1
|
Lima G, Soares C, Teixeira M, Castelo-Branco M. Psychedelic research, assisted therapy and the role of the anaesthetist: A review and insights for experimental and clinical practices. Br J Clin Pharmacol 2024. [PMID: 39380091 DOI: 10.1111/bcp.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Recent years have witnessed an unprecedented increase in the search for the use of psychedelics in improving physical and mental health. Anaesthesia has evolved since very early times, born from the need to eliminate pain and reduce suffering and there are reports of the use of anaesthetics to achieve mystical states since the nineteenth century. Nowadays, the renaissance of psychedelics in anaesthesia has been inspired by their potential in the treatment of chronic pain syndromes, palliative care and in the emergency department and pre-hospital care with the administration of psychedelics in cases of ischaemia, given their potential in neuroprotection. Although there are already some published protocols for the administration of psychedelics in patients with mental illness, little has been addressed concerning non-mental medical applications. In this sense, in patients with multiple comorbidities, functional limitations and polymedicated, the anaesthetist may play a fundamental role, not only in clinical practice, but also in translational research. This article focuses on the description of psychedelics, with a particular focus on dimethyltryptamine (DMT) and ayahuasca pharmacology, effects, safety and toxicity. A detailed description of the role of the anaesthetist in clinical and experimental research is provided, from participant's screening to preparation and dosing session, expected adverse effects and how to manage them, based on the protocol and standard procedures of a current study with neuroimaging during the psychedelic experience. Specific considerations regarding the management of psychedelic toxicity are also provided as well as future directions for safe psychedelic use in clinical practice.
Collapse
Affiliation(s)
- Gisela Lima
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Carla Soares
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Marta Teixeira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Berlowitz I, García Torres E, Ruiz Macedo JC, Wolf U, Maake C, Martin-Soelch C. Traditional Indigenous-Amazonian Therapy Involving Ceremonial Tobacco Drinking as Medicine: A Transdisciplinary Multi-Epistemic Observational Study. HEALTH EDUCATION & BEHAVIOR 2024:10901981231213348. [PMID: 39360499 DOI: 10.1177/10901981231213348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Although the tobacco plant has been employed as a medicinal and sacred herb by Indigenous cultures across the Americas, its usage drastically changed after the 15th-century colonial arrival; its large-scale commodification and global marketing once brought to Europe lead to hedonic and addictive uses harmful to health. As a consequence, tobacco smoking is now one of the largest public health problems worldwide. However, in the Peruvian Amazon, a region of origin of tobacco species, Indigenous healers still know how to use the plant for therapeutic purposes. Due to a general disregard of Indigenous knowledge and stigma, these uses have however not so far been clinically investigated. We hence conducted for the first time a clinical field study assessing a sample of patients treated by a traditional healer specialized in tobacco in the Peruvian Amazon (observational design, pilot study, N = 27). The study was conducted within a transdisciplinary and multi-epistemic medical frame, in close partnership with an Amazonian healer. We used validated self-report scales to quantitatively assess mental health variables before and after the weeklong treatment, and mixed-methods to report experienced effects. Paired-samples t-tests comparing pre- and post-treatment scores revealed significant reductions in anxiety, depression, perceived stress, and general symptom indicators. Experienced effects included initial physical discomfort, followed by psychologically or existentially/spiritually significant insights. Our findings point to a sophisticated therapeutic approach based on Indigenous knowledge of tobacco applications, which should be further investigated. The study also contributes to the burgeoning scientific field on therapeutic uses of contentious psychoactive plants.
Collapse
Affiliation(s)
- Ilana Berlowitz
- University of Zurich, Zurich, Switzerland
- University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
3
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Liu X, Lai J, Zhang X, Wu A, Zhou L, Li Y, Huang Q, Huang X, Li H, Lan C, Liu J, Huang F, Wu J. Harmine promotes megakaryocyte differentiation and thrombopoiesis by activating the Rac1/Cdc42/JNK pathway through a potential target of 5-HTR2A. Phytother Res 2024. [PMID: 39152726 DOI: 10.1002/ptr.8317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Harmine (HM), a β-carboline alkaloid extracted from plants, is a crucial component of traditional Chinese medicine (TCM) known for its diverse pharmacological activities. Thrombocytopenia, a common and challenging hematological disorder, often coexists with serious illnesses. Previous research has shown a correlation between HM and thrombocytopenia, but the mechanism needs further elucidation. The aim of this study was to clarify the mechanisms underlying the effects of HM on thrombocytopenia and to develop new therapeutic strategies. Flow cytometry, Giemsa staining, and Phalloidin staining were used to assess HM's impact on Meg-01 and HEL cell differentiation and maturation in vitro. A radiation-induced thrombocytopenic mouse model was employed to evaluate HM's effect on platelet production in vivo. Network pharmacology, molecular docking, and protein blotting were utilized to investigate HM's targets and mechanisms. The results demonstrated that HM dose-dependently promoted Meg-01 and HEL cell differentiation and maturation in vitro and restored platelet levels in irradiated mice in vivo. Subsequently, HM was found to be involved in the biological process of platelet production by upregulating the expressions of Rac1, Cdc42, JNK, and 5-HTR2A. Furthermore, the targeting of HM to 5-HTR2A and its correlation with downstream Rac1/Cdc42/JNK were also confirmed. In conclusion, HM regulates megakaryocyte differentiation and thrombopoiesis through the 5-HTR2A and Rac1/Cdc42/JNK pathways, providing a potential treatment strategy for thrombocytopenia.
Collapse
Affiliation(s)
- Xiaoxi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jia Lai
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Xiaoqin Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yueyue Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
6
|
Fonseca AM, Dos Santos RG, de Medeiros LS, Veiga TAM, Cassas F, Bruniera CP, Rossi GN, Bouso JC, Hallak JEC, Santos FP, Paranhos BAPB, Yonamine M, Rodrigues E. Long-term ayahuasca use is associated with preserved global cognitive function and improved memory: a cross-sectional study with ritual users. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01817-9. [PMID: 38780800 DOI: 10.1007/s00406-024-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Although several studies have been conducted to elucidate the relationship between psychedelic consumption and cognition, few have focused on understanding the long-term use influence of these substances on these variables, especially in ritualistic contexts. To verify the influence of ritualistic ayahuasca consumption on the cognition of experienced ayahuasca religious users (> 20 years) and beginners (< 3 years), which participated in rituals of the Centro Luz Divina (CLD), a Santo Daime church in Brazil. Observational, descriptive, and cross-sectional study was carried out in which 48 people participated divided into three groups: (a) experienced ayahuasca users (n = 16), (b) beginner ayahuasca users (n = 16) and (c) control group (n = 16). All groups were matched by sex, age, and education and contained 8 women and 8 men. Cognition was assessed with the WASI (intelligence quotient), Digit Span (verbal working memory), Corsi Block-Tapping Task (visuospatial-related and working memory), Rey-Osterrieth Complex Figure test (visual perception, immediate memory), and Wisconsin Card Sorting and Five Digit Test (executive functions). Groups were homogenous in terms of sociodemographic characteristics, with participants presenting average intellectual performance. There was no evidence of cognitive decline amongst ayahuasca users. The experienced group showed higher scores compared to the less experienced group in the Digit Span and Corsi Block-Tapping tasks, which assess working verbal and visuospatial memories respectively. We confirmed the botanical identities of Psychotria viridis and Banisteriopsis caapi and the presence of the alkaloids both in the plants and in the brew. Short and long-term ayahuasca consumption does not seem to alter human cognition, while long-term use seems to be associated with improvements in aspects of working memory when compared with short-term use.
