artificial inactivation of SIRT1 via intrathecal injection of an SIRT1 antagonist could induce mechanical allodynia and upregulate IL-33 and ST2. These results demonstrated that reduction in SIRT1 could induce upregulation of DRG IL-33 and ST2 and contribute to mechanical allodynia induced by SNI in rats.
Collapse
Affiliation(s)
- Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shangjie Chen
- Department of Rehabilitation, Baoan Hospital, Southern Medical University, Shenzhen, China
| | - Shimin Huang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Abstract
Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.
Collapse
|
32
|
Bauquier JR, Tennent-Brown BS, Tudor E, Bailey SR. Anti-inflammatory effects of a p38 MAP kinase inhibitor, doramapimod, against bacterial cell wall toxins in equine whole blood. Vet Immunol Immunopathol 2019; 220:109994. [PMID: 31877483 DOI: 10.1016/j.vetimm.2019.109994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
Doramapimod (BIRB-796-BS), is an anti-inflammatory compound, acting through p38 MAPK inhibition, but its anti-inflammatory effects have not previously been studied in the horse. Whole blood aliquots from healthy horses diluted 1:1 with cell culture medium were incubated for 21 h with 1 μg/ml of lipopolysaccharide (LPS), lipoteichoic acid (LTA) or peptidoglycan (PGN) in the presence of increasing concentrations of doramapimod (3 × 10-8 M to 10-5 M). Cell bioassays were used to measure TNF-α and IL-1β activity. Doramapimod significantly and potently inhibited TNF-α and IL-1β activity induced by all three bacterial toxins. There was no significant difference in IC50 or maximum inhibition of TNF-α or IL-1β production between any of the toxins. Maximum inhibition of IL-1β was higher than that of TNF-α for all toxins, and this difference was significant for LPS (P = 0.04). Doramapimod was a potent inhibitor of TNF-α and IL-1β for inflammation induced by LPS, LTA and PGN, with potency much greater than that of other drugs previously tested using similar methods.
Collapse
Affiliation(s)
- Jennifer R Bauquier
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia.
| | - Brett S Tennent-Brown
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| | - Elizabeth Tudor
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| | - Simon R Bailey
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| |
Collapse
|
33
|
Peng Y, Liu L, Wang Y, Yao J, Jin F, Tao T, Yuan H, Shi L, Lu S. Treatment with toll-like receptor 2 inhibitor ortho-vanillin alleviates lipopolysaccharide-induced acute kidney injury in mice. Exp Ther Med 2019; 18:4829-4837. [PMID: 31798708 PMCID: PMC6880436 DOI: 10.3892/etm.2019.8157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Reducing inflammation is a promising approach for the prevention and treatment of septic acute kidney injury (AKI), since AKI is characterized by excessive inflammation in the kidney. Previous studies have demonstrated that toll-like receptor 2 (TLR2) is overstimulated, which promotes inflammation by activating the NF-κB signaling pathway, in a lipopolysaccharide (LPS)-induced model of AKI mice. For the present study, it was hypothesized that TLR2 inhibition could reduce inflammation and consequently prevent septic AKI. Therefore, the potential renal protective effects of ortho-vanillin (OV), an inhibitor of TLR2, were investigated in the present study in vitro and in vivo. In vitro treatment with OV on LPS-stimulated mouse podocyte cell line MPC5 did not affect TLR2 expression but interrupted the interaction between TLR2 and its downstream adaptor MyD88, resulting in the reduction of inflammatory cytokines IL-6 and TNF-α expression. In vivo OV treatment in an LPS-challenged mouse model effectively alleviated LPS-induced kidney injury as indicated by histology analysis and the significantly reduced blood urea nitrogen and serum creatinine levels. Additionally, inflammatory cytokines TNF-α, IL-6 and IL-1β expression were also significantly reduced in mice with OV treatment. Signaling pathway analysis further demonstrated that OV treatment did not affect the expression of TLR2 and p65 but suppressed p65 phosphorylation. Taken together, data from the present study demonstrated that OV was effective in protecting renal function against LPS-induced AKI through the inhibition of TLR2/NF-κB signaling and subsequent inflammatory cytokine production. These findings indicated that OV or targeting TLR2 signaling in general, represents a novel therapeutic approach for use in the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China.,Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Long Liu
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Yongfang Wang
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jianyin Yao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Fang Jin
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Tao Tao
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hua Yuan
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Lei Shi
- Intensive Care Unit, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shiqi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
34
|
