1
|
Ruan X, Song Z, Zhang J, Yu T, Chen J, Zhou T. Alterations of brain activity in patients with alcohol use disorder: a resting-state fMRI study. BMC Psychiatry 2023; 23:894. [PMID: 38037006 PMCID: PMC10688004 DOI: 10.1186/s12888-023-05361-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) has a negative impact on one's health and wastes a lot of societal resources since it damages one's brain tissue. Yet the knowledge of the neural mechanisms underlying alcohol addiction still remains limited. This study aims to investigate the neural mechanisms underlying alcohol addiction by using voxel-wise binarized degree centrality (DC), weighted DC and functional connectivity (FC) methods to analyze brain network activity in individuals with AUD. METHODS Thirty-three AUD patients and 29 healthy controls (HC) participated in this study. Binarized and weighted DC approach coupled with a second seed-based FC algorithm was used to assess the abnormal intrinsic hub features in AUD. We also examined the correlation between changes in functional network nodes and the severity of alcohol dependence. RESULTS Thirty AUD patients and 26 HC were retained after head motion correction. The spatial distribution maps of the binarized DC and weighted DC for the AUD and HC groups were roughly similar. In comparison to HC, the AUD group had decreased binarized DC and decreased weighted DC in the left precentral gyrus (PreCG) and the left inferior parietal lobule (IPL). Significantly different brain regions in the DC analysis were defined as seed points in the FC analysis. Compared with HC, changes in FC within the right inferior temporal gyrus (ITG), right middle temporal gyrus (MTG), left dorsolateral superior frontal gyrus (SFGdor), bilateral IPL, left precuneus (PCUN), left lingual gyrus (LING), right cerebellum_crus1/ITG/inferior occipital gyrus (IOG) and right superior parietal gyrus (SPG) were observed. The correlation analysis revealed that FC of right MTG-right PreCG was negatively correlated with MAST scores, and FC of right IPL-left IPL was positively correlated with ADS scores. CONCLUSIONS Alcohol use disorder is associated with aberrant regional activities in multiple brain areas. Binarized DC, weighted DC and FC analyses may be useful biological indicators for the detection of regional brain activities in patients with AUD. Intergroup differences in FC have also been observed in AUD patients, and these variations were connected to the severity of the symptoms. The AUD patients with lower FC value of the right IPL - left IPL has a lighter dependence on alcohol. This difference in symptom severity may be a compensation for cognitive impairment, indicating a difference in pathological pathways. Future AUD research will now have a fresh path thanks to these discoveries.
Collapse
Affiliation(s)
- Xia Ruan
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Zhiyan Song
- Department of Radiology, Wuhan No.1 Hospital, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Jie Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430079, People's Republic of China
| | - Tingting Yu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| | - Tiantian Zhou
- Department of Medical Imaging, Wuhan Pulmonary Hospital, Wuhan, Hubei Province, 430030, People's Republic of China.
| |
Collapse
|
2
|
Sullivan EV, Zhao Q, Pohl KM, Zahr NM, Pfefferbaum A. Attenuated cerebral blood flow in frontolimbic and insular cortices in Alcohol Use Disorder: Relation to working memory. J Psychiatr Res 2021; 136:140-148. [PMID: 33592385 PMCID: PMC8009820 DOI: 10.1016/j.jpsychires.2021.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Chronic, excessive alcohol consumption is associated with cerebrovascular hypoperfusion, which has the potential to interfere with cognitive processes. Magnetic resonance pulsed continuous arterial spin labeling (PCASL) provides a noninvasive approach for measuring regional cerebral blood flow (CBF) and was used to study 24 men and women with Alcohol Use Disorder (AUD) and 20 age- and sex-matched controls. Two analysis approaches tested group differences: a data-driven, regionally-free method to test for group differences on a voxel-by-voxel basis and a region of interest (ROI) approach, which focused quantification on atlas-determined brain structures. Whole-brain, voxel-wise quantification identified low AUD-related cerebral perfusion in large volumes of medial frontal and cingulate cortices. The ROI analysis also identified lower CBF in the AUD group relative to the control group in medial frontal, anterior/middle cingulate, insular, and hippocampal/amygdala ROIs. Further, years of AUD diagnosis negatively correlated with temporal cortical CBF, and scores on an alcohol withdrawal scale negatively correlated with posterior cingulate and occipital gray matter CBF. Regional volume deficits did not account for AUD CBF deficits. Functional relevance of attenuated regional CBF in the AUD group emerged with positive correlations between episodic working memory test scores and anterior/middle cingulum, insula, and thalamus CBF. The frontolimbic and insular cortical neuroconstellation with dampened perfusion suggests a mechanism of dysfunction associated with these brain regions in AUD.
