1
|
Guéniche N, Lakehal Z, Habauzit D, Bruyère A, Fardel O, Le Hégarat L, Huguet A. Combined in silico and in vitro approaches to identify P-glycoprotein-inhibiting pesticides. J Biochem Mol Toxicol 2024; 38:e23588. [PMID: 37985955 DOI: 10.1002/jbt.23588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The P-glycoprotein (P-gp) efflux pump plays a major role in xenobiotic detoxification. The inhibition of its activity by environmental contaminants remains however rather little characterised. The present study was designed to develop a combination of different approaches to identify P-gp inhibitors among a large number of pesticides using in silico and in vitro models. First, the prediction performance of four web tools was evaluated alone or in combination using a set of recently marketed drugs. The best combination of web tools-AdmetSAR2.0/PgpRules/pkCSM-was next used to predict P-gp activity inhibition by 762 pesticides. Among the 187 pesticides predicted to be P-gp inhibitors, 11 were tested in vitro for their ability to inhibit the efflux of reference substrates (rhodamine 123 and Hoechst 33342) in P-gp overexpressing MCF7R cells and to inhibit the efflux of the reference substrate rhodamine 123 in the Caco-2 cell monolayer. In MCF7R cell assays, ivermectin B1a, emamectin B1 benzoate, spinosad, dimethomorph and tralkoxydim inhibited P-gp activity; ivermectin B1a, emamectin B1 benzoate and spinosad were determined to be stronger inhibitors (half-maximal inhibitory concentration [IC50 ] of 3 ± 1, 5 ± 1 and 7 ± 1 µM, respectively) than dimethomorph and tralkoxydim (IC50 of 102 ± 7 and 88 ± 7 µM, respectively). Ivermectin B1a, emamectin B1 benzoate, spinosad and dimethomorph also inhibited P-gp activity in Caco-2 cell monolayer assays, with dimethomorph being a weaker P-gp inhibitor. These combined approaches could be used to identify P-gp inhibitors among food contaminants, but need to be optimised and adapted for high-throughput screening.
Collapse
Affiliation(s)
- Nelly Guéniche
- Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Zeineb Lakehal
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Denis Habauzit
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Arnaud Bruyère
- Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
| | - Olivier Fardel
- University hospital center of Rennes, Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
| | - Ludovic Le Hégarat
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Antoine Huguet
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| |
Collapse
|
2
|
Michel ME, Wen CC, Yee SW, Giacomini KM, Hamdoun A, Nicklisch SCT. TICBase: Integrated Resource for Data on Drug and Environmental Chemical Interactions with Mammalian Drug Transporters. Clin Pharmacol Ther 2023; 114:1293-1303. [PMID: 37657924 DOI: 10.1002/cpt.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.
Collapse
Affiliation(s)
- Matthew E Michel
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | | | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
4
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
5
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
7
|
Chedik L, Mias-Lucquin D, Fardel O, Delalande O, Bruyere A. Interactions of organophosphorus pesticides with ATP-Binding Cassette (ABC) drug transporters. Xenobiotica 2022; 52:644-652. [PMID: 36149323 DOI: 10.1080/00498254.2022.2128467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although pharmaceutical companies have to study drug transporter interaction, environmental contaminant interactions with these transporters are not well characterized. In this study, we demonstrated using in vitro transfected cell line that some organophosphorus pesticides are able to interact with drug efflux transporters like P-glycoprotein, BCRP and MRPs.According to our results, dibrom was found to inhibit only Hoechst binding site of P-gp with an IC50 closed to 77 µM, phosmet inhibited BCRP efflux with an IC50 of 42 µM and only profenofos was able to inhibit BCRP, MRPs and two P-gp binding sites. As profenofos appeared to be a potent ABC transporter inhibitor, we studied its potential substrate property towards P-gp.Using a docking approach, we developed an in silico tool to study pesticide properties to be a probe or inhibitor of P-gp transporter. From both in silico and in vitro results, profenofos was not considered as a P-gp substrate.Combining both in vitro and docking methods appears to be an attractive approach to select pesticides that would not pass into the blood systemic circulation.
