1
|
Cadilho JCR, Mira PCDS, Bem JP, Rodrigues PS, Thomé FJDQ, Oliveira HFD, Torres FM, Paula-Silva FWG, Nelson-Filho P, Queiroz AMD. Effects of radiation therapy on the morphology and composition of root dentin and cementum in primary teeth. Braz Oral Res 2025; 39:e026. [PMID: 40008740 PMCID: PMC11849964 DOI: 10.1590/1807-3107bor-2025.vol39.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/11/2024] [Accepted: 11/11/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to evaluate, in vitro, the effects of radiation therapy on the morphology and chemical composition of root dentin and cementum of primary teeth. Roots of human primary teeth were exposed to varying doses of irradiation using a linear accelerator: Group 1 = irradiation dose of up to 30 Gy (n= 6); Group 2 = irradiation dose of up to 42 Gy (n= 6); and Group 3 = irradiation dose of up to 54 Gy (n= 6). Non-irradiated human deciduous teeth were used as controls (n= 3). Energy-dispersive X-ray spectroscopy (EDX) data were analyzed using the chi-square test (alpha = 5%). The morphological evaluation was performed using scanning electron microscopy (SEM). In the cementum, radiation increased inorganic composition and decreased oxygen levels. However, no morphological changes were observed. In the root dentin, obliterated dentinal tubules were observed in specimens irradiated with 54 Gy, with no changes in composition. Thus, radiation therapy significantly altered the morphology and composition of important tooth structures such as dentin and cementum, in primary teeth.
Collapse
Affiliation(s)
- Julio Cesar Ramos Cadilho
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| | - Paôla Caroline da Silva Mira
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| | - Jéssica Peixoto Bem
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| | - Penélope Swerts Rodrigues
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Paulo Nelson-Filho
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| | - Alexandra Mussolino de Queiroz
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Clinical Pediatrics, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Yazdani Y, Jalali F, Tahmasbi H, Akbari M, Talebi N, Shahrtash SA, Mobed A, Alem M, Ghazi F, Dadashpour M. Recent advancements in nanomaterial-based biosensors for diagnosis of breast cancer: a comprehensive review. Cancer Cell Int 2025; 25:50. [PMID: 39966938 PMCID: PMC11834589 DOI: 10.1186/s12935-025-03663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Researchers have found that mutations in the BRCA gene associated with breast cancer have a 40-50% chance of being associated with high risk for hereditary breast cancer (BC). Therefore, detecting BRCA1 is crucial for genetic analysis, early detection, and clinical treatment of BC. Traditional detection methods for BRCA1 include high-performance liquid chromatography (HPLC), single-strand conformation polymorphism assays (SSCP), PCR, real-time PCR, and DNA sequencing. However, these methods are limited by cost, analysis time, and complexity. Therefore, it is necessary to develop an ultrasensitive, fast, low-cost, simple method for BRCA1 detection. In recent years, various BC biosensing strategies have been investigated, including optical, electrical, electrochemical, and mechanical biosensing. In particular, the high sensitivity and short detection times of electrochemical biosensors make them suitable for recognizing BC biomarkers. Additionally, the sensitivity of electrochemical biosensors can be increased by incorporating nanomaterials. In this regard, the main focus of the present study is the introduction of common methods for diagnosing the BRCA-1/2 genes. In addition to introducing biosensors as an efficient tool, it also discusses the latest and most significant biosensors developed for detecting the BRCA gene.
Collapse
Affiliation(s)
- Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Tahmasbi
- Department of Microbiology and Biotechnology, Faculty of Biotechnology, Bangalore University, Bangalore, India
| | - Mitra Akbari
- Eye Research Center, Eye Department, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Neda Talebi
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Ahmad Mobed
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farhood Ghazi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Flint DB, Bright SJ, McFadden C, Konishi T, Martinus DKJ, Manandhar M, Ben Kacem M, Bronk L, Sawakuchi GO. An empirical model of carbon-ion relative biological effectiveness based on the linear correlation between radiosensitivity to photons and carbon ions. Phys Med Biol 2024; 69:245011. [PMID: 39530708 PMCID: PMC11632915 DOI: 10.1088/1361-6560/ad918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Objective.To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE).Approach.We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g. 5% (D5%), which are linearly correlated between photon and C-ion radiations. Based on the LET response of the metrics D5%and D37%, we constructed a model containing four free parameters that predicts cells' linear quadratic model (LQM) survival curve parameters for C-ions,αCandβC, from the reference LQM parameters for photons,αXandβX, for a given C-ion LET value. We fit our model's free parameters to the training dataset and assessed its accuracy via leave-one out cross-validation. We further compared our model to the local effect model (LEM) and the microdosimetric kinetic model (MKM) by comparing its predictions against published predictions made with those models for clinically relevant LET values in the range of 23-107 keVμm-1.Main Results.Our model predicted C-ion RBE within ±7%-15% depending on cell line and dose which was comparable to LEM and MKM for the same conditions.Significance.Our model offers comparable accuracy to the LEM or MKM but requires fewer input parameters and is less computationally expensive and whose implementation is so simple we provide it coded into a spreadsheet. Thus, our model can serve as a pragmatic alternative to these mechanistic models in cases where cell-specific input parameters cannot be obtained, the models cannot be implemented, or for which their computational efficiency is paramount.