Köhler J, Maletzki C, Koczan D, Frank M, Trepesch C, Revenko AS, Crosby JR, Macleod AR, Mikkat S, Oehmcke-Hecht S. The contact system proteases play disparate roles in streptococcal sepsis. Haematologica 2019; 105:1424-1435. [PMID: 31320552 PMCID: PMC7193472 DOI: 10.3324/haematol.2019.223545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III -Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technologie, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Trepesch
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Jeffrey R Crosby
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - A Robert Macleod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
35
|
Casey LM, Kakade S, Decker JT, Rose JA, Deans K, Shea LD, Pearson RM. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials 2019; 218:119333. [PMID: 31301576 DOI: 10.1016/j.biomaterials.2019.119333] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Developing biomaterials to control the responsiveness of innate immune cells represents a clinically relevant approach to treat diseases with an underlying inflammatory basis, such as sepsis. Sepsis can involve activation of Toll-like receptor (TLR) signaling, which activates numerous inflammatory pathways. The breadth of this inflammation has limited the efficacy of pharmacological interventions that target a single molecular pathway. Here, we developed cargo-less particles as a single-agent, multi-target platform to elicit broad anti-inflammatory action against innate immune cells challenged by multiple TLR agonists. The particles, prepared from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA), displayed potent molecular weight-, polymer composition-, and charge-dependent immunomodulatory properties, including downregulation of TLR-induced costimulatory molecule expression and cytokine secretion. Particles prepared using the anionic surfactant poly(ethylene-alt-maleic acid) (PEMA) significantly blunted the responses of antigen presenting cells to TLR4 (lipopolysaccharide) and TLR9 (CpG-ODN) agonists, demonstrating broad inhibitory activity to both extracellular and intracellular TLR ligands. Interestingly, particles prepared using poly(vinyl alcohol) (PVA), a neutrally-charged surfactant, only marginally inhibited inflammatory cytokine secretions. The biochemical pathways modulated by particles were investigated using TRanscriptional Activity CEll aRrays (TRACER), which implicated IRF1, STAT1, and AP-1 in the mechanism of action for PLA-PEMA particles. Using an LPS-induced endotoxemia mouse model, administration of PLA-PEMA particles prior to or following a lethal challenge resulted in significantly improved mean survival. Cargo-less particles affect multiple biological pathways involved in the development of inflammatory responses by innate immune cells and represent a potentially promising therapeutic strategy to treat severe inflammation.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Sandeep Kakade
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Justin A Rose
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Kyle Deans
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA.
| | - Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109-2099, USA; Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
36
|
Ward DB, Valentovic MA. Contrast Induced Acute Kidney Injury and Direct Cytotoxicity of Iodinated Radiocontrast Media on Renal Proximal Tubule Cells. J Pharmacol Exp Ther 2019; 370:160-171. [PMID: 31101680 DOI: 10.1124/jpet.119.257337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
The administration of intravenous iodinated radiocontrast media (RCM) to visualize internal structures during diagnostic procedures has increased exponentially since their first use in 1928. A serious side effect of RCM exposure is contrast-induced acute kidney injury (CI-AKI), which is defined as an abrupt and prolonged decline in renal function occurring 48-72 hours after injection. Multiple attempts have been made to decrease the toxicity of RCM by altering ionic strength and osmolarity, yet there is little evidence to substantiate that a specific RCM is superior in avoiding CI-AKI. RCM-associated kidney dysfunction is largely attributed to alterations in renal hemodynamics, specifically renal vasoconstriction; however, numerous studies indicate direct cytotoxicity as a source of epithelial damage. Exposure of in vitro renal proximal tubule cells to RCM has been shown to affect proximal tubule epithelium in the following manner: 1) changes to cellular morphology in the form of vacuolization; 2) increased production of reactive oxygen species, resulting in oxidative stress; 3) mitochondrial dysfunction, resulting in decreased efficiency of the electron transport chain and ATP production; 4) perturbation of the protein folding capacity of the endoplasmic reticulum (ER) (activating the unfolded protein response and inducing ER stress); and 5) decreased activity of cell survival kinases. The present review focuses on the direct cytotoxicity of RCM on proximal tubule cells in the absence of in vivo complications, such as alterations in renal hemodynamics or cytokine influence.