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Correspondence Edith V. Sullivan, Ph.D., Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, phone: (650) 859-2880, FAX: (650) 859-2743,
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
3
|
Shang P, Lindberg D, Starski P, Peyton L, Hong SI, Choi S, Choi DS. Chronic Alcohol Exposure Induces Aberrant Mitochondrial Morphology and Inhibits Respiratory Capacity in the Medial Prefrontal Cortex of Mice. Front Neurosci 2020; 14:561173. [PMID: 33192248 PMCID: PMC7646256 DOI: 10.3389/fnins.2020.561173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Alcohol use disorder (AUD) is characterized as a chronic, relapsing disease with a pattern of excessive drinking despite negative consequences to an individual's life. Severe chronic alcohol use impairs the function of the medial prefrontal cortex (mPFC), which contributes to alcohol-induced cognitive and executive dysfunction. The mPFC contains more mitochondria compared to other cortical areas, which suggests mitochondrial damage may occur in AUD and trigger subsequent behavior change. Here, we identified morphological and functional changes in mitochondria in the mPFC in C57BL6/J mice after 8 h of withdrawal from chronic intermittent alcohol (CIA) exposure. Three-dimensional serial block-face scanning electron microscopy (SBFSEM) reconstruction revealed that CIA exposure elongated mPFC mitochondria and formed mitochondria-on-a-string (MOAS). Furthermore, alcohol significantly affected mitochondrial bioenergetics, including oxidative phosphorylation and electron transport, with inhibited aerobic respiration in mPFC mitochondria after CIA exposure. We also found decreased expression of fusion (mitofusin 2, Mfn2) and increased fission (mitochondrial fission 1 protein, Fis1) proteins in the mPFC of alcohol-treated mice. In sum, our study suggests that CIA exposure impairs mitochondrial dynamics and function in the mPFC.
Collapse
Affiliation(s)
- Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Daniel Lindberg
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Phillip Starski
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
4
|
Assessment of regional cerebral blood flow in patients with early and late onset alcohol dependence: a SPECT study. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.420428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Murray DE, Durazzo TC, Schmidt TP, Murray TA, Abé C, Guydish J, Meyerhoff DJ. Regional cerebral blood flow in opiate dependence relates to substance use and neuropsychological performance. Addict Biol 2018. [PMID: 28627790 DOI: 10.1111/adb.12523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroimaging of opiate-dependent individuals indicates both altered brain structure and function. Magnetic resonance-based arterial spin labeling has been used to measure noninvasively cerebral blood flow (i.e. perfusion) in alcohol, tobacco and stimulant dependence; only one arterial spin labeling paper in opiate-dependent individuals demonstrated frontal and parietal perfusion deficits. Additional research on regional brain perfusion in opiate dependence and its relationship to cognition and self-regulation (impulsivity, risk taking and decision making) may inform treatment approaches for opiate-dependent individuals. Continuous arterial spin labeling magnetic resonance imaging at 4 T and neuropsychological measures assessed absolute brain perfusion levels, cognition and self-regulation in 18 cigarette smoking opiate-dependent individuals (sODI) stable on buprenorphine maintenance therapy. The sODI were compared with 20 abstinent smoking alcohol-dependent individuals (a substance-dependent control group), 35 smoking controls and 29 nonsmoking controls. sODI had lower perfusion in several cortical and subcortical regions including regions within the brain reward/executive oversight system compared with smoking alcohol-dependent individuals and nonsmoking controls. Perfusion was increased in anterior cingulate cortex and globus pallidus of sODI. Compared with all other groups, sODI had greater age-related declines in perfusion in most brain reward/executive oversight system and some other regions. In sODI, lower regional perfusion related to greater substance use, higher impulsivity and weaker visuospatial skills. Overall, sODI showed cortical and subcortical hypoperfusion and hyperperfusion. Relating to neuropsychological performance and substance use quantities, the frontal perfusion alterations are clinically relevant and constitute potential targets for pharmacological and cognitive-based therapeutic interventions to improve treatment outcome in opiate dependence.