Collapse
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Mias-Lucquin
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes1, 35043 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes1, 35043 Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
8
|
Xu S, Hao Z, Li Y, Zhou Y, Shao R, Chen R, Zheng M, Xu Y, Wang H. Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119562. [PMID: 35659910 DOI: 10.1016/j.envpol.2022.119562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Collapse
Affiliation(s)
- Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Floerl S, Kuehne A, Hagos Y. Functional characterization and comparison of human and mouse organic anion transporter 1 as drugs and pesticides uptake carrier. Eur J Pharm Sci 2022; 175:106217. [DOI: 10.1016/j.ejps.2022.106217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
|
10
|
Romersi RF, Nicklisch SCT. Interactions of Environmental Chemicals and Natural Products With ABC and SLC Transporters in the Digestive System of Aquatic Organisms. Front Physiol 2022; 12:767766. [PMID: 35095552 PMCID: PMC8793745 DOI: 10.3389/fphys.2021.767766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.
Collapse
|
11
|
Nicklisch SCT, Pouv AK, Rees SD, McGrath AP, Chang G, Hamdoun A. Transporter-interfering chemicals inhibit P-glycoprotein of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109101. [PMID: 34116183 DOI: 10.1016/j.cbpc.2021.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Marine pollutants bioaccumulate at high trophic levels of marine food webs and are transferred to humans through consumption of apex species. Yellowfin tuna (Thunnus albacares) are marine predators, and one of largest commercial fisheries in the world. Previous studies have shown that yellowfin tuna can accumulate high levels of persistent organic pollutants, including Transporter Interfering Chemicals (TICs), which are chemicals shown to bind to mammalian xenobiotic transporters and interfere with their function. Here, we examined the extent to which these same compounds might interfere with the activity of the yellowfin tuna (Thunnus albacares) ortholog of this transporter. To accomplish this goal we identified, expressed, and functionally assayed tuna ABCB1. The results demonstrated a common mode of vertebrate ABCB1 interaction with TICs that predicts effects across these species, based on high conservation of specific interacting residues. Importantly several TICs showed potent inhibition of Ta-ABCB1, such as the organochlorine pesticides Endrin (EC50 = 1.2 ± 0.2 μM) and Mirex (EC50 = 2.3 ± 0.9 μM). However, unlike the effects observed on mouse ABCB1, low concentrations of the organochlorine pesticide TICs p,p'-DDT and its metabolite p,p'-DDD co-stimulated verapamil-induced Ta-ABCB1 ATPase activity possibly suggesting a low transport activity for these ligands in tuna. These results provide a mechanistic basis for understanding the potential vulnerability of tuna to these ubquitous pollutants.
Collapse
Affiliation(s)
- Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States of America.
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States of America.
| | - Steven D Rees
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive #0754, University of California, San Diego, La Jolla, CA 92093, United States of America.
| | - Aaron P McGrath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive #0754, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive #0754, University of California, San Diego, La Jolla, CA 92093, United States of America.
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, United States of America.
| |
Collapse
|
12
|
Abstract
Numerous prescribed drugs and herbal and dietary supplements have been reported to cause drug-induced acute liver injury, which is a frequent cause of acute liver failure (ALF). It is a tremendous challenge with ever-increasing drug application in the medication system for huge populations. Drug-induced acute liver injury can lead to diverse pathologies similar to acute and chronic hepatitis, acute liver failure, biliary obstruction, fatty liver disease, and so on. Recently, extensive work demonstrated that isoflavones play an essential and protecting role in drug-induced liver injury (DILI). The isoflavones mediated hepatoprotection by modulating specific genes linked with control of cellular redox homeostasis and inflammatory responses. Isoflavones upregulate oxidative stress-responsive nuclear factor erythroid 2-like 2 (Nrf2), downregulate inflammatory nuclear factor-κB (NF-κB) signaling pathways, and modulate a balance between cell survival and death. Moreover, isoflavones actively inhibit the expression of cytochromes P450 (CYPs) enzyme during drug metabolism. Moreover, isoflavones are also linked with farnesoid X receptor (FXR) activation and signal transducer and activator of transcription factor 3 (STAT3) phosphorylation in hepatoprotection DILI. In vivo and in vitro studies clearly stated that isoflavones bear strong antioxidant potential and promising agents for hepatotoxicity prevention and stressed their potential role as therapeutic supplements in DILI. The current review will elaborate on isoflavones’ preventive and therapeutic potential concisely and highlight various molecular targets to exert a protective effect on DILI.