Collapse
Affiliation(s)
- David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Conor McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Teruaki Konishi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Mandira Manandhar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mariam Ben Kacem
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lawrence Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| |
Collapse
|
4
|
Jin JY, Yuan J, Qin X, Li Y, Yan H, Oleinick NL, Yao M, Pan Q, Kong FM(S, Machtay M. Derivation of a comprehensive semi-empirical proton RBE model from published experimental cell survival data collected in the PIDE database. Front Oncol 2024; 14:1415213. [PMID: 39664177 PMCID: PMC11631728 DOI: 10.3389/fonc.2024.1415213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
We aimed to develop a comprehensive proton relative biological effectiveness (RBE) model based on accumulated cell survival data in the literature. Our approach includes four major components: (1) Eligible cell survival data with various linear energy transfers (LETs) in the Particle Irradiation Data Ensemble (PIDE) database (72 datasets in four cell lines); (2) a cell survival model based on Poisson equation, with α and β defined as the ability to generate and repair damage, respectively, to replace the classic linear-quadratic model for fitting the cell survival data; (3) hypothetical linear relations of α and β on LET, orα ( L E T ) α x = α α + b α ∗ L E T andβ ( L E T ) β x = α β - b β ∗ L E T ; and (4) a multi-curve fitting (MCF) approach to fit all cell survival data into the survival model and derive the aα , bα , aβ , and bβ values for each cell line. Dependences of these parameters on cell type were thus determined and finally a comprehensive RBE model was derived. MCF showed that (aα , bα , aβ , bβ ) = (1.09, 0.0010, 0.96, 0.033), (1.10, 0.0015, 1.03, 0.023), (1.12, 0.0025, 0.99, 0.0085), and (1.17, 0.0025, 0.99, 0.013) for the four cell lines, respectively. Thus, aα = 1.12 ± 0.04, bα = 0.0019 ± 0.0008, aβ = 0.99 ± 0.03, and bβ = 0.013 ∗ αx , and approximately α ∼ 1.12 ∗ α x and β = ( 0.99 - 0.013 ∗ α x ∗ L E T ) ∗ β x . Consequently, a relatively reliable and comprehensive RBE model with dependence on LET, αx , βx , and dose per fraction was finally derived for potential clinical application.
Collapse
Affiliation(s)
- Jian-Yue Jin
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jiankui Yuan
- Seidman Cancer Center, University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Xiaohang Qin
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yinghui Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huagang Yan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Nancy L. Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Min Yao
- Department of Radiation Oncology, Penn State University Cancer Institute, Hershey, PA, United States
| | - Quintin Pan
- Seidman Cancer Center, University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Feng-Ming (Spring) Kong
- Department of Clinical Oncology, Hong Kong University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Queen Mary Hospital, Li Ka Shing Medical School, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State University Cancer Institute, Hershey, PA, United States
| |
Collapse
|
5
|
Waeldner K, Chin C, Gilbo P. Severe Radiation-Induced Brachial Plexopathy: A Case Report on Radiation Toxicity in a Patient With Invasive Ductal Carcinoma. Cureus 2024; 16:e73043. [PMID: 39640102 PMCID: PMC11618962 DOI: 10.7759/cureus.73043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The ataxia-telangiectasia mutated (ATM) gene is an important regulator of cell checkpoint signaling and the repair of double-stranded breaks. When the ATM gene is mutated or damaged, cells are less capable of responding to damage induced by radiation therapy (RT). Here, we present a case of a 50-year-old woman with stage IIIA invasive ductal carcinoma of the left breast who had genetic testing revealing pathogenic ATM mutations (c.5290del and c.4396C>G) and a PALB2 mutation (c.1619dup). While guidelines suggest that adjuvant radiation therapy is safe for patients with ATM mutations, this patient experienced severe radiation-induced toxicities, including brachial plexopathy. These ATM mutations have not previously been described as imparting severe radiation-associated toxicities.