Collapse
Affiliation(s)
- Donna E. Murray
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California San Francisco; San Francisco CA USA
| | - Timothy C. Durazzo
- Department of Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- VA Palo Alto Health Care System; Mental Illness Research and Education Clinical Centers, Sierra-Pacific War Related Illness and Injury Study Center; Palo Alto CA USA
| | - Thomas P. Schmidt
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California San Francisco; San Francisco CA USA
| | - Troy A. Murray
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
| | - Christoph Abé
- Department of Clinical Neuroscience, Osher Center; Karolinska Institute; Stockholm Sweden
| | - Joseph Guydish
- Philip R. Lee Institute for Health Policy Studies; University of California San Francisco; San Francisco CA USA
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND); San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology and Biomedical Imaging; University of California San Francisco; San Francisco CA USA
| |
Collapse
|
6
|
Allsop DJ, Copeland J. Age at first cannabis use moderates EEG markers of recovery from cannabis. JOURNAL OF SUBSTANCE USE 2015. [DOI: 10.3109/14659891.2015.1040090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Sheng M, Lu H, Liu P, Thomas BP, McAdams CJ. Cerebral perfusion differences in women currently with and recovered from anorexia nervosa. Psychiatry Res 2015; 232:175-83. [PMID: 25795596 PMCID: PMC4417098 DOI: 10.1016/j.pscychresns.2015.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/19/2014] [Accepted: 02/19/2015] [Indexed: 12/26/2022]
Abstract
Anorexia nervosa is a serious psychiatric disorder characterized by restricted eating, a pursuit of thinness, and altered perceptions of body shape and size. Neuroimaging in anorexia nervosa has revealed morphological and functional alterations in the brain. A better understanding of physiological changes in anorexia nervosa could provide a brain-specific health marker relevant to treatment and outcomes. In this study, we applied several advanced magnetic resonance imaging (MRI) techniques to quantify regional and global cerebral blood flow (CBF) in 25 healthy women (HC), 23 patients currently with anorexia (AN-C) and 19 patients in long-term weight recovery following anorexia (AN-WR). Specifically, CBF was measured with pseudo-continuous arterial spin labeling (pCASL) MRI and then verified by a different technique, phase contrast (PC) MRI. Venous T2 values were determined by T2 relaxation under spin tagging (TRUST) MRI, and were used to corroborate the CBF results. These novel techniques were implemented on a standard 3T MRI scanner without any exogenous tracers, and the total scan duration was less than 10min. Voxel-wise comparison revealed that the AN-WR group showed lower CBF in bilateral temporal and frontal lobes than the AN-C group. Compared with the HC group, the AN-C group also showed higher CBF in the right temporal lobe. Whole-brain-averaged CBF was significantly decreased in the AN-WR group compared with the AN-C group, consistent with the PC-MRI results. Venous T2 values were lower in the AN-WR group than in the AN-C group, consistent with the CBF results. A review of prior work examining CBF in anorexia nervosa is included in the discussion. This study identifies several differences in the cerebral physiological alterations in anorexia nervosa, and finds specific differences relevant to the current state of the disorder.
Collapse
Affiliation(s)
- Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Binu P. Thomas
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Carrie J. McAdams
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States,Corresponding author. Tel: +1 214 648 4145; fax: +1 214 648 5321. (C.J.McAdams)
| |
Collapse
|
8
|
Ramage AE, Lin AL, Olvera RL, Fox PT, Williamson DE. Resting-state regional cerebral blood flow during adolescence: associations with initiation of substance use and prediction of future use disorders. Drug Alcohol Depend 2015; 149:40-8. [PMID: 25682478 PMCID: PMC4361292 DOI: 10.1016/j.drugalcdep.2015.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adolescence is a period of developmental flux when brain systems are vulnerable to influences of early substance use, which in turn relays increased risk for substance use disorders. Our study intent was to assess adolescent regional cerebral blood flow (rCBF) as it relates to current and future alcohol use. The aim was to identify brain-based predictors for initiation of alcohol use and onset of future substance use disorders. METHODS Quantitative rCBF was assessed in 100 adolescents (age 12-15). Prospective behavioral assessments were conducted annually over a three-year follow-up period to characterize onset of alcohol initiation, future drinking patterns and use disorders. Comparisons amongst use groups (i.e., current-, future-, and non-alcohol using adolescents) identified rCBF associated with initiation of alcohol use. Regression by future drinking patterns identified rCBF predictive of heavier drinking. Survival analysis determined whether or not baseline rCBF predicted later development of use disorders. RESULTS Baseline rCBF was decreased to the parietal cortex and increased to mesolimbic regions in adolescents currently using alcohol as well as those who would use alcohol in the future. Higher baseline rCBF to the left fusiform gyrus and lower rCBF to the right inferior parietal cortex and left cerebellum was associated with future drinking patterns as well as predicted the onset of alcohol and substance use disorders in this cohort. CONCLUSIONS Variations in resting rCBF to regions within reward and default mode or control networks appear to represent trait markers of alcohol use initiation and are predictive of future development of use disorders.