Collapse
Affiliation(s)
- Arilton Martins Fonseca
- Centre for Ethnobotanical and Ethnopharmacological Studies, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael Guimarães Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology, Translational Medicine, Ribeirão Preto, São Paulo, Brazil.
| | - Lívia Soman de Medeiros
- Laboratório de Química Bio-Orgânica Otto Richard Gottlieb (LaBiORG), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thiago André Moura Veiga
- Laboratório de Química Bio-Orgânica Otto Richard Gottlieb (LaBiORG), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando Cassas
- Laboratório de Química Bio-Orgânica Otto Richard Gottlieb (LaBiORG), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla Poleselli Bruniera
- Herbário da Universidade Federal de São Paulo (HUFSP), Campus Diadema (UNIFESP), São Paulo, Brazil
| | - Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Bouso
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira I Virgili, Tarragona, Spain
| | - Jaime E Cecílio Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology, Translational Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Fabiana Pereira Santos
- Department of Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Mauricio Yonamine
- Department of Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Eliana Rodrigues
- Centre for Ethnobotanical and Ethnopharmacological Studies, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
7
|
White E, Kennedy T, Ruffell S, Perkins D, Sarris J. Ayahuasca and Dimethyltryptamine Adverse Events and Toxicity Analysis: A Systematic Thematic Review. Int J Toxicol 2024; 43:327-339. [PMID: 38363085 PMCID: PMC11088222 DOI: 10.1177/10915818241230916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The objective of this paper is to conduct a systematic thematic review of adverse events, safety, and toxicity of traditional ayahuasca plant preparations and its main psychoactive alkaloids (dimethyltryptamine [DMT], harmine, harmaline, and tetrahydroharmine), including discussing clinical considerations (within clinical trials or approved settings). A systematic literature search of preclinical, clinical, epidemiological, and pharmacovigilance data (as well as pertinent reviews and case studies) was conducted for articles using the electronic databases of PubMed and Web of Science (to 6 July 2023) and PsycINFO, ClinicalTrials.gov, and Embase (to 21 September 2022) and included articles in English in peer-reviewed journals. Additionally, reference lists were searched. Due to the breadth of the area covered, we presented the relevant data in a thematic format. Our searches revealed 78 relevant articles. Data showed that ayahuasca or DMT is generally safe; however, some adverse human events have been reported. Animal models using higher doses of ayahuasca have shown abortifacient and teratogenic effects. Isolated harmala alkaloid studies have also revealed evidence of potential toxicity at higher doses, which may increase with co-administration with certain medications. Harmaline revealed the most issues in preclinical models. Nevertheless, animal models involving higher-dose synthetic isolates may not necessarily be able to be extrapolated to human use of therapeutic doses of plant-based extracts. Serious adverse effects are rarely reported within healthy populations, indicating an acceptable safety profile for the traditional use of ayahuasca and DMT in controlled settings. Further randomized, controlled trials with judicious blinding, larger samples, and longer duration are needed.
Collapse
Affiliation(s)
- Eleanor White
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Tom Kennedy
- The University of Queensland, Brisbane, QLD, Australia
| | - Simon Ruffell
- Psychae Institue, Melbourne, VIC, Australia
- Onaya Science, Iquitos, Peru
| | - Daniel Perkins
- Psychae Institue, Melbourne, VIC, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jerome Sarris
- Psychae Institue, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Liu Q, Zuo M, Song Y, He S, Huang J, Chen Y. Bioinspired total synthesis and biological activity of Pegaharine A. PEST MANAGEMENT SCIENCE 2024; 80:1372-1381. [PMID: 37926482 DOI: 10.1002/ps.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Phytopathogens cause various diseases by parasitizing crops, reducing crop yield and resulting in substantial economic losses in agricultural production. A novel type isolated from the perennial herbaceous Peganum harmala L. seeds, β-carboline alkaloids pegaharine A (PA), has become a hot topic in developing plant-originated green pesticides owing to their significant physiological activities. RESULTS A scalable bioinspired total synthesis of PA is accomplished in the present work. The systematical biological assay study showed that PA exhibited moderate inhibitory activity against nine tested plant pathogenic fungi and showed significant inhibitory activity in vitro against the three tested plant pathogenic bacteria. Most noteworthy is the inhibitory rates of PA on Xanthomonas oryzae pv. oryzae (Xoo), X. oryzae pv. oryzicola (Xoc) and X. axonopodis pv. citri (Xac) of 93.6%, 92.1% and 86.1%, respectively, which are better than the control drug, bismerthiazol (63.4%, 61.2% and 53.7% at 100 μg mL-1 concentration). Furthermore, the EC50 value of PA against Xoo, Xoc and Xac was 52.2, 60.0 and 65.1 μg mL-1 , respectively, superior to 72.9, 64.2 and 70.1 μg mL-1 of the control drug. Moreover, the anti-Xoo mechanistic studies revealed that PA exerted its antibacterial effects by increasing the permeability of the bacterial membrane, reducing the extracellular polysaccharide content and inducing morphological changes in bacterial cells. CONCLUSION A novel β-carboline alkaloid, PA, was prepared by biomimetic total synthesis. Its significant antibacterial activity was closely related to the permeation of bacterial cell membranes, which was confirmed by anti-Xoo mechanistic studies. More importantly, the structure could be regarded as a model for developing novel bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Mei Zuo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi Song
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Jian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Winkelman MJ, Szabo A, Frecska E. The potential of psychedelics for the treatment of Alzheimer's disease and related dementias. Eur Neuropsychopharmacol 2023; 76:3-16. [PMID: 37451163 DOI: 10.1016/j.euroneuro.2023.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's Disease (AD) is a currently incurable but increasingly prevalent fatal and progressive neurodegenerative disease, demanding consideration of therapeutically relevant natural products and their synthetic analogues. This paper reviews evidence for effectiveness of natural and synthetic psychedelics in the treatment of AD causes and symptoms. The plastogenic effects of serotonergic psychedelics illustrate that they have efficacy for addressing multiple facets of AD pathology. We review findings illustrating neuroplasticity mechanisms of classic (serotonergic) and non-classic psychedelics that indicate their potential as treatments for AD and related dementias. Classic psychedelics modulate glutamatergic neurotransmission and stimulate synaptic and network remodeling that facilitates synaptic, structural and behavioral plasticity. Up-regulation of neurotrophic factors enable psychedelics to promote neuronal survival and glutamate-driven neuroplasticity. Muscimol modulation of GABAAR reduces Aβ-induced neurotoxicity and psychedelic Sig-1R agonists provide protective roles in Aβ toxicity. Classic psychedelics also activate mTOR intracellular effector pathways in brain regions that show atrophy in AD. The potential of psychedelics to treat AD involves their ability to induce structural and functional neural plasticity in brain circuits and slow or reverse brain atrophy. Psychedelics stimulate neurotrophic pathways, increase neurogenesis and produce long-lasting neural changes through rewiring pathological neurocircuitry. Psychedelic effects on 5-HT receptor target genes and induction of synaptic, structural, and functional changes in neurons and networks enable them to promote and enhance brain functional connectivity and address diverse mechanisms underlying degenerative neurological disorders. These findings provide a rationale for immediate investigation of psychedelics as treatments for AD patients.