Collapse
Affiliation(s)
- Kathleen Waeldner
- Department of Radiation Oncology, Larner College of Medicine at the University of Vermont, Burlington, USA
| | - Christine Chin
- Department of Radiation Oncology, Nuvance Health, Norwalk, USA
| | - Philip Gilbo
- Department of Radiation Oncology, Nuvance Health, Norwalk, USA
| |
Collapse
|
6
|
Edsjö A, Gisselsson D, Staaf J, Holmquist L, Fioretos T, Cavelier L, Rosenquist R. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med 2024; 96:101250. [PMID: 38330674 DOI: 10.1016/j.mam.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden; Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Park J, Hu W, Jin IH, Liu H, Zang Y. A Bayesian adaptive biomarker stratified phase II randomized clinical trial design for radiotherapies with competing risk survival outcomes. Stat Methods Med Res 2024; 33:80-95. [PMID: 38062757 PMCID: PMC11227940 DOI: 10.1177/09622802231215801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
In recent decades, many phase II clinical trials have used survival outcomes as the primary endpoints. If radiotherapy is involved, the competing risk issue often arises because the time to disease progression can be censored by the time to normal tissue complications, and vice versa. Besides, many existing research has examined that patients receiving the same radiotherapy dose may yield distinct responses due to their heterogeneous radiation susceptibility statuses. Therefore, the "one-size-fits-all" strategy often fails, and it is more relevant to evaluate the subgroup-specific treatment effect with the subgroup defined by the radiation susceptibility status. In this paper, we propose a Bayesian adaptive biomarker stratified phase II trial design evaluating the subgroup-specific treatment effects of radiotherapy. We use the cause-specific hazard approach to model the competing risk survival outcomes. We propose restricting the candidate radiation doses based on each patient's radiation susceptibility status. Only the clinically feasible personalized dose will be considered, which enhances the benefit for the patients in the trial. In addition, we propose a stratified Bayesian adaptive randomization scheme such that more patients will be randomized to the dose reporting more favorable survival outcomes. Numerical studies and an illustrative trial example have shown that the proposed design performed well and outperformed the conventional design ignoring the competing risk issue.
Collapse
Affiliation(s)
- Jina Park
- Department of Applied Statistics, Yonsei University, South Korea
- Department of Statistics and Data Science, Yonsei University, South Korea
| | | | - Ick Hoon Jin
- Department of Applied Statistics, Yonsei University, South Korea
- Department of Statistics and Data Science, Yonsei University, South Korea
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Cancer Institute of New Jersey, Rutgers University, USA
| | - Yong Zang
- Department of Biostatistics and Health Data Sciences, Center of Computational Biology and Bioinformatics, Indiana University, USA
| |
Collapse
|
8
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Lamba N, Cagney DN, Catalano PJ, Kim D, Elhalawani H, Haas-Kogan DA, Wen PY, Wagle N, Aizer AA. A genomic score to predict local control among patients with brain metastases managed with radiation. Neuro Oncol 2023; 25:1815-1827. [PMID: 37260393 PMCID: PMC10547520 DOI: 10.1093/neuonc/noad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Clinical predictors of local recurrence following radiation among patients with brain metastases (BrM) provide limited explanatory power. We developed a DNA-based signature of radiotherapeutic efficacy among patients with BrM to better characterize recurrence risk. METHODS We identified 570 patients with 1487 BrM managed with whole-brain (WBRT) or stereotactic radiation therapy at Brigham and Women's Hospital/Dana-Farber Cancer Institute (2013-2020) for whom next-generation sequencing panel data (OncoPanel) were available. Fine/Gray's competing risks regression was utilized to compare local recurrence on a per-metastasis level among patients with versus without somatic alterations of likely biological significance across 84 genes. Genes with a q-value ≤ 0.10 were utilized to develop a "Brain-Radiation Prediction Score" ("Brain-RPS"). RESULTS Genomic alterations in 11 (ATM, MYCL, PALB2, FAS, PRDM1, PAX5, CDKN1B, EZH2, NBN, DIS3, and MDM4) and 2 genes (FBXW7 and AURKA) were associated with decreased or increased risk of local recurrence, respectively (q-value ≤ 0.10). Weighted scores corresponding to the strength of association with local failure for each gene were summed to calculate a patient-level RPS. On multivariable Fine/Gray's competing risks regression, RPS [1.66 (1.44-1.91, P < .001)], metastasis-associated edema [1.60 (1.16-2.21), P = .004], baseline size [1.02 (1.01-1.03), P < .001] and receipt of WBRT without local therapy [4.04 (2.49-6.58), P < .001] were independent predictors of local failure. CONCLUSIONS We developed a genomic score to quantify local recurrence risk following brain-directed radiation. To the best of our knowledge, this represents the first study to systematically correlate DNA-based alterations with radiotherapeutic outcomes in BrM. If validated, Brain-RPS has potential to facilitate clinical trials aimed at genome-based personalization of radiation in BrM.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Harvard University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Paul J Catalano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, and Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dewey Kim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil Wagle