Collapse
Affiliation(s)
- Dakota B Ward
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
37
|
Larian N, Ensor M, Thatcher SE, English V, Morris AJ, Stromberg A, Cassis LA. Pseudomonas aeruginosa-derived pyocyanin reduces adipocyte differentiation, body weight, and fat mass as mechanisms contributing to septic cachexia. Food Chem Toxicol 2019; 130:219-230. [PMID: 31078726 DOI: 10.1016/j.fct.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa, a leading cause of sepsis, produces pyocyanin, a blue-pigmented virulence factor. Sepsis is associated with cachexia, but mechanisms are unknown and conventional nutrition approaches are not effective treatments. Pyocyanin has affinity for the aryl hydrocarbon receptor (AhR), which is expressed on adipocytes and regulates adipocyte differentiation. The purpose of this study was to define in vitro and in vivo effects of pyocyanin on adipocyte differentiation and body weight regulation as relates to septic cachexia. In 3T3-L1 preadipocytes, pyocyanin activated AhR and its downstream marker CYP1a1, and reduced differentiation. Administration of pyocyanin to male C57BL/6J mice acutely reduced body temperature with altered locomotion, but caused sustained weight loss. Chronic pyocyanin administration to male and female C57BL/6J mice resulted in sustained reductions in body weight and fat mass, with adipose-specific AhR activation. Pyocyanin-treated male mice had decreased energy expenditure and physical activity, and increased adipose explant lipolysis. In females, pyocyanin caused robust reductions in body weight, adipose-specific AhR activation, and increased expression of inflammatory cytokines in differentiated adipocytes. These results demonstrate that pyocyanin reduces adipocyte differentiation and decreases body weight and fat mass in male and female mice, suggesting that pyocyanin may play a role in septic cachexia.
Collapse
Affiliation(s)
- Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mark Ensor
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Victoria English
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrew J Morris
- Department of Internal Medicine,University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
38
|
Granslo HN, Aarag Fredheim EG, Esaiassen E, Christophersen L, Jensen PØ, Mollnes TE, Moser C, Flaegstad T, Klingenberg C, Cavanagh JP. The synthetic antimicrobial peptide LTX21 induces inflammatory responses in a human whole blood model and a murine peritoneum model. APMIS 2019; 127:475-483. [PMID: 30916807 DOI: 10.1111/apm.12946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
Abstract
The global spread of antimicrobial resistance and the increasing number of immune-compromised patients are major challenges in modern medicine. Targeting bacterial virulence or the human host immune system to increase host defence are important strategies in the search for novel antimicrobial drugs. We investigated the inflammatory response of the synthetic short antimicrobial peptide LTX21 in two model systems: a human whole blood ex vivo model and a murine in vivo peritoneum model - both reflecting early innate immune response. In the whole blood model, LTX21 increased the secretion of a range of different cytokines, decreased the level of tumour necrosis factor (TNF) and activated the complement system. In a haemolysis assay, we found 2.5% haemolysis at a LTX21 concentration of 500 mg/L. In the murine model, increased influx of white blood cells (WBCs) and polymorphonuclear neutrophils (PMNs) in the murine peritoneal cavity was observed after treatment with LTX21. In addition, LTX21 increased monocyte chemoattractant protein-1 (MCP-1). In conclusion, LTX21 affected the inflammatory response; the increase in cytokine secretion, complement activation and WBC influx indicates an activated inflammatory response. The present results indicate the impact of LTX21 on the host-pathogen interplay. Whether this will also affect the course of infection has to be investigated.