Collapse
|
13
|
Haberkorn B, Fromm MF, König J. Transport of Drugs and Endogenous Compounds Mediated by Human OCT1: Studies in Single- and Double-Transfected Cell Models. Front Pharmacol 2021; 12:662535. [PMID: 33967805 PMCID: PMC8100673 DOI: 10.3389/fphar.2021.662535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Organic Cation Transporter 1 (OCT1, gene symbol: SLC22A1) is predominately expressed in human liver, localized in the basolateral membrane of hepatocytes and facilitates the uptake of endogenous compounds (e.g. serotonin, acetylcholine, thiamine), and widely prescribed drugs (e.g. metformin, fenoterol, morphine). Furthermore, exogenous compounds such as MPP+, ASP+ and Tetraethylammonium can be used as prototypic substrates to study the OCT1-mediated transport in vitro. Single-transfected cell lines recombinantly overexpressing OCT1 (e.g., HEK-OCT1) were established to study OCT1-mediated uptake and to evaluate transporter-mediated drug-drug interactions in vitro. Furthermore, double-transfected cell models simultaneously overexpressing basolaterally localized OCT1 together with an apically localized export protein have been established. Most of these cell models are based on polarized grown MDCK cells and can be used to analyze transcellular transport, mimicking the transport processes e.g. during the hepatobiliary elimination of drugs. Multidrug and toxin extrusion protein 1 (MATE1, gene symbol: SLC47A1) and the ATP-driven efflux pump P-glycoprotein (P-gp, gene symbol: ABCB1) are both expressed in the canalicular membrane of human hepatocytes and are described as transporters of organic cations. OCT1 and MATE1 have an overlapping substrate spectrum, indicating an important interplay of both transport proteins during the hepatobiliary elimination of drugs. Due to the important role of OCT1 for the transport of endogenous compounds and drugs, in vitro cell systems are important for the determination of the substrate spectrum of OCT1, the understanding of the molecular mechanisms of polarized transport, and the investigation of potential drug-drug interactions. Therefore, the aim of this review article is to summarize the current knowledge on cell systems recombinantly overexpressing human OCT1.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
15
|
O’Hagan S, Kell DB. Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products. Mar Drugs 2020; 18:E582. [PMID: 33238416 PMCID: PMC7700180 DOI: 10.3390/md18110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
It is known that at least some fluorophores can act as 'surrogate' substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the 'natural' substrates of 'orphan' transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly 'drug-like', and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the "quantitative estimate of drug likeness" technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.
Collapse
Affiliation(s)
- Steve O’Hagan
- Department of Chemistry, The University of Manchester, Manchester M13 9PT, UK;
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Molecular, Integrative and Systems Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Ji C, Lu Z, Xu L, Li F, Cong M, Shan X, Wu H. Global responses to tris(1-chloro-2-propyl)phosphate (TCPP) in rockfish Sebastes schlegeli using integrated proteomic and metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138307. [PMID: 32272412 DOI: 10.1016/j.scitotenv.2020.138307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 05/22/2023]
Abstract
As alternatives of brominated flame retardants, organophosphate flame retardants (OPFRs) can be detected in multiple marine environmental media. Tris(1-chloro-2-propyl)phosphate (TCPP) was one of the most frequently and abundantly detected OPFRs in the Bohai Sea. Exposure to TCPP has been shown to induce abnormal behavior in zebrafish as well as neurotoxicity in Caenorhabditis elegans. However, there is a lack of mechanism investigations on the toxic effects of TCPP at molecular levels. In this work, proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in rockfish Sebastes schlegeli treated with TCPP (10 and 100 nM) for 15 days. A total of 143 proteins and 8 metabolites were significantly altered in rockfish following TCPP treatments. The responsive proteins and metabolites were predominantly involved in neurotransmission, neurodevelopment, signal transduction, cellular transport, cholesterol metabolism, bile acid synthesis, and detoxification. Furthermore, a hypothesized network of proteins, metabolites, and pathways in rockfish was summarized based on the combination of proteomic and metabolomic results, showing some key molecular events in response to TCPP. Overall, the present study unraveled the molecular responses at protein and metabolite levels, which provided a better understanding of toxicological effects and mechanisms of TCPP in marine teleost.