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Rzepka D, Schenker H, Geinitz H, Silberberger E, Kaudewitz D, Schuster B, Kuhlmann L, Schonath M, Ayala Gaona H, Aschacher B, Fietkau R, Schett G, Distel L. Chromosomal radiosensitivity in oncological and non-oncological patients with rheumatoid arthritis and connective tissue diseases. Radiat Oncol 2023; 18:98. [PMID: 37287050 DOI: 10.1186/s13014-023-02291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The risk of developing late radiotoxicity after radiotherapy in patients with high chromosomal radiosensitivity after radiotherapy could potentially be higher compared to the risk in patients with average radiosensitivity. In case of extremely high radiosensitivity, dose reduction may be appropriate. Some rheumatic diseases (RhD), including connective tissue diseases (CTDs) appear to be associated with higher radiosensitivity. The question arises as to whether patients with rheumatoid arthritis (RA) also generally have a higher radiosensitivity and whether certain parameters could indicate clues to high radiosensitivity in RA patients which would then need to be further assessed before radiotherapy. METHODS Radiosensitivity was determined in 136 oncological patients with RhD, 44 of whom were RA patients, and additionally in 34 non-oncological RA patients by three-colour fluorescence in situ hybridization (FiSH), in which lymphocyte chromosomes isolated from peripheral blood are analysed for their chromosomal aberrations of an unirradiated and an with 2 Gy irradiated blood sample. The chromosomal radiosensitivity was determined by the average number of breaks per metaphase. In addition, correlations between certain RA- or RhD-relevant disease parameters or clinical features such as the disease activity score 28 and radiosensitivity were assessed. RESULTS Some oncological patients with RhD, especially those with connective tissue diseases have significantly higher radiosensitivity compared with oncology patients without RhD. In contrast, the mean radiosensitivity of the oncological patients with RA and other RhD and the non-oncological RA did not differ. 14 of the 44 examined oncological RA-patients (31.8%) had a high radiosensitivity which is defined as ≥ 0.5 breaks per metaphase. No correlation of laboratory parameters with radiosensitivity could be established. CONCLUSIONS It would be recommended to perform radiosensitivity testing in patients with connective tissue diseases in general. We did not find a higher radiosensitivity in RA patients. In the group of RA patients with an oncological disease, a higher percentage of patients showed higher radiosensitivity, although the average radiosensitivity was not high.
Collapse
Affiliation(s)
- Dinah Rzepka
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Hannah Schenker
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander- Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Elisabeth Silberberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Dorothee Kaudewitz
- Department of Haematology, Oncology and Rheumatology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Barbara Schuster
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Miriam Schonath
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Horacio Ayala Gaona
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Bernhard Aschacher
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander- Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
11
|
Thomson HM, Fortin Ensign SP, Edmonds VS, Sharma A, Butterfield RJ, Schild SE, Ashman JB, Zimmerman RS, Patel NP, Bryce AH, Vora SA, Sio TT, Porter AB. Clinical Outcomes of Stereotactic Radiosurgery-Related Radiation
Necrosis in Patients with Intracranial Metastasis from Melanoma. Clin Med Insights Oncol 2023; 17:11795549231161878. [PMID: 36968334 PMCID: PMC10034291 DOI: 10.1177/11795549231161878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2023] [Indexed: 03/24/2023] Open
Abstract
Background: Radiation necrosis (RN) is a clinically relevant complication of stereotactic
radiosurgery (SRS) for intracranial metastasis (ICM) treatments. Radiation
necrosis development is variable following SRS. It remains unclear if risk
factors for and clinical outcomes following RN may be different for melanoma
patients. We reviewed patients with ICM from metastatic melanoma to
understand the potential impact of RN in this patient population. Methods: Patients who received SRS for ICM from melanoma at Mayo Clinic Arizona
between 2013 and 2018 were retrospectively reviewed. Data collected included
demographics, tumor characteristics, radiation parameters, prior surgical
and systemic treatments, and patient outcomes. Radiation necrosis was
diagnosed by clinical evaluation including brain magnetic resonance imaging
(MRI) and, in some cases, tissue evaluation. Results: Radiation necrosis was diagnosed in 7 (27%) of 26 patients at 1.6 to 38
months following initial SRS. Almost 92% of all patients received systemic
therapy and 35% had surgical resection prior to SRS. Patients with RN
trended toward having larger ICM and a prior history of surgical resection,
although statistical significance was not reached. Among patients with
resection, those who developed RN had a longer period between surgery and
SRS start (mean 44 vs 33 days). Clinical improvement following treatment for
RN was noted in 2 (29%) patients. Conclusions: Radiation necrosis is relatively common following SRS for treatment of ICM
from metastatic melanoma and clinical outcomes are poor. Further studies
aimed at mitigating RN development and identifying novel approaches for
treatment are warranted.