Collapse
Affiliation(s)
- Hildegunn Norbakken Granslo
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Elizabeth G Aarag Fredheim
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Microbial Pharmacology and Population Ecology, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Eirin Esaiassen
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway.,Department of Immunology, Oslo University Hospital, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Trond Flaegstad
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Claus Klingenberg
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
39
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin – implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01–813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
40
|
Assessment of chemokine and cytokine signatures in patients with dengue infection: A hospital-based study in Kolkata, India. Acta Trop 2019; 190:73-79. [PMID: 30395811 DOI: 10.1016/j.actatropica.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023]
Abstract
Dengue fever is an acute viral infection transmitted by arthropods but may evolve to severe clinical manifestations. Descriptions of the role of circulating immune modulators such as cytokines or chemokines in dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from West Bengal, eastern India, with respect to clinical profile and pro-inflammatory and inflammatory cytokines. We evaluated the profile of both inflammatory and anti-inflammatory cytokines (IFNγ, IL6, IL10, IL12 and TGFβ) and chemokines (IL8, CXCL9, CXCL10 and RANTES) in 100 hospitalized NS1/IgM confirmed Dengue patients during the epidemic in West Bengal during 2017. Additionally, all necessary blood investigations of the study subjects were performed. The patients mostly hailed from Kolkata, followed by Nadia, 24 Parganas (North and South), Murshidabad and Midnapore. The most common presentations apart from fever and bodyache were gastrointestinal symptoms. An elevated levels of cytokines IL6 and IL10 chemokine IL8 and CXCL10 along with decreased RANTES were found in the patients with Severe Dengue as compared to mild forms of dengue (p < 0.0001) during 3-6 days of infections. A significant association was obtained between most of cytokine and increased SGPT, haematocrit, albumin and decreased platelet count, whereas a negative correlation with the level of RANTES to haematocrit (r=-0.220 with p = 0.029) was found in severe dengue cases with altered liver function parameters. This is the first study demonstrating cytokine and chemokine association with dengue severity from the eastern part of India. Taken together, this study demonstrated that the altered expression levels of IL6, IL10, IL8, CXCL10 and RANTES had significant associations with dengue severity parameters.
Collapse
|
41
|
von Knethen A, Brüne B. Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. Int J Mol Sci 2019; 20:ijms20020346. [PMID: 30654448 PMCID: PMC6359123 DOI: 10.3390/ijms20020346] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| |
Collapse
|
42
|
Abstract
Despite advances in intensive care unit interventions, including the use of specific antibiotics and anti-inflammation treatment, sepsis with concomitant multiple organ failure is the most common cause of death in many acute care units. In order to understand the mechanisms of clinical sepsis and develop effective therapeutic modalities, there is a need to use effective experimental models that faithfully replicate what occurs in patients with sepsis. Several models are commonly used to study sepsis, including intravenous endotoxin challenge, injection of live organisms into the peritoneal cavity, establishing abscesses in the extremities, and the induction of experimental polymicrobial peritonitis via cecal ligation and puncture (CLP). Here, we describe the surgical procedure of CLP in mice, which has been demonstrated to closely replicate the nature and course of clinical sepsis in human subjects.
Collapse
|
43
|
Gholamnezhad Z, Fatehi Hassanabad Z. Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1073-1078. [PMID: 30524682 PMCID: PMC6281070 DOI: 10.22038/ijbms.2018.27798.6773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine in the presence and absence of a potent PKC inhibitor (chelerythrine) and nonspecific NO inhibitor (L-NAME) as well as responses to acetylcholine and sodium nitroprusside (SNP) were examined. Results: LPS (10 mg/kg, IP) treatment resulted in a lower systemic pressure and reduction of responses to vasoconstrictor and vasodilator agents (P<0.05 to P<0.01). The contractile response to phenylephrine and the relaxation response to acetylcholine were significantly blunted in isolated kidneys removed from LPS-treated rats. L-NAME (10 µM) preincubation modified the responses to acetylcholine in isolated kidneys of control animal (P<0.001) but not in LPS-treated rats. While, chelerythrine (10 µM) preincubation partially restored response to phenylephrine in LPS-treated tissues. Conclusion: Present study highlighted that five hours of intraperitoneal endotoxin injection is adequate to reduce renal basal perfusion pressure. These results also suggest that PKC inhibition may have a beneficial role in vascular hyporesponsiveness induced by LPS. Although our study partly elaborated on the effects of LPS on isolated renal vascular responses to vasoactive agents, further studies are required to explain how LPS exerts its renal vascular effects.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
44
|
Denstaedt SJ, Singer BH, Standiford TJ. Sepsis and Nosocomial Infection: Patient Characteristics, Mechanisms, and Modulation. Front Immunol 2018; 9:2446. [PMID: 30459764 PMCID: PMC6232897 DOI: 10.3389/fimmu.2018.02446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a leading cause of death worldwide. After initial trials modulating the hyperinflammatory phase of sepsis failed, generations of researchers have focused on evaluating hypo-inflammatory immune phenotypes. The main goal has been to develop prognostic biomarkers and therapies to reduce organ dysfunction, nosocomial infection, and death. The depressed host defense in sepsis has been characterized by broad cellular reprogramming including lymphocyte exhaustion, apoptosis, and depressed cytokine responses. Despite major advances in this field, our understanding of the dynamics of the septic host response and the balance of inflammatory and anti-inflammatory cellular programs remains limited. This review aims to summarize the epidemiology of nosocomial infections and characteristic immune responses associated with sepsis, as well as immunostimulatory therapies currently under clinical investigation.