Collapse
Affiliation(s)
- Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Xia H, Huang Y, Wu R, Tang X, Cai J, Li SX, Jiang L, Wu D. A screening identifies harmine as a novel antibacterial compound against Ralstonia solanacearum. Front Microbiol 2023; 14:1269567. [PMID: 37731919 PMCID: PMC10507859 DOI: 10.3389/fmicb.2023.1269567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is a devastating plant pathogenic bacterium that infects more than 450 plant species. Until now, there has been no efficient control strategy against bacterial wilt. In this study, we screened a library of 100 plant-derived compounds for their antibacterial activity against R. solanacearum. Twelve compounds, including harmine, harmine hydrochloride, citral, vanillin, and vincamine, suppressed bacterial growth of R. solanacearum in liquid medium with an inhibition rate higher than 50%. Further focus on harmine revealed that the minimum inhibitory concentration of this compound is 120 mg/L. Treatment with 120 mg/L of harmine for 1 and 2 h killed more than 90% of bacteria. Harmine treatment suppressed the expression of the virulence-associated gene xpsR. Harmine also significantly inhibited biofilm formation by R. solanacearum at concentrations ranging from 20 mg/L to 60 mg/L. Furthermore, application of harmine effectively reduced bacterial wilt disease development in both tobacco and tomato plants. Collectively, our results demonstrate the great potential of plant-derived compounds as antibacterial agents against R. solanacearum, providing alternative ways for the efficient control of bacterial wilt.
Collapse
Affiliation(s)
- Hongkai Xia
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
- Research Institute of HNU in Chongqing, Chongqing, China
| | - Yanxia Huang
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Ruoyu Wu
- Department of Pathology and Pathophysiology, School of Medicine, Jishou University, Jishou, China
| | - Xin Tang
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Shun-xiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
- Research Institute of HNU in Chongqing, Chongqing, China
| |
Collapse
|
11
|
Berlowitz I, García Torres E, Maake C, Wolf U, Martin-Soelch C. Indigenous-Amazonian Traditional Medicine's Usage of the Tobacco Plant: A Transdisciplinary Ethnopsychological Mixed-Methods Case Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020346. [PMID: 36679060 PMCID: PMC9863029 DOI: 10.3390/plants12020346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Harmful usage of tobacco is a global public health problem associated with adverse health effects and addiction. Yet, in the Peruvian Amazon, the native region of Nicotiana rustica L., this plant is used in remarkably different manners: it is considered a potent medicinal plant, applied in liquid form for oral ingestion to treat mental health problems, a common and ancient healing practice in this region. Using a transdisciplinary field research approach with mixed ethnopsychological methods, this work aimed to report for the first time a case study in this context. The intervention took place in the Peruvian Amazon (Loreto) and involved ritual tobacco ingestion in a weeklong retreat-like frame, administered by a specialized traditional Amazonian healer. The patient was a 37-year-old woman with diagnosed mood, anxiety, and attention deficit disorders, as well as a chronic somatic condition. We applied qualitative experience-sampling during and quantitative symptom assessments pre- and post-treatment. Our findings offer a detailed description of the experiential therapeutic process during the treatment week and suggest clinically relevant improvements in patient well-being. This work is significant in view of the globally prevalent harmful uses of tobacco and the current scientific trend of revisiting herbal psychoactives (e.g., cannabis, psilocybin) for their therapeutic potentials.
Collapse
Affiliation(s)
- Ilana Berlowitz
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Department of Biomedical Research, University Hospital Bern, 3010 Bern, Switzerland
- Correspondence:
| | | | - Caroline Maake
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
12
|
Alves CL, Cury RG, Roster K, Pineda AM, Rodrigues FA, Thielemann C, Ciba M. Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments. PLoS One 2022; 17:e0277257. [PMID: 36525422 PMCID: PMC9757568 DOI: 10.1371/journal.pone.0277257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated to be a viable therapy for a variety of neurological and mental diseases. EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most important brain connections, a significant new discovery for psychedelic literature. This connection may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer's disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and suggested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action.
Collapse
Affiliation(s)
- Caroline L. Alves
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
- * E-mail:
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, University of São Paulo (USP), São Paulo, Brazil
| | - Kirstin Roster
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aruane M. Pineda
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco A. Rodrigues
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| | - Manuel Ciba
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| |
Collapse
|
13
|
Liu W, Tian L, Wu L, Chen H, Wang N, Liu X, Zhao C, Wu Z, Jiang X, Wu Q, Xu Z, Liu W, Zhao Q. Discovery of novel β-carboline-1,2,3-triazole hybrids as AChE/GSK-3β dual inhibitors for Alzheimer's disease treatment. Bioorg Chem 2022; 129:106168. [DOI: 10.1016/j.bioorg.2022.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
14
|
Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:biom12111618. [DOI: 10.3390/biom12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca’s therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca’s components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
|
15
|
Analgesic and Antidepressant Activity of 8-Substituted Harmine Derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Chen H, Yu C, Liu W, Zhu C, Jiang X, Xu C, Liu W, Huang Y, Xu Z, Zhao Q. Discovery of novel α-carboline derivatives as glycogen synthase kinase-3β inhibitors for the treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2022; 355:e2200156. [PMID: 35836098 DOI: 10.1002/ardp.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease, characterized by irreversible cognitive impairment, memory loss, and behavioral disturbances, ultimately resulting in death. The critical roles of glycogen synthase kinase-3β (GSK-3β) in tau pathology have also received considerable attention. Based on molecular docking studies, a series of novel α-carboline derivatives were designed, synthesized, and evaluated as GSK-3β inhibitors for their various biological activities. Among them, compound ZCH-9 showed the most potent inhibitory activity against GSK-3β, with an IC50 value of 1.71 ± 0.09 µM. The cytotoxicity assay showed that ZCH-9 had low cytotoxicity toward the cell lines SH-SY5Y, HepG2, and HL-7702. Moreover, Western blot analysis indicated that ZCH-9 effectively inhibited hyperphosphorylation of the tau protein in okadaic acid-treated SH-SY5Y cells. The binding mode between ZCH-9 and GSK-3β was analyzed and further clarified throughout the molecular dynamics simulations. In general, these results suggested that the α-carboline-based small-molecule compounds could serve as potential candidates targeting GSK-3β for the treatment of AD.