Collapse
Affiliation(s)
- Holly M Thomson
- Department of Internal Medicine, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Akanksha Sharma
- Department of Neurology, Pacific
Neurosciences Institute and John Wayne Cancer Center, Santa Monica, CA, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Naresh P Patel
- Department of Neurosurgery, Mayo
Clinic, Phoenix, AZ, USA
| | - Alan H Bryce
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Alyx B Porter
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
- Department of Neurology, College of
Medicine, Mayo Clinic, Phoenix, AZ, USA
- Alyx B Porter, Department of Neurology,
College of Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
12
|
Martini GR, Bortoluzzi EA, Minamisako MC, Bordignon NCT, Rodrigues PM, Gondak R. Impact of radiotherapy on the morphological and compositional structure of intra-radicular dentin. Braz Dent J 2023; 34:45-51. [PMID: 36888844 PMCID: PMC10027097 DOI: 10.1590/0103-6440202305101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
Considering the side effects in the oral cavity and dental structures of radiotherapy (RDT) for head and neck cancer, this study aimed to evaluate the effects of RDT on the root dentin concerning the obliteration of dentinal tubules, the inorganic composition of intra-radicular dentin, and the integrity of collagen fibers. Thirty human canines were selected from a biobank and randomly divided into two groups (n=15). The samples were sectioned buccolingually, and a hemisection was used for structural analysis by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Low-vacuum SEM images were obtained at 2000-x magnification to observe the obliteration of the dentinal tubules. Moreover, compositional evaluation was performed using EDS. After RDT, the SEM and EDS analyses were repeated using the same methodology. RDT was applied fractionally at 2 Gy per day, 5 days per week, for 7 weeks, resulting in a total dose of 70 Gy. The collagen integrity of the irradiated and non-irradiated samples was analyzed using Masson's trichrome and picrosirius red staining polarization microscopy. Samples subjected to RDT exhibited dentinal tubule obliteration (p < 0.001); low integrity of type I and III collagen fibers (p < 0.05); compositional reduction of calcium (p = 0.012), phosphorus (p = 0.001), and magnesium (p < 0.001); an increased Ca/P ratio (p < 0.001). RDT affects the structure of dentinal tubules, the inorganic composition of intra-radicular dentin, and the collagen fiber integrity in the root dentin, which may interfere with the effectiveness and durability of dental procedures.
Collapse
Affiliation(s)
- Georgia Ribeiro Martini
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brasil
| | - Eduardo A Bortoluzzi
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brasil
| | | | - Natalia C Trentin Bordignon
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brasil
| | - Paulo M Rodrigues
- Centro de Pesquisas Oncológicas(CEPON), Florianópolis, Santa Catarina, Brasil
| | - Rogério Gondak
- Departamento de Patologia, Universidade Federal de Santa Catarina(UFSC), Florianópolis, Santa Catarina, Brasil
| |
Collapse
|
13
|
Al-Haj Husain N, Al-Haj Husain A, Grgic I, Kipar A, Molinero-Mourelle P, Stadlinger B, Özcan M. Effect of Cumulative Ionizing Radiation on Flexural Strength, Flexural Modulus, and Elasticity Modulus of Dentin in Unerupted Human Third Molars. Adv Radiat Oncol 2022; 8:101127. [PMID: 36845612 PMCID: PMC9943779 DOI: 10.1016/j.adro.2022.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose This in vitro study aimed to investigate the changes in mechanical properties in dentin of third molars after radiation therapy using variable doses and frequencies. Methods and Materials Rectangular cross sectioned dentin hemisections (N = 60, n = 15 per group; >7 × 4 × 1.2 mm) were prepared using extracted third molars. After cleansing and storage in artificial saliva, random distribution was performed to 2 irradiation settings, namely AB or CD (A, 30 single doses of irradiation [2 Gy each] for 6 weeks; B, control group of A; C, 3 single doses of irradiation [9 Gy each]; and D, control group of C). Various parameters (fracture strength/maximal force, flexural strength, and elasticity modulus) were assessed using a universal Testing Machine (ZwickRoell). The effect of irradiation on dentin morphology was evaluated by histology, scanning electron microscopy, and immunohistochemistry. Statistical analysis was performed using 2-way analysis of variance and paired and unpaired t tests at a significance level of 5%. Results Significance could be found considering the maximal force applied to failure when the irradiated groups were compared with their control groups (A/B, P < .0001; C/D, P = .008). Flexural strength was significantly higher in the irradiated group A compared with control group B (P < .001) and for the irradiated groups A and C (P = .022) compared with each other. Cumulative radiation with low irradiation doses (30 single doses; 2 Gy) and single irradiation with high doses (3 single doses; 9 Gy) make the tooth substance more prone to fracture, lowering the maximal force. The flexural strength decreases when cumulative irradiation is applied, but not after single irradiation. The elasticity modulus showed no alteration after irradiation treatment. Conclusions Irradiation therapy affects the prospective adhesion of dentin and the bond strength of future restorations, potentially leading to an increased risk of tooth fracture and retention loss in dental reconstructions.