Collapse
Affiliation(s)
| | | | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Cavaillon JM. Historical links between toxinology and immunology. Pathog Dis 2018; 76:4923027. [PMID: 29718183 DOI: 10.1093/femspd/fty019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/01/2018] [Indexed: 01/28/2023] Open
Abstract
Research on bacterial toxins is closely linked to the birth of immunology. Our understanding of the interaction of bacterial protein toxins with immune cells has helped to decipher immunopathology, develop preventive and curative treatments for infections, and propose anti-cancer immunotherapies. The link started when Behring and Kitasato demonstrated that serotherapy was effective against 'the strangling angel', namely diphtheria, and its dreadful toxin discovered by Roux and Yersin. The antitoxin treatment helped to save thousands of children. Glenny demonstrated the efficacy of the secondary immune response compared to the primary one. Ramon described anatoxins that allowed the elaboration of effective vaccines and discovered the use of adjuvant to boost the antibody response. Similar approaches were later made for the tetanus toxin. Studying antitoxin antibodies Ehrlich demonstrated, for the first time, the transfer of immunity from mother to newborns. In 1989 Marrack and Kappler coined the concept of 'superantigens' to characterize protein toxins that induce T-lymphocyte proliferation, and cytokine release by both T-lymphocytes and antigen presenting cells. More recently, immunotoxins have been designed to kill cancer cells targeted by either specific antibodies or cytokines. Finally, the action of IgE antibodies against toxins may explain their persistence through evolution despite their side effect in allergy.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines and Inflammation, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
46
|
Patel A, Joseph J, Periasamy H, Mokale S. Azithromycin in Combination with Ceftriaxone Reduces Systemic Inflammation and Provides Survival Benefit in a Murine Model of Polymicrobial Sepsis. Antimicrob Agents Chemother 2018; 62:e00752-18. [PMID: 29967025 PMCID: PMC6125560 DOI: 10.1128/aac.00752-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a life-threatening systemic inflammatory condition triggered as a result of an excessive host immune response to infection. In the past, immunomodulators have demonstrated a protective effect in sepsis. Azithromycin (a macrolide antibiotic) has immunomodulatory activity and was therefore evaluated in combination with ceftriaxone in a clinically relevant murine model of sepsis induced by cecal ligation and puncture (CLP). First, mice underwent CLP and 3 h later were administered the vehicle or a subprotective dose of ceftriaxone (100 mg/kg of body weight subcutaneously) alone or in combination with an immunomodulatory dose of azithromycin (100 mg/kg intraperitoneally). Survival was monitored for 5 days. In order to assess the immunomodulatory activity, parameters such as plasma and lung cytokine (interleukin-6 [IL-6], IL-1β, tumor necrosis factor alpha) concentrations, the plasma glutathione (GSH) concentration, plasma and lung myeloperoxidase (MPO) concentrations, body temperature, blood glucose concentration, and total white blood cell count, along with the bacterial load in blood, peritoneal lavage fluid, and lung homogenate, were measured 18 h after CLP challenge. Azithromycin in the presence of ceftriaxone significantly improved the survival of CLP-challenged mice. Further, the combination attenuated the elevated levels of inflammatory cytokines and MPO in plasma and lung tissue and increased the body temperature and blood glucose and GSH concentrations, which were otherwise markedly decreased in CLP-challenged mice. Ceftriaxone produced a significant reduction in the bacterial load, while coadministration of azithromycin did not produce a further reduction. Therefore, the survival benefit offered by azithromycin was due to immunomodulation and not its antibacterial action. The findings of this study indicate that azithromycin, in conjunction with appropriate antibacterial agents, could provide clinical benefits in sepsis.
Collapse
Affiliation(s)
- Anasuya Patel
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Jiji Joseph
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Santosh Mokale
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
| |
Collapse
|
47
|
Průcha M, Zazula R, Russwurm S. Sepsis Diagnostics in the Era of "Omics" Technologies. Prague Med Rep 2018; 119:9-29. [PMID: 29665344 DOI: 10.14712/23362936.2018.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Sepsis is a multifactorial clinical syndrome with an extremely dynamic clinical course and with high diverse clinical phenotype. Early diagnosis is crucial for the final clinical outcome. Previous studies have not identified a biomarker for the diagnosis of sepsis which would have sufficient sensitivity and specificity. Identification of the infectious agents or the use of molecular biology, next gene sequencing, has not brought significant benefit for the patient in terms of early diagnosis. Therefore, we are currently searching for biomarkers, through "omics" technologies with sufficient diagnostic specificity and sensitivity, able to predict the clinical course of the disease and the patient response to therapy. Current progress in the use of systems biology technologies brings us hope that by using big data from clinical trials such biomarkers will be found.