Collapse
Affiliation(s)
- Amy E. Ramage
- Research Imaging Institute, University of Texas Health Science Center at San Antonio,Department of Psychiatry, University of Texas Health Science Center at San Antonio
| | - Ai-Ling Lin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio,Department of Psychiatry, University of Texas Health Science Center at San Antonio,Cellular & Structural Biology, University of Texas Health Science Center at San Antonio
| | - Rene L. Olvera
- Research Imaging Institute, University of Texas Health Science Center at San Antonio,Department of Psychiatry, University of Texas Health Science Center at San Antonio
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio,Neurology, University of Texas Health Science Center at San Antonio,Radiology, University of Texas Health Science Center at San Antonio
| | - Douglas E. Williamson
- Research Imaging Institute, University of Texas Health Science Center at San Antonio,Department of Psychiatry, University of Texas Health Science Center at San Antonio,Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio
| |
Collapse
|
9
|
Wilcox CE, Dekonenko CJ, Mayer AR, Bogenschutz MP, Turner JA. Cognitive control in alcohol use disorder: deficits and clinical relevance. Rev Neurosci 2014; 25:1-24. [PMID: 24361772 DOI: 10.1515/revneuro-2013-0054] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/27/2013] [Indexed: 01/25/2023]
Abstract
Cognitive control refers to the internal representation, maintenance, and updating of context information in the service of exerting control over thoughts and behavior. Deficits in cognitive control likely contribute to difficulty in maintaining abstinence in individuals with alcohol use disorders (AUD). In this article, we define three cognitive control processes in detail (response inhibition, distractor interference control, and working memory), review the tasks measuring performance in these areas, and summarize the brain networks involved in carrying out these processes. Next, we review evidence of deficits in these processes in AUD, including both metrics of task performance and functional neuroimaging. Finally, we explore the clinical relevance of these deficits by identifying predictors of clinical outcome and markers that appear to change (improve) with treatment. We observe that individuals with AUD experience deficits in some, but not all, metrics of cognitive control. Deficits in cognitive control may predict clinical outcome in AUD, but more work is necessary to replicate findings. It is likely that performance on tasks requiring cognitive control improves with abstinence, and with some psychosocial and medication treatments. Future work should clarify which aspects of cognitive control are most important to target during treatment of AUD.
Collapse
|
10
|
Sullivan EV, Müller-Oehring E, Pitel AL, Chanraud S, Shankaranarayanan A, Alsop DC, Rohlfing T, Pfefferbaum A. A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men. Biol Psychiatry 2013; 74:547-55. [PMID: 23587427 PMCID: PMC3766441 DOI: 10.1016/j.biopsych.2013.02.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alcoholism can disrupt neural synchrony between nodes of intrinsic functional networks that are maximally active when resting relative to engaging in a task, the default mode network (DMN) pattern. Untested, however, are whether the DMN in alcoholics can rebound normally from the relatively depressed task state to the active resting state and whether local perfusion deficits could disrupt network synchrony when switching from conditions of rest to task to rest, thereby indicating a physiological mechanism of neural network adaptation capability. METHODS Whole-brain, three-dimensional pulsed-continuous arterial spin labeling provided measurements of regional cerebral blood flow (CBF) in 12 alcoholics and 12 control subjects under three conditions: pretask rest, spatial working-memory task, and posttask rest. RESULTS With practice, alcoholics and control subjects achieved similar task accuracy and reaction times. Both groups exhibited a high-low-high pattern of perfusion levels in DMN regions during the rest-task-rest runs and the opposite pattern in posterior and cerebellar regions known to be associated with spatial working memory. Alcoholics showed selective differences from control subjects in the rest-task-rest CBF pattern in the anterior precuneus and CBF level in the insula, a hub of the salience network. Connectivity analysis identified activation synchrony from an insula seed to salience nodes (parietal, medial frontal, anterior cingulate cortices) in control subjects only. CONCLUSIONS We propose that attenuated insular CBF is a mechanism underlying compromised connectivity among salience network nodes. This local perfusion deficit in alcoholics has the potential to impair ability to switch from cognitive states of interoceptive cravings to cognitive control for curbing internal urges.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jégou S, El Ghazi F, de Lendeu PK, Marret S, Laudenbach V, Uguen A, Marcorelles P, Roy V, Laquerrière A, Gonzalez BJ. Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 2013; 72:952-60. [PMID: 23280843 DOI: 10.1002/ana.23699] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 06/25/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVE In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. METHODS We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. RESULTS In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. INTERPRETATION Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities.