Collapse
Affiliation(s)
- Nadin Al-Haj Husain
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland,Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland,Corresponding author: Nadin Al-Haj Husain, DMD
| | - Adib Al-Haj Husain
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ivo Grgic
- Clinic of Radiation Oncology, Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Pedro Molinero-Mourelle
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
15
|
Portable NMR for quantification of breast density in vivo: Proof-of-concept measurements and comparison with quantitative MRI. Magn Reson Imaging 2022; 92:212-223. [PMID: 35843446 DOI: 10.1016/j.mri.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Mammographic Density (MD) is the degree of radio-opacity of the breast in an X-ray mammogram. It is determined by the Fibroglandular: Adipose tissue ratio. MD has major implications in breast cancer risk and breast cancer chemoprevention. This study aimed to investigate the feasibility of accurate, low-cost quantification of MD in vivo without ionising radiation. We used single-sided portable nuclear magnetic resonance ("Portable NMR") due to its low cost and the absence of radiation-related safety concerns. Fifteen (N = 15) healthy female volunteers were selected for the study and underwent an imaging routine consisting of 2D X-ray mammography, quantitative breast 3T MRI (Dixon and T1-based 3D compositional breast imaging), and 1D compositional depth profiling of the right breast using Portable NMR. For each participant, all the measurements were made within 3-4 h of each other. MRI-determined tissue water content was used as the MD-equivalent quantity. Portable NMR depth profiles of tissue water were compared with the equivalent depth profiles reconstructed from Dixon and T1-based MR images, which were used as the MD-equivalent reference standard. The agreement between the depth profiles acquired using Portable NMR and the reconstructed reference-standard profiles was variable but overall encouraging. The agreement was somewhat inferior to that seen in breast tissue explant measurements conducted in vitro, where quantitative micro-CT was used as the reference standard. The lower agreement in vivo can be attributed to an uncertainty in the positioning of the Portable NMR sensor on the breast surface and breast compression in Portable NMR measurements. The degree of agreement between Portable NMR and quantitative MRI is encouraging. While the results call for further development of quantitative Portable NMR, they demonstrate the in-principle feasibility of Portable NMR-based quantitative compositional imaging in vivo and show promise for the development of safe and low-cost protocols for quantification of MD suitable for clinical applications.
Collapse
|
16
|
Van der Merwe NC, Combrink HM, Ntaita KS, Oosthuizen J. Prevalence of Clinically Relevant Germline BRCA Variants in a Large Unselected South African Breast and Ovarian Cancer Cohort: A Public Sector Experience. Front Genet 2022; 13:834265. [PMID: 35464868 PMCID: PMC9024354 DOI: 10.3389/fgene.2022.834265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is a multifaceted disease that currently represents a leading cause of death in women worldwide. Over the past two decades (1998–2020), the National Health Laboratory Service’s Human Genetics Laboratory in central South Africa screened more than 2,974 breast and/or ovarian cancer patients for abnormalities characteristic of the widely known familial breast cancer genes, Breast Cancer gene 1 (BRCA1) and Breast Cancer gene 2 (BRCA2). Patients were stratified according to the presence of family history, age at onset, stage of the disease, ethnicity and mutation status relative to BRCA1/2. Collectively, 481 actionable (likely-to pathogenic) variants were detected in this cohort among the different ethnic/racial groups. A combination of old (pre-2014) and new (post-2014) laboratory techniques was used to identify these variants. Additionally, targeted genotyping was performed as translational research revealed the first three recurrent South African pathogenic variants, namely BRCA1 c.1374del (legacy name 1493delC), BRCA1 c.2641G>T (legacy name E881X) and BRCA2 c.7934del (legacy name 8162delG). This initial flagship study resulted in a cost-effective diagnostic test that enabled screening of a particular ethnic group for these variants. Since then, various non-Afrikaner frequent variants were identified that were proven to represent recurrent variants. These include BRCA2 c.5771_5774del (legacy name 5999del4) and BRCA2 c.582G>A, both Black African founder mutations. By performing innovative translational research, medical science in South Africa can adopt first-world technologies into its healthcare context as a developing country. Over the past two decades, the progress made in the public sector enabled a pivotal shift away from population-directed genetic testing to the screening of potentially all breast and ovarian cancer patients, irrespective of ethnicity, family history or immunohistochemical status. The modifications over the years complied with international standards and guidelines aimed at universal healthcare for all. This article shares all the cohort stratifications and the likely-to pathogenic variants detected.