Collapse
Affiliation(s)
- Miroslav Průcha
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic.
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Stefan Russwurm
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| |
Collapse
|
48
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
49
|
da Silva LS, Catalão CHR, Felippotti TT, de Oliveira- Pelegrin GR, Petenusci S, de Freitas LAP, Rocha MJA. Curcumin suppresses inflammatory cytokines and heat shock protein 70 release and improves metabolic parameters during experimental sepsis. PHARMACEUTICAL BIOLOGY 2017; 55:269-276. [PMID: 27927067 PMCID: PMC6130593 DOI: 10.1080/13880209.2016.1260598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/09/2016] [Indexed: 05/31/2023]
Abstract
CONTEXT Curcumin has been reported to have anti-inflammatory, antioxidant and hypoglycaemic properties, besides reducing mortality in sepsis. OBJECTIVE This study evaluates the biological activities of a curcumin dispersion formulated by spray-drying in experimental sepsis. MATERIALS AND METHODS Male Wistar rats were subjected to sepsis by caecal ligation and puncture (CLP), controls were sham operated. The animals were treated with curcumin dispersion (100 mg/kg, p.o.) or water for 7 days prior to CLP and at 2 h after surgery. One group was used to analyze curcumin absorption through HPLC; another had the survival rate assessed during 48 h; and from a third group, blood was collected by decapitation to analyze metabolic and inflammatory parameters. RESULTS The plasma curcumin levels reached 2.5 ng/mL at 4 h, dropped significantly (p < 0.001) at 6 h (1.2 ng/mL), and were undetectable at 24 h in both groups. Curcumin temporarily increased the survival rate of the septic rats by 20%. Moreover, it attenuated glycaemia (p < 0.05) and volemia (p < 0.05) alterations typically observed during sepsis, and decreased the levels of the proinflammatory cytokines IL-1β and IL-6 in plasma (p < 0.001) and peritoneal lavage fluid (p < 0.05) of septic rats. Serum HSP70 levels were decreased (p < 0.01) at 24 h after CLP. DISCUSSION AND CONCLUSION Our results show that the curcumin dispersion dose employed was not detrimental to the septic rats. In fact, it temporarily increased their survival rate, improved important metabolic parameters, reduced proinflammatory cytokines and HSP70 production.
Collapse
Affiliation(s)
- Letycia Silvano da Silva
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neuroscience and Behavior Sciences, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tatiana Tocchini Felippotti
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Sérgio Petenusci
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria José Alves Rocha
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2017; 149:45-53. [PMID: 29056305 DOI: 10.1016/j.toxicon.2017.10.016] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Endotoxins and exotoxins are among the most potent bacterial inducers of cytokines. During infectious processes, the production of inflammatory cytokines including tumor necrosis factor (TNF), interleukin-1β (IL-1β), gamma interferon (IFNγ) and chemokines orchestrates the anti-infectious innate immune response. However, an overzealous production, leading up to a cytokine storm, can be deleterious and contributes to mortality consecutive to sepsis or toxic shock syndrome. Endotoxins of Gram-negative bacteria (lipopolysaccharide, LPS) are particularly inflammatory because they generate auto-amplificatory loops after activation of monocytes/macrophages. LPS and numerous pore-forming exotoxins also activate the inflammasome, the molecular platform that allows the release of mature IL-1β and IL-18. Among exotoxins, some behave as superantigens, and as such activate the release of cytokines by T-lymphocytes. In most cases, pre-exposure to exotoxins enhances the cytokine production induced by LPS and its lethality, whereas pre-exposure to endotoxin usually results in tolerance. In this review we recall the various steps, which, from the very early discovery of pyrogenicity induced by bacterial products, ended to the discovery of the endogenous pyrogen. Furthermore, we compare the specific characteristics of endotoxins and exotoxins in their capacity to induce inflammatory cytokines.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 Rue Dr. Roux, 75015, Paris, France.
| |
Collapse
|