Collapse
Affiliation(s)
- Sylvie Jégou
- Region-INSERM Team, ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, IRIB, Normandy University, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effects of alcohol intoxication and gender on cerebral perfusion: an arterial spin labeling study. Alcohol 2011; 45:725-37. [PMID: 21621371 DOI: 10.1016/j.alcohol.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
An increasing number of studies use functional MRI (fMRI) and blood oxygen level-dependent (BOLD) signal to investigate the neurofunctional basis of acute alcohol effects on the brain. However, the BOLD signal reflects neural activity only indirectly as it depends on regional hemodynamic changes and is therefore sensitive to vasoactive substances, such as alcohol. We used MRI-based pulsed arterial spin labeling (ASL) method to quantify effects of acute intoxication on resting cerebral perfusion. Gender effects have not been previously examined and yet they are of particular interest given the differences in hormonal dynamics, alcohol metabolism, and hemodynamic regulation. Nineteen young, healthy individuals (nine women) with no personal or familial alcohol- or drug-related problems served as their own controls by participating in both alcohol (0.6g/kg ethanol for men, 0.55g/kg for women) and placebo scanning sessions in a counterbalanced manner. Regionally specific effects of the moderate alcohol dose on gray matter perfusion were examined with voxel-wise and region-of-interest analyses suggesting an interaction between gender and alcohol beverage. Acute intoxication increased perfusion in bilateral frontal regions in men but not in women. Under placebo, stronger cortical perfusion was observed in women compared with men primarily in the left hemisphere in frontal, parietal, and temporal areas. These results emphasize gender differences and regional specificity of alcohol's effects of cerebral perfusion possibly because of interactive influences on hormonal, metabolic, and hemodynamic autoregulatory systems. Alcohol-induced perfusion increase correlated positively with impulsivity/antisocial tendencies, consistent with dopaminergic mediation of reward, and its effects on cortical perfusion. Additional ASL studies are needed to investigate dose- and time-dependent effects of alcohol intoxication and gender on the hemodynamic factors that conjointly influence BOLD signal to disambiguate the vascular/metabolic mechanisms from the neurally based changes.
Collapse
|
13
|
Squeglia LM, Schweinsburg AD, Pulido C, Tapert SF. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 2011; 35:1831-41. [PMID: 21762178 DOI: 10.1111/j.1530-0277.2011.01527.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. METHODS Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. RESULTS Significant binge drinking status × gender interactions were found (p < 0.05) in 8 brain regions spanning bilateral frontal, anterior cingulate, temporal, and cerebellar cortices. In all regions, female binge drinkers showed less SWM activation than female controls, while male bingers exhibited greater SWM response than male controls. For female binge drinkers, less activation was associated with poorer sustained attention and working memory performances (p < 0.025). For male binge drinkers, greater activation was linked to better spatial performance (p < 0.025). CONCLUSION Binge drinking during adolescence is associated with gender-specific differences in frontal, temporal, and cerebellar brain activation during an SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that blood oxygen level-dependent activation is affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance.
Collapse
Affiliation(s)
- Lindsay M Squeglia
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California, USA
| | | | | | | |
Collapse
|
14
|
Tolentino NJ, Wierenga CE, Hall S, Tapert SF, Paulus MP, Liu TT, Smith TL, Schuckit MA. Alcohol effects on cerebral blood flow in subjects with low and high responses to alcohol. Alcohol Clin Exp Res 2011; 35:1034-40. [PMID: 21332525 DOI: 10.1111/j.1530-0277.2011.01435.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although there are multiple indications that alcohol can alter many physiological brain functions, including cerebral blood flow (CBF), studies of the latter have generally used small- or modest-sized samples. Few investigations have yet evaluated how CBF changes after alcohol relate to subsets of subjects with elevated alcoholism risks, such as those with lower levels of response (LR) to alcohol. This study used arterial spin labeling (ASL) after alcohol administration to evaluate a large sample of healthy young men and women with low and high alcohol responses, and, thus, varying risks for alcohol use disorders (AUD). METHODS Healthy young adult social drinkers with low and high LR (N=88, 50% women) matched on demography and drinking histories were imaged with whole-brain resting ASL ~1 hour after ingesting ~3 drinks of ethanol and after a placebo beverage (i.e., 178 ASL sessions). The relationships of CBF changes from placebo to alcohol for subjects with low and high LR were evaluated. RESULTS CBF increased after alcohol when compared to placebo in 5 frontal brain regions. Despite identical blood alcohol concentrations, these increases with alcohol were less prominent in individuals who required more drinks to experience alcohol-related effects (i.e., had a lower LR to alcohol). The LR group differences remained significant after covarying for recent drinking quantities. CONCLUSIONS The results confirm that alcohol intake is associated with acute increases in CBF, particularly in frontal regions. Less intense CBF changes were seen in subjects with a genetically influenced characteristic, a low LR to alcohol, that relates to the future risk of heavy drinking and alcohol problems.