Collapse
Affiliation(s)
- Nerina C. Van der Merwe
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Nerina C. Van der Merwe,
| | - Herkulaas MvE Combrink
- Economic and Management Sciences, University of the Free State, Bloemfontein, South Africa
- Interdisciplinary Centre for Digital Futures, University of the Free State, Bloemfontein, South Africa
| | - Kholiwe S. Ntaita
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
17
|
Boonman AJ, Cuypers M, Leusink GL, Naaldenberg J, Bloemendal HJ. Cancer treatment and decision making in individuals with intellectual disabilities: a scoping literature review. Lancet Oncol 2022; 23:e174-e183. [PMID: 35358466 DOI: 10.1016/s1470-2045(21)00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
Adults with intellectual disabilities face disparities in receipt of cancer-related care, which could contribute to an increase in the rate of cancer-related deaths in this population. Yet, relatively little is known about the optimal cancer treatment or treatment decision making in adults with intellectual disabilities. This scoping review assessed PubMed and Embase for available literature on the description of cancer treatment and treatment decision making in patients with intellectual disabilities, published in English between Jan 1, 2000, and April 30, 2020. We appraised 90 included articles and extracted quotes addressing aspects related to cancer treatment and treatment decision making in patients with intellectual disabilities. Themes and subcategories were subsequently derived. Our findings revealed that the available literature describes that people with intellectual disabilities tend to have less intensive cancer treatment than generally administered, but with little evidence supporting this approach. This finding indicates that this medically vulnerable patient population needs tailored attention in both cancer care and research. We propose changes to practice and conclude by addressing the urgent need to pay specific attention to this patient population.
Collapse
Affiliation(s)
- Anne J Boonman
- Department of Primary and Community Care, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands.
| | - Maarten Cuypers
- Department of Primary and Community Care, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Geraline L Leusink
- Department of Primary and Community Care, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Jenneken Naaldenberg
- Department of Primary and Community Care, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| |
Collapse
|
18
|
Tarapara B, Shah F. An in-silico analysis to identify structural, functional and regulatory role of SNPs in hMRE11. J Biomol Struct Dyn 2022; 41:2160-2174. [PMID: 35048780 DOI: 10.1080/07391102.2022.2028678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Meiotic recombination 11 (MRE11) is a component of the tri-molecular MRE11-RAD50-NBS1 (MRN) complex, which functions as an exonuclease and endonuclease which is involved in identifying, signalling, protecting and repairing double-strand breaks in DNA (DSBs). Ataxia-telangiectasia-like disorder (ATLD) 1 and Nijmegen breakage syndrome (NBS)-like disorder are MRE11 associated diseases. In the present study, we used an integrated computational approach to identify the most deleterious SNPs and their structural and functional impact on human MRE11. Five of the 68 observed non-synonymous SNP (nsSNPs; I162T, S273C, W210C, D311Y and R364L) should be worked on due to their strong possible pathogenicity and the risk of changing protein properties. All the nsSNPs were highly conserved and decrease the protein stability located in the MRE11 nuclease and MRE11 DNA binding presumed domain. R364L and I162T were predicted to be involved in post-translational modification (PTM) sites. Furthermore, we also analysed the regulatory effect of noncoding SNPs on MRE11 gene regulation in which 6 SNPs were found to affect gene regulation. All six noncoding SNPs predicted chromatin interactive site whereas only one SNP was noted its association with miRNA binding site which disrupts 5 miRNA conserved site. These findings help future studies to get more insights into the role of these variants in the alteration of the MRE11 function. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| | - Franky Shah
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| |
Collapse
|
19
|
Khangwal M, Solanki R, Rahman H. Effect of therapeutic fractionated radiotherapy on bond strength and interfacial marginal adaptation of Adseal, MTA Fillapex, and EndoSequence BC sealer: An in vitro study. SAUDI ENDODONTIC JOURNAL 2022. [DOI: 10.4103/sej.sej_21_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Tirotta F, Sayyed R, Jones RL, Hayes AJ. Risk factors for the development of local recurrence in extremity soft-tissue sarcoma. Expert Rev Anticancer Ther 2021; 22:83-95. [PMID: 34822313 DOI: 10.1080/14737140.2022.2011723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Local recurrence (LR) is one of the main pitfalls in surgery for extremities soft tissue sarcoma (eSTS). Achieving clear histopathological margins is the most important factor to reduce the risk of LR, but the ability to do so depends on not only surgical technique but also the interplay between tumor biology, anatomical location and surgical approach. The balance between postoperative morbidity and oncological benefits in reducing the risk of LR needs to be considered. AREAS COVERED This review will cover which etiological factors for the development of eSTS lead to an increased risk of LR and discuss histological subtypes that have a high risk of LR and which surgical and neoadjuvant therapeutic strategies can minimize the risk of LR. EXPERT OPINION The traditional view that surgical radicality always results in low rates of LR, while marginality alone always leads to high rates of relapse, is outdated. In the modern era of surgical oncology, limb salvage and high-level function after resectional surgery are the key surgical goals. The best results are achieved by combining effective neoadjuvant treatments with planned bespoke oncological operations that consider the biological and anatomical factors of each individual sarcoma.