Collapse
Affiliation(s)
- Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Chang Xu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
17
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
18
|
Psychedelics: Alternative and Potential Therapeutic Options for Treating Mood and Anxiety Disorders. Molecules 2022; 27:molecules27082520. [PMID: 35458717 PMCID: PMC9025549 DOI: 10.3390/molecules27082520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/07/2022] Open
Abstract
The word “psychedelic” (psyche (i.e., the mind or soul) and delos (i.e., to show)) has Greek origin and was first coined by psychiatrist Humphry Osmond in 1956, who had been conducting research on lysergic acid diethylamide (LSD) at the time. Psychedelic drugs such as N,N-DMT/DMT (N,N-dimethyltryptamine), 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), LSD (lysergic acid diethylamide), MDMA (3,4-methylenedioxymethamphetamine) and psilocybin have had significant value as an entheogen in spiritual, religious (shamanic) and sociocultural rituals in Central and South American cultures for thousands of years. In the 1960s, the globalization of these drugs and their subsequent spread outside of their indigenous, old-world cultures, led to the subsequent implementation of strict drug control laws in many Western countries. Even today, psychedelics are still classified as Schedule I drugs, resulting in a still lingering negative stigmatization/perception, vilification, and ultimate criminalization of psychedelics. This controversy still lingers and still limits scientific research and full medical acceptance. For many years up until recently, the spiritual, religious and medicinal value of these drugs could not be explored in a scientific context. More recently, a second wave of psychedelic research is now focusing on psychedelics as neuropharmaceuticals to treat alcohol and tobacco addiction, general mood and anxiety disorders and cancer-related depression. There is now a vast array of promising evidence-based data to confirm the years of anecdotal evidence of the medicinal values of psychedelics. Natural therapeutic alternatives such as psychedelic drugs may provide a safe and efficacious alternate to conventional drugs used to treat mood and anxiety disorders. In a Western context in particular, psychedelic drugs as therapeutic agents for mood and anxiety disorders are becoming increasingly of interest amidst increasing rates of such disorders globally, changing social constructions, the implementation of government regulations and increasing investment opportunities, that ultimately allow for the scientific study to generate evidenced-based data. Alternative psychotherapeutic interventions are gaining interest also, because of their low physiological toxicity, relatively low abuse potential, safe psychological effects, and no associated persisting adverse physiological or psychological effects during and after use. On the other hand, conventional psychotic drugs and anti-depressants are becoming less favorable because of their adverse side effects. Psychedelic neuropharmaceutical interventions may with medical oversight be the solution to conventional psychiatric disorders such as depression and anxiety, and an alternative to conventional psychiatric treatment options. This paper will review the therapeutic potential of psychedelic drugs as alternative therapeutic options for mood and anxiety disorders in a controlled, clinical setting, where the chances of adverse psychological episodes occurring are mitigated.
Collapse
|
19
|
Rossi GN, Dias ICDS, Baker G, Bouso Saiz JC, Dursun SM, Hallak JEC, Dos Santos RG. Ayahuasca, a potentially rapid acting antidepressant: focus on safety and tolerability. Expert Opin Drug Saf 2022; 21:789-801. [PMID: 35301934 DOI: 10.1080/14740338.2022.2054988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ayahuasca is a psychedelic brew originally used by indigenous tribes from the Amazon Rainforest and in religious rituals. Pre-clinical and observational studies have demonstrated its possible potential as an antidepressant, and open and placebo-controlled clinical trials corroborated these results. For it to become an approved treatment for depression, its safety and tolerability need to be assessed and documented. AREAS COVERED We have gathered data regarding occurrence of adverse events (AEs) in all reported randomized, placebo-controlled trials with healthy and clinical populations involving ayahuasca administration (n = 108 ayahuasca administrations). We systematically categorized these results, recorded their prevalence and discussed the possible mechanisms related to their emergence. EXPERT OPINION : There were no reports of serious AEs, indicating a relative safety of ayahuasca administration in controlled settings. Most common AEs related to ayahuasca administration included nausea, vomiting, headaches and transient increases in cardiovascular measurements. Ayahuasca research is still in its infancy, especially concerning the absence of large and robust clinical trials to verify its antidepressant effects. Dose standardization, legal prohibition of the possession of its alkaloids and how traditional communities will be compensated if ayahuasca becomes an approved medicine are the biggest obstacles to overcome for its future use in the therapeutic context.
Collapse
Affiliation(s)
- Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Glen Baker
- National Institute for Translational Medicine (INCT-TM) CNPq, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - José Carlos Bouso Saiz
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Research and Services, ICEERS International Center for Ethnobotanical Education ,Barcelona, Spain.,Medical Anthopology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM) CNPq, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime E C Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Translational Medicine (INCT-TM) CNPq, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Translational Medicine (INCT-TM) CNPq, Brazil.,Research and Services, ICEERS International Center for Ethnobotanical Education ,Barcelona, Spain
| |
Collapse
|
20
|
Nižnanský Ľ, Nižnanská Ž, Kuruc R, Szórádová A, Šikuta J, Zummerová A. Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects. J Clin Med 2022; 11:1147. [PMID: 35207420 PMCID: PMC8880227 DOI: 10.3390/jcm11041147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Ahyahuasca is a term commonly used to describe a decoction prepared by cooking the bark or crushed stems of the liana Banisteriopsis caapi (contains β-carbolines) alone or in combination with other plants, most commonly leaves of the shrub Psychotria viridis (contains N,N-dimethyltryptamine-DMT). More than 100 different plants can serve as sources of β-carbolines and DMT, which are the active alkaloids of this decoction, and therefore it is important to know the most accurate composition of the decoction, especially when studying the pharmacology of this plant. The aim was to summarize the latest sensitive methods used in the analysis of the composition of the beverage itself and the analysis of various biological matrices. We compared pharmacokinetic parameters in all of the studies where decoction of ayahuasca was administered and where its composition was known, whereby minimal adverse effects were observed. The therapeutic benefit of this plant is still unclear in the scientific literature, and side effects occur probably on the basis of pre-existing psychiatric disorder. We also described toxicological risks and clinical benefits of ayahuasca intake, which meant that the concentrations of active alkaloids in the decoction or in the organism, often not determined in publications, were required for sufficient evaluation of its effect on the organism. We did not find any post-mortem study, in which the toxicological examination of biological materials together with the autopsy findings would suggest potential lethality of this plant.
Collapse
Affiliation(s)
- Ľuboš Nižnanský
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Žofia Nižnanská
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Roman Kuruc
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Andrea Szórádová
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Ján Šikuta
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Anežka Zummerová
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| |
Collapse
|
21
|
Farias CP, Victoria PP, Xavier J, Sekine FG, Ribeiro ES, Cognato GDP, Carvalho HW. Behavioral characterization of ayahuasca treatment on Wistar rats in the open field test. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
22
|
Dos Santos RG, Hallak JEC. Ayahuasca, an ancient substance with traditional and contemporary use in neuropsychiatry and neuroscience. Epilepsy Behav 2021; 121:106300. [PMID: 31182391 DOI: 10.1016/j.yebeh.2019.04.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 01/12/2023]
Abstract
Ayahuasca is a botanical hallucinogenic preparation traditionally used for ritual and therapeutic purposes by native populations of the Northwestern Amazon. In the last decades, ayahuasca use has spread to Europe, the United States, Asia, and Africa, and interest in the possible therapeutic uses of ayahuasca for treating anxiety and mood disorder and substance-use disorders has increased both among the general public and the scientific community. Indeed, preclinical, observational, and preliminary clinical studies have corroborated some of these findings. In the present article, we present an overview of these studies and highlight the current uses of ayahuasca in neuroscience, such as a tool in the investigation of the neural basis of introspection and other complex cognitive processes.