Collapse
Affiliation(s)
- Neil J Tolentino
- Department of Psychiatry, University of California-San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD, Bogovic JA, Hua J, Chen M, Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, van Zijl PCM. Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 2010; 54:2854-66. [PMID: 21094686 DOI: 10.1016/j.neuroimage.2010.11.047] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022] Open
Abstract
Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60-min protocol on a 3-T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22-61 years old). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability, and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1-5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The richness of the joint distribution of intensities across imaging methods can be best assessed within the context of a particular analysis approach as opposed to a summary table. As such, all imaging data and analysis routines have been made publicly and freely available. This effort provides the neuroimaging community with a resource for optimization of algorithms that exploit the diversity of modern MRI modalities. Additionally, it establishes a baseline for continuing development and optimization of multi-parametric imaging protocols.
Collapse
Affiliation(s)
- Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37235-1679, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rutherford HJ, Mayes LC, Potenza MN. Neurobiology of Adolescent Substance Use Disorders: Implications for Prevention and Treatment. Child Adolesc Psychiatr Clin N Am 2010; 19:479-92. [PMID: 20682216 PMCID: PMC2928062 DOI: 10.1016/j.chc.2010.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adolescence represents a unique period of development with neuronal maturation accompanied by increases in behavioral risk taking. Although risky behavior is a likely marker of normative adolescent development, there is an early emergence of substance use disorders in this population. Adolescence represents a distinct period of vulnerability to substance use initiation and transitions to substance abuse and dependence. Of recent interest is understanding the neurobiology of adolescent substance use disorders, with adult studies being limited in their applicability to this developmentally sensitive maturation period and providing restricted insight into potential treatment and intervention. First, the authors review the neurobiology of adolescent substance use disorders and, second, the authors consider the implications of these findings for prevention and treatment.
Collapse
Affiliation(s)
- Helena J.V. Rutherford
- Child Study Center, Yale University
,Corresponding author: Yale Child Study Center Yale University 230 South Frontage Road New Haven, CT, 06520 Tel: 1-203-737-3480 Fax: 1-203-785-7926
| | | | - Marc N. Potenza
- Child Study Center, Yale University
,Department of Psychiatry, Yale University
| |
Collapse
|
17
|
Pfefferbaum A, Chanraud S, Pitel AL, Shankaranarayanan A, Alsop DC, Rohlfing T, Sullivan EV. Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 2010; 182:266-73. [PMID: 20488671 PMCID: PMC2914847 DOI: 10.1016/j.pscychresns.2010.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
The regional distribution, laterality, and reliability of volumetric pulsed continuous arterial spin labeling (PCASL) measurements of cerebral blood flow (CBF) in cortical, subcortical, and cerebellar regions were determined in 10 normal volunteers studied on two occasions separated by 3 to 7 days. Regional CBF, normalized for global perfusion, was highly reliable when measured on separate days. Several regions showed significant lateral asymmetry; notably, in frontal regions CBF was greater in the right than left hemisphere, whereas left was greater than right in posterior regions. There was considerable regional variability across the brain, whereby the posterior cingulate and central and posterior precuneus cortices had the highest perfusion and the globus pallidus the lowest gray matter perfusion. The latter may be due to iron-induced T1 shortening affecting labeled spins and computed CBF signal. High CBF in the posterior cingulate and posterior and central precuneus cortices in this task-free acquisition suggests high activity in these principal nodes of the "default mode network."