Collapse
Affiliation(s)
- Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lanlan Xu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
17
|
Guéniche N, Bruyere A, Ringeval M, Jouan E, Huguet A, Le Hégarat L, Fardel O. Differential interactions of carbamate pesticides with drug transporters. Xenobiotica 2020; 50:1380-1392. [PMID: 32421406 DOI: 10.1080/00498254.2020.1771473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mélanie Ringeval
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antoine Huguet
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Ludovic Le Hégarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, Rennes, France
| |
Collapse
|
18
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
19
|
Guéniche N, Bruyere A, Le Vée M, Fardel O. Implication of human drug transporters to toxicokinetics and toxicity of pesticides. PEST MANAGEMENT SCIENCE 2020; 76:18-25. [PMID: 31392818 DOI: 10.1002/ps.5577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics. Pesticides also interact with human drug transporters, which may have consequences for pesticide toxicokinetics and toxicity. The present review summarizes key findings about this topic. In vitro assays have demonstrated that some pesticides, belonging to various chemical classes, modulate drug transporter activity, regulate transporter expression and/or are substrates, thus bringing the proof of concept for pesticide-transporter relationships. The expected low human concentration of pesticides in response to environmental exposure constitutes a key-parameter to be kept in mind for judging the in vivo relevance of such pesticide-transporter interactions and their consequences for human health. Existing data about interactions of pesticides with drug transporters remain, however, rather sparse; more extensive and systematic characterization of pesticide-transporter relationships, through the use of high throughput in vitro assays and/or in silico methods, is, therefore, required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and physiological and pathological factors governing drug transporter expression may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity for humans. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of contaminant unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| |
Collapse
|
20
|
Le Vée M, Bacle A, Bruyere A, Fardel O. Neonicotinoid pesticides poorly interact with human drug transporters. J Biochem Mol Toxicol 2019; 33:e22379. [DOI: 10.1002/jbt.22379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Marc Le Vée
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)Univ Rennes Rennes France
| | - Astrid Bacle
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), CHU RennesUniv Rennes Rennes France
| | - Arnaud Bruyere
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)Univ Rennes Rennes France
| | - Olivier Fardel
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), CHU RennesUniv Rennes Rennes France
| |
Collapse
|
21
|
Sayyed K, Camillerapp C, Le Vée M, Bruyère A, Nies AT, Abdel-Razzak Z, Fardel O. Inhibition of organic cation transporter (OCT) activities by carcinogenic heterocyclic aromatic amines. Toxicol In Vitro 2019; 54:10-22. [DOI: 10.1016/j.tiv.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023]
|
22
|
Clerbaux LA, Coecke S, Lumen A, Kliment T, Worth AP, Paini A. Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:97-108. [PMID: 30015123 PMCID: PMC6162338 DOI: 10.1016/j.scitotenv.2018.07.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/01/2023]
Abstract
Costs, scientific and ethical concerns related to animal tests for regulatory decision-making have stimulated the development of alternative methods. When applying alternative approaches, kinetics have been identified as a key element to consider. Membrane transporters affect the kinetic processes of absorption, distribution, metabolism and excretion (ADME) of various compounds, such as drugs or environmental chemicals. Therefore, pharmaceutical scientists have intensively studied transporters impacting drug efficacy and safety. Besides pharmacokinetics, transporters are considered as major determinant of toxicokinetics, potentially representing an essential piece of information in chemical risk assessment. To capture the applicability of transporter data for kinetic-based risk assessment in non-pharmaceutical sectors, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) created a survey with a view of identifying the improvements needed when using in vitro and in silico methods. Seventy-three participants, from different sectors and with various kinds of expertise, completed the survey. The results revealed that transporters are investigated mainly during drug development, but also for risk assessment purposes of food and feed contaminants, industrial chemicals, cosmetics, nanomaterials and in the context of environmental toxicology, by applying both in vitro and in silico tools. However, to rely only on alternative methods for chemical risk assessment, it is critical that the data generated by in vitro and in silico methods are scientific integer, reproducible and of high quality so that they are trusted by decision makers and used by industry. In line, the respondents identified various challenges related to the interpretation and use of transporter data from non-animal methods. Overall, it was determined that a combined mechanistically-anchored in vitro-in silico approach, validated against available human data, would gain confidence in using transporter data within an animal-free risk assessment paradigm. Finally, respondents involved primarily in fundamental research expressed lower confidence in non-animal studies to unravel complex transporter mechanisms.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy.
| | - Sandra Coecke
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
23
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|