Collapse
Affiliation(s)
- Rafael Guimarães Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto, Brazil.
| | - Jaime Eduardo Cecilio Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Meijboom KE, Volpato V, Monzón-Sandoval J, Hoolachan JM, Hammond SM, Abendroth F, de Jong OG, Hazell G, Ahlskog N, Wood MJ, Webber C, Bowerman M. Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy. JCI Insight 2021; 6:e149446. [PMID: 34236053 PMCID: PMC8410072 DOI: 10.1172/jci.insight.149446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Viola Volpato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jimena Monzón-Sandoval
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Olivier G de Jong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,School of Medicine, Keele University, Staffordshire, United Kingdom.,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| |
Collapse
|
24
|
Stress, memory, and implications for major depression. Behav Brain Res 2021; 412:113410. [PMID: 34116119 DOI: 10.1016/j.bbr.2021.113410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The stress response comprises a phylogenetically conserved set of cognitive, physiological, and behavioral responses that evolved as a survival strategy. In this context, the memory of stressful events would be adaptive as it could avoid re-exposure to an adverse event, otherwise the event would be facilitated in positively stressful or non-distressful conditions. However, the interaction between stress and memory comprises complex responses, some of them which are not yet completely understood, and which depend on several factors such as the memory system that is recruited, the nature and duration of the stressful event, as well as the timing in which this interaction takes place. In this narrative review, we briefly discuss the mechanisms of the stress response, the main memory systems, and its neural correlates. Then, we show how stress, through the action of its biochemical mediators, influences memory systems and mnemonic processes. Finally, we make use of major depressive disorder to explore the possible implications of non-adaptive interactions between stress and memory to psychiatric disorders, as well as possible roles for memory studies in the field of psychiatry.
Collapse
|
25
|
Li B, Yang Y, Wang Y, Zhang J, Ding J, Liu X, Jin Y, Lian B, Ling Y, Sun C. Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models. iScience 2021; 24:102302. [PMID: 33851105 PMCID: PMC8022854 DOI: 10.1016/j.isci.2021.102302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
It has been shown that histone deacetylase (HDAC) inhibitors hold considerable therapeutic potentials for treating neurodegeneration-related diseases including Parkinson disease (PD). Here, we synthesized an HDAC inhibitor named as HGC and examined its neuroprotective roles in PD models. Our results showed that HGC protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced insults. Furthermore, in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model mice, HGC application rectifies behavioral defects, improves tyrosine hydroxylase-positive neurons in the midbrain, and maintains mitochondrial integrity and functions. Mechanistically, mass spectrometry data revealed that HGC stimulates acetylation modification at lysine 28 of NDUFV1. Inhibition of HDAC6 by HGC is responsible for this acetylation modification. Functional tests showed that, as well as HGC, NDUFV1 exhibits beneficial roles against MPP+ injuries. Moreover, knockdown of NDUFV1 abolishes the neuroprotective roles of HGC. Taken together, our data indicate that HGC has a great therapeutic potential for treating PD and NDUFV1 might be a target for developing drugs against PD. HGC is a potent inhibitor for HDACs, especially HDAC1/6 HGC protects dopaminergic neurons and alleviates PD symptoms in PD models HDAC6/NDUFV1 axis is responsible for transducing its anti-PD activities HGC holds great therapeutic potentials for treating PD
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jie Ding
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yan Jin
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China
- Corresponding author
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
- Corresponding author
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
- Corresponding author
| |
Collapse
|
26
|
Psychedelic Medicines in Major Depression: Progress and Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:515-533. [PMID: 33834416 DOI: 10.1007/978-981-33-6044-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The volume of research on the therapeutic use of psychedelic drugs has been increasing during the last decades. Partly because of the need of innovative treatments in psychiatry, several studies have assessed the safety and efficacy of drugs like psilocybin or ayahuasca for a wide range of mental disorders, including major depression. The first section of this chapter will offer an introduction to psychedelic research, including a brief historical overview and discussions about appropriate terminology. In the second section, the recently published clinical trials in which psychedelic drugs were administered to patients will be analysed in detail. Then, in the third section, the main neurobiological mechanisms of these drugs will be described, noting that while some of these mechanisms could be potentially associated with their therapeutic properties, they are commonly used as adjuvants in psychotherapeutic processes. The last section suggests future challenges for this groundbreaking field of research and therapy.
Collapse
|
27
|
Zhu YG, Lv YX, Guo CY, Xiao ZM, Jiang QG, Kuang H, Zhang WH, Hu P. Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway. Life Sci 2021; 270:119112. [DOI: 10.1016/j.lfs.2021.119112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
|
28
|
Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules 2021; 26:molecules26030728. [PMID: 33573300 PMCID: PMC7866829 DOI: 10.3390/molecules26030728] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Alkaloids are a class of secondary metabolites that can be derived from plants, fungi and marine sponges. They are widely known as a continuous source of medicine for the management of chronic disease including cancer, diabetes and neurodegenerative diseases. For example, galanthamine and huperzine A are alkaloid derivatives currently being used for the symptomatic management of neurodegenerative disease. The etiology of neurodegenerative diseases is polygenic and multifactorial including but not limited to inflammation, oxidative stress and protein aggregation. Therefore, natural-product-based alkaloids with polypharmacology modulation properties are potentially useful for further drug development or, to a lesser extent, as nutraceuticals to manage neurodegeneration. This review aims to discuss and summarise recent developments in relation to naturally derived alkaloids for neurodegenerative diseases.
Collapse
|
29
|
Lv Y, Liang H, Li J, Li X, Tang X, Gao S, Zou H, Zhang J, Wang M, Xiao L. Central inhibition prevents the in vivo acute toxicity of harmine in mice. J Toxicol Sci 2021; 46:289-301. [PMID: 34078836 DOI: 10.2131/jts.46.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Harmine is a β-carboline alkaloid that displays antidepressant, antitumor and other pharmacological effects. However, the strong toxic effects limit its clinical application, and should be first considered. PURPOSE To evaluate the in vivo toxicity of harmine and explore intervention strategies against its toxicity. METHODS The in vivo toxicity of harmine was assessed from the symptoms, biochemical indices, and cardiovascular effects in mice. The intervention experiments were performed by using anesthetics, central drugs, and peripheral anticholinergics. RESULTS The acute toxicity of harmine is significantly dose-dependent and the median lethal dose is 26.9 mg/kg in vivo. The typical symptoms include convulsion, tremor, jumping, restlessness, ataxia, opisthotonos, and death; it also changes cardiovascular function. The anesthetics improved the survival rate and abolished the symptoms after harmine poisoning. Two central inhibitors, benzhexol and phenytoin sodium, uniformly improved the survival rates of mice poisoned with harmine. The peripheral anticholinergics didn't show any effects. CONCLUSION Harmine exposure leads to central neurological symptoms, cardiovascular effects and even death through direct inhibition of the central AChE activity, where the death primarily comes from central neurological symptoms and is cooperated by the secondary cardiovascular collapse. Central inhibition prevents the acute toxicity of harmine, and especially rapid gaseous anesthetics such as isoflurane, might have potential application in the treatment of harmine poisoning.