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Sandra Chanraud
- Neuroscience Program, SRI International, Menlo Park, CA, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Anne-Lise Pitel
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | | | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
18
|
Abstract
INTRODUCTION Cerebral perfusion imaging using magnetic resonance imaging (MRI) is widely used in the research and clinical fields to assess the profound changes in blood flow related to ischemic events such as acute stroke, chronic steno-occlusive disease, vasospasm, and abnormal vessel formations from congenital conditions or tumoral neovascularity. With continuing improvements in the precision of MRI-based perfusion techniques, it is increasingly feasible to use this tool in the study of the subtle brain perfusion changes occurring in psychiatric illnesses. This article aims to review the existing literature on applications of perfusion MRI in psychiatric disorder and substance abuse research. The article also provides a brief introductory overview of dynamic susceptibility contrast MRI and arterial spin labeling techniques. An outlook of necessary steps to bring perfusion MRI into the realm of clinical psychiatry as a diagnostic tool is brought forth. Opportunities for research in unexplored disorders and with higher field strengths are briefly examined. METHODS PubMed, ISI Web of Knowledge & Scopus were used to search the literature and cross reference several neuropsychiatric disorders with a search term construct, including "magnetic resonance imaging," "dynamic susceptibility contrast," "arterial spin labeling," perfusion or "cerebral blood flow" or "cerebral blood volume" or "mean transit time." The list of disorders used in the search included schizophrenia, depression and bipolar disorder, dementia and Alzheimer's disease, Parkinson's disease, posttraumatic stress disorder, autism, Asperger disease, attention deficit, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, bulimia nervosa, anorexia nervosa, and substance abuse. For each disorder for which perfusion MRI studies were found, a brief overview of the disorder symptoms, treatment, prevalence, and existing models is provided, and previous findings from nuclear medicine-based perfusion imaging are overviewed. Findings of perfusion MRI studies are then summarized, and overlap of findings are discussed. Overarching conclusions are made, or an outlook for future work in the area is offered, where appropriate. RESULTS Despite the now fairly broad availability of perfusion MRI, only a limited number of studies were found using this technology. The search produced 13 studies of schizophrenia, 7 studies in major depression, 12 studies in Alzheimer's disease, and 2 studies in Parkinson's disease. Drug abuse and other disorders have mainly been studied with nuclear medicine-based perfusion imaging. The literature concerning the use of perfusion imaging in psychiatry has not been reviewed in the last 5 years or more. The use of MRI for perfusion measurements in psychiatry has not been reviewed in 10 years. CONCLUSIONS Although MRI-based perfusion imaging in psychiatry has mainly been used as a research tool, a path is progressively being cleared for its application in clinical diagnostic and treatment monitoring. The precision of perfusion MRI methods now rivals that of nuclear medicine-based perfusion imaging techniques. Because of their noninvasive nature, arterial spin labeling methods have gained popularity in studies of neuropsychiatric disorders such as schizophrenia, depression, Alzheimer's, and Parkinson's diseases. Perfusion imaging measurements have yet to be included within the diagnostic criteria of neuropsychiatric disorders despite having shown to have great discriminant power in specific disorders. As this young methodology continues to improve and research studies demonstrate the correlation of measured perfusion abnormalities to microcirculatory abnormalities and neuropsychiatric symptomatology, the idea of including such a test within diagnostic criteria for certain mental illnesses becomes increasingly plausible.
Collapse
|
19
|
Li CSR, Luo X, Yan P, Bergquist K, Sinha R. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res 2009; 33:740-50. [PMID: 19170662 DOI: 10.1111/j.1530-0277.2008.00891.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Altered impulse control has been implicated in the shaping of habitual alcohol use and eventual alcohol dependence. We sought to identify the neural correlates of altered impulse control in 24 abstinent patients with alcohol dependence (PAD), as compared to 24 demographics matched healthy control subjects (HC). In particular, we examined the processes of risk taking and cognitive control as the neural endophenotypes of alcohol dependence. METHODS To this end, functional magnetic resonance imaging (fMRI) was conducted during a stop signal task (SST), in which a procedure was used to elicit errors in the participants. The paradigm allowed trial-by-trial evaluation of response inhibition, error processing, and post-error behavioral adjustment. Furthermore, by imposing on the subjects to be both fast and accurate, the SST also introduced a distinct element of risk, which participants may or may not avert during the task. Brain imaging data were analyzed with Statistical Parametric Mapping in covariance analyses accounting for group disparity in general performance. RESULTS The results showed that, compared to HC, PAD demonstrated longer go trial reaction time (RT) and higher stop success rate (SS%). HC and PAD were indistinguishable in stop signal reaction time (SSRT) and post-error slowing (PES). In a covariance analysis accounting for go trial RT and SS%, HC showed greater activity in the left dorsolateral prefrontal cortex than PAD, when subjects with short and long SSRT were contrasted. By comparing PAD and HC directly during stop errors (SE), as contrasted with SS, we observed greater activity in PAD in bilateral visual and frontal cortices. Compared to HC, PAD showed less activation of the right dorsolateral prefrontal cortex during PES, an index of post-error behavioral adjustment. Furthermore, PAD who showed higher alcohol urge at the time of the fMRI were particularly impaired in dorsolateral prefrontal activation, as compared to those with lower alcohol urge. Finally, compared to HC subjects, PAD showed less activity in cortical and subcortical structures including putamen, insula, and amygdala during risk-taking decisions in the SST. CONCLUSION These preliminary results provided evidence for altered neural processing during impulse control in PAD. These findings may provide a useful neural signature in the evaluation of treatment outcomes and development of novel pharmacotherapy for alcohol dependence.