Collapse
Affiliation(s)
- Yang Lv
- College of Pharmacy, Xinjiang Medical University, China
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
| | - Hongyu Liang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
- College of Traditional Chinese Medicine, Jilin Agricultural University, China
| | - Jun Li
- College of Pharmacy, Xinjiang Medical University, China
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
| | - Xiuxiu Li
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
| | - Xiaohui Tang
- College of Pharmacy, Xinjiang Medical University, China
| | - Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
| | - Hao Zou
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, China
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, China
| | - Mei Wang
- College of Pharmacy, Xinjiang Medical University, China
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), China
| |
Collapse
|
30
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
31
|
Nose-to-brain delivery of drug nanocrystals by using Ca 2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm 2020; 594:120182. [PMID: 33346126 DOI: 10.1016/j.ijpharm.2020.120182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study is to use a carbohydrate polymer deacetylated gellan gum (DGG) as matrix to design nanocrystals based intranasal in situ gel (IG) for nose-to -brain delivery of drug. The harmine nanocrystals (HAR-NC) as model drug were prepared by coupling homogenization and spray-drying technology. The HAR-NC was redispersed in the (DGG) solutions and formed the ionic-triggered harmine nanocrystals based in situ gel (HAR-NC-IG). The crystal state of HAR remained unchanged during the homogenization and spray-drying. And the HAR-NC-IG with 0.5% DGG exhibited excellent in situ-gelation ability, water retention property and in vitro release behavior. The bioavailability in brain of intranasal HAR-NC-IG were 25-fold higher than that of oral HAR-NC, which could be attributed to nanosizing effect of HAR-NC and bioadhesive property of DGG triggered by nasal fluid. And the HAR-NC-IG could significantly inhibit the expression of acetylcholinesterase (AchE) and increase the content of acetylcholin (ACh) in brain compared with those of reference formulations (p < 0.01). The DGG based nanocrystals-in situ gel was a promising carrier for nose-to-brain delivery of poorly soluble drug, which could prolong the residence time and improve the bioavailability of poorly soluble drugs in brain.
Collapse
|
32
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
33
|
Fan Y, Wu H, Cai D, Yang T, Yang L. Effective extraction of harmine by menthol/anise alcohol-based natural deep eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Politi M, Friso F, Saucedo G, Torres J. Traditional Use of Banisteriopsis caapi Alone and Its Application in a Context of Drug Addiction Therapy. J Psychoactive Drugs 2020; 53:76-84. [PMID: 32985365 DOI: 10.1080/02791072.2020.1820641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Takiwasi is a therapeutic community for the treatment of Substance Use Disorders (SUDs) that combines traditional Amazonian medicine (TAM) with modern psychotherapy. One of the plant medicines from TAM used in this protocol is purgahuasca. It is a decoction of the vine Banisteriopsis caapi alone, whose use is traditional among the Awajún and other ethnic groups in Peru. The research began with a field trip to Awajún territory to explore the indigenous use of purgahuasca as an initiation rite. Then, analysis of its application was conducted in the clinical context of Takiwasi. Open-ended and semi-structured interviews with Awajún informants and Takiwasi's therapeutic staff were performed and analyzed following the narrative methodological approach. Further clinical data on the ingestion of purgahuasca by Takiwasi's SUD patients were obtained from the internal repository. These indicate that 359 (92.1%) patients reported having had the so-called mareación (dizziness), 299 (76.7%) experienced physical sensations, and 208 (53.3%) had visions. These effects can be related to the psychoactivity of β-Carbolines alkaloids from B. caapi, a medicinal plant that seems to have potential benefits also for SUD, especially giving a key contribution to the patients' therapeutic process of becoming aware of the personal reasons behind addictive behaviors.
Collapse
Affiliation(s)
- Matteo Politi
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru.,Department of Pharmacy, University of Chieti-Pescara, Chieti Scalo, Italy
| | - Fabio Friso
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Gary Saucedo
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Jaime Torres
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| |
Collapse
|
35
|
Wu ZN, Chen NH, Tang Q, Chen S, Zhan ZC, Zhang YB, Wang GC, Li YL, Ye WC. β-Carboline Alkaloids from the Seeds of Peganum harmala and Their Anti-HSV-2 Virus Activities. Org Lett 2020; 22:7310-7314. [PMID: 32896126 DOI: 10.1021/acs.orglett.0c02650] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pegaharines A-G (1-6), six novel β-carboline alkaloids representing three types of skeleton, were isolated from the seeds of Peganum harmala. Compound 1 is a peculiar β-carboline alkaloid characterized by the unprecedented carbon skeleton of an azepine-indole system. Compounds 3-6 represent the first examples of heterodimers constructed from rare tetracyclic β-carboline and classic tricyclic β-carboline alkaloids. Compounds 1 and 2 were characterized by X-ray crystallography. Compound 4 exhibited strong antiviral activity against HSV-2, with an IC50 value of 2.12 ± 0.14 μM.
Collapse
Affiliation(s)
- Zhong-Nan Wu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Neng-Hua Chen
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Si Chen
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhao-Chun Zhan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P. R. China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
36
|
Katchborian-Neto A, Santos WT, Nicácio KJ, Corrêa JOA, Murgu M, Martins TMM, Gomes DA, Goes AM, Soares MG, Dias DF, Chagas-Paula DA, Paula ACC. Neuroprotective potential of Ayahuasca and untargeted metabolomics analyses: applicability to Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112743. [PMID: 32171895 DOI: 10.1016/j.jep.2020.112743] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ayahuasca is a tea produced through decoction of Amazonian plants. It has been used for centuries by indigenous people of South America. The beverage is considered to be an ethnomedicine, and it is traditionally used for the treatment of a wide range of diseases, including neurological illness. Besides, some scientific evidence suggests it may be applicable to Parkinson's disease (PD) treatment. Thus, Ayahuasca deserves in depth studies to clarify its potential role in this disease. AIM OF THE STUDY This study aimed to use an untargeted metabolomics approach to evaluate the neuroprotective potential of the Ayahuasca beverage, the extracts from its matrix plants (Banisteriopsis caapi and Psychotria viridis), its fractions and its main alkaloids on the viability of SH-SY5Y neuroblastoma cells in an in vitro PD model. MATERIAL AND METHODS The cytotoxicity of Ayahuasca, crude extracts, and fractions of B. caapi and P. viridis, as well as neuroprotection promoted by these samples in a 6-hydroxydopamine (6-OHDA)-induced neurodegeneration model, were evaluated by the MTT assay at two time-points: 48 h (T1) and 72 h (T2). The main alkaloids from Ayahuasca matrix plants, harmine (HRE) and N,N-dimethyltryptamine (DMT), were also isolated and evaluated. An untargeted metabolomics approach was developed to explore the chemical composition of samples with neuroprotective activity. Ultra-Performance Liquid Chromatography coupled to Electrospray Ionisation and Time-of-Flight (UPLC-ESI-TOF) metabolome data was treated and further analysed using multivariate statistical analyses (MSA): principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The metabolites were dereplicated using the Dictionary of Natural Products and an in house database. The main alkaloids were also quantified by UPLC-MS/MS. RESULTS The samples did not cause cytotoxicity in vitro and three of samples intensely increased cell viability at T1. The crude extracts, alkaloid fractions and HRE demonstrated remarkable neuroprotective effect at T2 while the hydroalcoholic fractions demonstrated this neuroprotective effect at T1 and T2. Several compounds from different classes, such as β-carbolines and monoterpene indole alkaloids (MIAs) were revealed correlated with this property by MSA. Additionally, a total of 2419 compounds were detected in both ionisation modes. HRE showed potent neuroprotective action at 72 h, but it was not among the metabolites positively correlated with the most efficacious neuroprotective profile at either time (T1 and T2). Furthermore, DMT was statistically important to differentiate the dataset (VIP value > 1), although it did not exhibit sufficient neuroprotective activity by in vitro assay, neither a positive correlation with T1 and T2 neuroprotective profile, which corroborated the MSA results. CONCLUSION The lower doses of the active samples stimulated neuronal cell proliferation and/or displayed the most efficacious neuroprotection profile, namely by preventing neuronal damage and improving cell viability against 6-OHDA-induced toxicity. Intriguingly, the hydroalcoholic fractions exhibited enhanced neuroprotective effects when compared to other samples and isolated alkaloids. This finding corroborates the significance of a holistic approach. The results demonstrate that Ayahuasca and its base plants have potential applicability for PD treatment and to prevent its progression differently from current drugs to treat PD.
Collapse
Affiliation(s)
- Albert Katchborian-Neto
- Chemistry Institute, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Wanderleya T Santos
- School of Pharmacy, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Karen J Nicácio
- Chemistry Institute, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - José O A Corrêa
- School of Pharmacy, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Michael Murgu
- Waters Corporation, Alameda Tocantins 125, 27th Floor, Alphaville, 06455-020, São Paulo, São Paulo, Brazil
| | - Thaís M M Martins
- Biological Sciences Institute, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson A Gomes
- Biological Sciences Institute, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Alfredo M Goes
- Biological Sciences Institute, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Marisi G Soares
- Chemistry Institute, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Danielle F Dias
- Chemistry Institute, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Daniela A Chagas-Paula
- Chemistry Institute, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Ana C C Paula
- School of Pharmacy, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
37
|
Giacobbo BL, Doorduin J, Moraga-Amaro R, Nazario LR, Schildt A, Bromberg E, Dierckx RAJO, de Vries EFJ. Chronic harmine treatment has a delayed effect on mobility in control and socially defeated rats. Psychopharmacology (Berl) 2020; 237:1595-1606. [PMID: 32088835 PMCID: PMC7239822 DOI: 10.1007/s00213-020-05483-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Depression is characterized by behavioral, cognitive and physiological changes, imposing a major burden on the overall wellbeing of the patient. Some evidence indicates that social stress, changes in growth factors (e.g., brain-derived neurotrophic factor (BDNF)), and neuroinflammation are involved in the development and progression of the disease. The monoamine oxidase A inhibitor drug harmine was suggested to have both antidepressant and anti-inflammatory properties and may, therefore, be a potential candidate for treatment of depression. AIM The goal of this study was to assess the effects of harmine on behavior, brain BDNF levels, and microglia activation in control rats and a rat model of social stress. MATERIAL AND METHODS Rats were submitted to 5 consecutive days of repeated social defeat (RSD) or control conditions. Animals were treated daily with harmine (15 mg/kg) or vehicle from day 3 until the end of the experiment. To assess the effects of harmine treatment on behavior, the sucrose preference test (SPT) was performed on days 1, 6, and 15, the open field test (OFT) on days 6 and 14, and the novel object recognition test (NOR) on day 16. Brain microgliosis was assessed using [11C]PBR-28 PET on day 17. Animals were terminated on day 17, and BDNF protein concentrations in the hippocampus and frontal cortex were analyzed using ELISA. RESULTS RSD significantly decreased bodyweight and increased anxiety and anhedonia-related parameters in the OFT and SPT on day 6, but these behavioral effects were not observed anymore on day 14/15. Harmine treatment caused a significant reduction in bodyweight gain in both groups, induced anhedonia in the SPT on day 6, and significantly reduced the mobility and exploratory behavior of the animals in the OFT mainly on day 14. PET imaging and the NOR test did not show any significant effects on microglia activation and memory, respectively. BDNF protein concentrations in the hippocampus and frontal cortex were not significantly affected by either RSD or harmine treatment. DISCUSSION Harmine was not able to reverse the acute effects of RSD on anxiety and anhedonia and even aggravated the effect of RSD on bodyweight loss. Moreover, harmine treatment caused unexpected side effects on general locomotion, both in RSD and control animals, but did not influence glial activation status and BDNF concentrations in the brain. In this model, RSD-induced stress was not strong enough to induce long-term effects on the behavior, neuroinflammation, or BDNF protein concentration. Thus, the efficacy of harmine treatment on these delayed parameters needs to be further evaluated in more severe models of chronic stress.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
- Laboratory of Biology and Nervous System Development, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
- Laboratory of Neurochemistry and Psychopharmacology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Elke Bromberg
- Laboratory of Biology and Nervous System Development, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
38
|
Jiménez-Garrido DF, Gómez-Sousa M, Ona G, Dos Santos RG, Hallak JEC, Alcázar-Córcoles MÁ, Bouso JC. Effects of ayahuasca on mental health and quality of life in naïve users: A longitudinal and cross-sectional study combination. Sci Rep 2020; 10:4075. [PMID: 32139811 PMCID: PMC7057990 DOI: 10.1038/s41598-020-61169-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
Ayahuasca is a hallucinogenic decoction used as a traditional medicine in several Amazonian regions. The ritualistic use of ayahuasca has spread throughout many countries, making it necessary to study its risks and benefits. Two sub-studies were designed for this investigation. In sub-study 1, a psychiatric interview and a battery of questionnaires were administered to subjects (n = 40) before their first ayahuasca use. Two follow-ups were conducted at 1 and 6 months. In sub-study 2, the same interview and battery of questionnaires were administered to long-term ayahuasca users (n = 23) and their scores were compared with those of the ayahuasca-naïve group. In the first assessment, nearly half (45%) of the naïve users were found to meet the diagnostic criteria for a psychiatric disorder. After the ayahuasca use, more than 80% of those subjects showed clinical improvements that persisted at 6 months. The questionnaires showed significant reductions in depression and psychopathology. Regarding sub-study 2, long-term users showed lower depression scores, and higher scores for self-transcendence and quality of life, as compared to their peers in sub-study 1. Further controlled and observational naturalistic studies assessing the eventual risks and potential benefits of ayahuasca are warranted.