Collapse
Affiliation(s)
- Chiang-Shan Ray Li
- Department of Psychiatry, Yale University, New Haven, Connecticut 06519, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Adolescence is a unique period in neurodevelopment. Alcohol and marijuana use are common. Recent research has indicated that adolescent substance users show abnormalities on measures of brain functioning, which is linked to changes in neurocognition over time. Abnormalities have been seen in brain structure volume, white matter quality, and activation to cognitive tasks, even in youth with as little as 1-2 years of heavy drinking and consumption levels of 20 drinks per month, especially if > 4-5 drinks are consumed on a single occasion. Heavy marijuana users show some subtle anomalies too, but generally not the same degree of divergence from demographically similar non-using adolescents. This article reviews the extant literature on neurocognition, brain structure, and brain function in adolescent substance users with an emphasis on the most commonly used substances, and in the context of ongoing neuromaturational processes. Methodological and treatment implications are provided.
Collapse
Affiliation(s)
- L. M. Squeglia
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology
- VA San Diego Healthcare System
- University of California San Diego, Department of Psychiatry
| | - J. Jacobus
- SDSU/UCSD Joint Doctoral Program in Clinical Psychology
- VA San Diego Healthcare System
- University of California San Diego, Department of Psychiatry
| | - S. F. Tapert
- VA San Diego Healthcare System
- University of California San Diego, Department of Psychiatry
| |
Collapse
|
21
|
Abstract
Alcoholism results from an interplay between genetic and environmental factors, and is linked to brain defects and associated cognitive, emotional, and behavioral impairments. A confluence of findings from neuroimaging, physiological, neuropathological, and neuropsychological studies of alcoholics indicate that the frontal lobes, limbic system, and cerebellum are particularly vulnerable to damage and dysfunction. An integrative approach employing a variety of neuroscientific technologies is essential for recognizing the interconnectivity of the different functional systems affected by alcoholism. In that way, relevant experimental techniques can be applied to assist in determining the degree to which abstinence and treatment contribute to the reversal of atrophy and dysfunction.
Collapse
Affiliation(s)
- Marlene Oscar-Berman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, L-815, 715 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
22
|
Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Int Neuropsychol Soc 2007; 13:526-38. [PMID: 17445302 PMCID: PMC2408863 DOI: 10.1017/s1355617707070634] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 11/05/2022]
Abstract
Arterial spin labeling (ASL) uses magnetic resonance imaging methods to measure cerebral blood flow (CBF) non-invasively. ASL CBF validly localizes brain function and may be especially useful for studies where the time frame of behavioral change is more than a few minutes, such as in longitudinal and treatment studies. ASL measures of cerebral perfusion are highly accurate in detecting lesion laterality in temporal lobe epilepsy, stenotic-occlusive disease, and brain tumors. Among lesioned patients, ASL CBF has excellent concurrent validity when correlated with CBF measured by Positron Emission Tomography or with dynamic susceptibility-weighted magnetic resonance. ASL CBF can predict tumor grading in vivo and can predict six-month response to the surgical treatment of brain tumors. ASL's capability to selectively and non-invasively tag flow in major vessels may refine the monitoring of treatment of cerebrovascular disease and brain tumors. Conclusions about the utility of ASL are limited by the small sample sizes of the studies currently in the literature and by the uncertainty caused by the effect of brain disease on transit times of the magnetic tag. As the method evolves, ASL techniques will likely become more widely used in clinical research and practice.
Collapse
Affiliation(s)
- Gregory G Brown
- Psychology Service, VA San Diego Healthcare System, San Diego, California 92161, USA.
| | | | | |
Collapse
|