Collapse
Affiliation(s)
- Daniel F Jiménez-Garrido
- ICEERS - International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain
| | - María Gómez-Sousa
- ICEERS - International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain
| | - Genís Ona
- ICEERS - International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain.,Universitat Rovira i Virgili, Department of Anthropology, Philosophy and Social Work, Tarragona, Spain
| | - Rafael G Dos Santos
- ICEERS - International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil.,National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Miguel Ángel Alcázar-Córcoles
- Department of Biological & Health Psychology, School of Psychology, Madrid Autonomous University, 28049, Madrid, Spain
| | - José Carlos Bouso
- ICEERS - International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain.
| |
Collapse
|
39
|
dos Santos RG, Hallak JEC. Therapeutic use of serotoninergic hallucinogens: A review of the evidence and of the biological and psychological mechanisms. Neurosci Biobehav Rev 2020; 108:423-434. [DOI: 10.1016/j.neubiorev.2019.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
|
40
|
Zhao Z, Sun Y, Wang L, Chen X, Sun Y, Lin L, Tang Y, Li F, Chen D. Organic base-promoted efficient dehydrogenative/decarboxylative aromatization of tetrahydro-β-carbolines into β-carbolines under air. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Lobao-Soares B, Eduardo-da-Silva P, Amarilha H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. It's Tea Time: Interference of Ayahuasca Brew on Discriminative Learning in Zebrafish. Front Behav Neurosci 2018; 12:190. [PMID: 30210319 PMCID: PMC6119691 DOI: 10.3389/fnbeh.2018.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 12/01/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in shamanistic and vegetalistic rituals and has recently received lot of attention due to potential cognitive benefits. Ayahuasca effects are caused by the synergistic interaction of β-carbolines (harmine, harmaline and tetrahydroarmine) contained in Banisteriopsis caapi stalks combined with the N,N-dimethyltryptamine (DMT) from Psychotria viridis leaves, a potent agonist to serotonin (5-HT) receptors. The present study approaches the effects of chronic and acute exposure to two Ayahuasca concentrations (0.1 and 0.5 ml/L) on the cognitive ability to discriminate objects in a one-trial learning task in zebrafish. Based on the combination of concentrations and exposure regimens, we divided adult zebrafish in five treatment groups: acute 0.1 and 0.5 ml/L, chronic 0.1 and 0.5 ml/L, and control 0.0 (n = 20 for each group). Then we tested them in a memory task of object discrimination. Acute Ayahuasca exposed groups performed similarly to the control group, however chronically treated fish (13 days) presented both impaired discriminative performance and locomotor alterations. Overall, these results indicate that Ayahuasca is a potent psychoactive drug that, in chronic exposure, negatively affects mnemonic parameters in zebrafish. In single exposure it does not affects cognitive performance, but the higher concentration (0.5) affected locomotion. Moreover, we reinforce the importance of the zebrafish for behavioral pharmacological studies of drug screening, in special to psychedelic drug research.
Collapse
Affiliation(s)
- Bruno Lobao-Soares
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Paulianny Eduardo-da-Silva
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Amarilha
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Priscila F. Silva
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
42
|
Chen D, Tian X, Zou X, Xu S, Wang H, Zheng N, Wu Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-κB pathway. Int Immunopharmacol 2018; 60:111-120. [DOI: 10.1016/j.intimp.2018.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|
43
|
Adeel S, Zuber M, Zia KM. Microwave-assisted extraction and dyeing of chemical and bio-mordanted cotton fabric using harmal seeds as a source of natural dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11100-11110. [PMID: 29411282 DOI: 10.1007/s11356-018-1301-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The revival of cultural heritage in a form of natural colorants for textile dyeing is gaining popularity due to their soothing nature and bright shades. The present study was conducted to explore the coloring potential of harmala (Peganum harmala) seeds and to improve color strength of dye using microwave radiations followed by a mordanting process. The results showed that harmala plant seeds could be an excellent source of natural dyes for cotton dyeing if the irradiated acidified methanolic extract (RE, 4 min) is used to dye un-irradiated fabric (NRC) at 85 °C for 45 min using a dye bath of pH 9.0 having salt concentration of 7 g/100 mL. Alum (1%) as pre-mordants and iron (7%) as post-mordants have improved the color strength in chemical mordanting more than other mordants employed. The bio-mordants employed reveal that 10% of acacia as pre-bio-mordants and 7% of acacia as post-bio-mordants are effective amounts to obtain high color strength. Suggested ISO standards for colorfastness illustrate that bio-mordanting has given more excellent rating as compared to chemical mordants. It is concluded that harmala seeds have a great potential to act as a source of natural colorant for cotton dyeing under the influence of microwave radiation.
Collapse
Affiliation(s)
- Shahid Adeel
- Department of Chemistry, Govt. College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Zuber
- Department of Applied Chemistry, Govt. College University, Faisalabad, 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Govt. College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
44
|
O'Hagan S, Kell DB. Analysing and Navigating Natural Products Space for Generating Small, Diverse, But Representative Chemical Libraries. Biotechnol J 2017; 13. [PMID: 29168302 DOI: 10.1002/biot.201700503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/09/2017] [Indexed: 01/01/2023]
Abstract
Armed with the digital availability of two natural products libraries, amounting to some 195 885 molecular entities, we ask the question of how we can best sample from them to maximize their "representativeness" in smaller and more usable libraries of 96, 384, 1152, and 1920 molecules. The term "representativeness" is intended to include diversity, but for numerical reasons (and the likelihood of being able to perform a QSAR) it is necessary to focus on areas of chemical space that are more highly populated. Encoding chemical structures as fingerprints using the RDKit "patterned" algorithm, we first assess the granularity of the natural products space using a simple clustering algorithm, showing that there are major regions of "denseness" but also a great many very sparsely populated areas. We then apply a "hybrid" hierarchical K-means clustering algorithm to the data to produce more statistically robust clusters from which representative and appropriate numbers of samples may be chosen. There is necessarily again a trade-off between cluster size and cluster number, but within these constraints, libraries containing 384 or 1152 molecules can be found that come from clusters that represent some 18 and 30% of the whole chemical space, with cluster sizes of, respectively, 50 and 27 or above, just about sufficient to perform a QSAR. By using the online availability of molecules via the Molport system (www.molport.com), we are also able to construct (and, for the first time, provide the contents of) a small virtual library of available molecules that provided effective coverage of the chemical space described. Consistent with this, the average molecular similarities of the contents of the libraries developed is considerably smaller than is that of the original libraries. The suggested libraries may have use in molecular or phenotypic screening, including for determining possible transporter substrates.
Collapse
Affiliation(s)
- Steve O'Hagan
- Dr. S. O'Hagan, Prof. D. B. Kell, School of Chemistry, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK.,Dr. S. O'Hagan, Prof. D. B. Kell, The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B Kell
- Dr. S. O'Hagan, Prof. D. B. Kell, School of Chemistry, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK.,Dr. S. O'Hagan, Prof. D. B. Kell, The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK.,Prof. D. B. Kell, Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
45
|
|