Collapse
Affiliation(s)
- Fabio Tirotta
- Sarcoma Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Raza Sayyed
- Sarcoma Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Andrew J Hayes
- Sarcoma Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Matsuu-Matsuyama M, Shichijo K, Matsuda K, Fujimoto N, Kondo H, Miura S, Kurashige T, Nagayama Y, Nakashima M. Age-dependent effects on radiation-induced carcinogenesis in the rat thyroid. Sci Rep 2021; 11:19096. [PMID: 34580369 PMCID: PMC8476610 DOI: 10.1038/s41598-021-98481-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
Childhood radiation exposure is a known thyroid cancer risk factor. This study evaluated the effects of age on radiation-induced thyroid carcinogenesis in rats irradiated with 8 Gy X-rays. We analyzed cell proliferation, cell death, DNA damage response, and autophagy-related markers in 4-week-old (4W) and 7-month-old (7M) rats and the incidence of thyroid tumors in 4W, 4-month-old (4M), and 7M rats 18 months after irradiation. Cell death and DNA damage response were increased in 4W rats compared to those in controls at 1 month post-irradiation. More Ki-67-positive cells were observed in 4W rats at 12 months post-irradiation. Thyroid tumors were confirmed in 61.9% (13/21), 63.6% (7/11), and 33.3% (2/6) of irradiated 4W, 4M, and 7M rats, respectively, compared to 0%, 14.3% (1/7), and 16.7% (1/6) in the respective nonirradiated controls. There were 29, 9, and 2 tumors in irradiated 4W, 4M, and 7M rats, respectively. The expression of several autophagy components was downregulated in the area surrounding radiation-induced thyroid carcinomas in 4W and 7M rats. LC3 and p62 expression levels decreased in radiation-induced follicular carcinoma in 4W rats. Radiosensitive cells causing thyroid tumors may be more prevalent in young rats, and abrogation of autophagy may be associated with radiation-induced thyroid carcinogenesis.
Collapse
Affiliation(s)
- Mutsumi Matsuu-Matsuyama
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nariaki Fujimoto
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hisayoshi Kondo
- Biostatistics Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shiro Miura
- National Hospital Organization Nagasaki Medical Center, 2-1001-1 Kubara, Ōmura, Nagasaki, 856-8562, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Masahiro Nakashima
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
22
|
Joshi JS, Vora HH, Ghosh NR, Tankshali RN, Jetly DH, Trivedi TI. Nonhomologous end joining repair pathway molecules as predictive biomarkers for patients with oral squamous cell carcinoma. J Cancer Res Ther 2021; 17:1031-1038. [PMID: 34528560 DOI: 10.4103/jcrt.jcrt_582_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose Nonhomologous end-joining (NHEJ) is critical for the repair of either pathologic double-strand breaks (DSBs) and/or for the repair of physiologic DSBs created during radiotherapy to kill the tumor cell. Therefore, patients with higher expression of NHEJ repair proteins might develop resistance to ionizing radiation, allowing the disease to recur. As cancer of the oral cavity is a serious health problem globally, the present study aimed to examine the expression of Ku70/80, X-ray repair cross-complementing protein 4 (XRCC4) and DNA ligase IV-core molecules of the NHEJ pathway in patients with oral cancer. Materials and Methods Protein expression of Ku70/80, XRCC4, and DNA ligase IV were studied by Immunohistochemistry and mRNA expression of Ku70 and Ku80 were studied using reverse transcription polymerase chain reaction. Data were analyzed statistically using SPSS. Results A univariate survival analysis revealed an association of Ku70 mRNA with shorter overall survival (OS). While protein expression of XRCC4 showed an association with reduced relapse-free survival and shorter OS. Multivariate survival analysis demonstrated that XRCC4 and DNA ligase IV are independent prognosticators for predicting adverse disease outcomes. Conclusion Strong expression of repair proteins - XRCC4 and DNA ligase IV is associated with unfavorable disease outcome in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jigna S Joshi
- Stem Cell Biology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Hemangini H Vora
- Immunohematology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Nandita R Ghosh
- Tumor Biology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Rajen N Tankshali
- Department of Surgical Oncology, Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Dhaval H Jetly
- Department of Onco-Pathology, Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Trupti I Trivedi
- Clinical Carcinogenesis Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
23
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
24
|
Alsbeih G, Al-Harbi N, Ismail S, Story M. Impaired DNA Repair Fidelity in a Breast Cancer Patient With Adverse Reactions to Radiotherapy. Front Public Health 2021; 9:647563. [PMID: 34164366 PMCID: PMC8216558 DOI: 10.3389/fpubh.2021.647563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
We tested the hypothesis that differences in DNA double-strand break (DSB) repair fidelity underlies differences in individual radiosensitivity and, consequently, normal tissue reactions to radiotherapy. Fibroblast cultures derived from a radio-sensitive (RS) breast cancer patient with grade 3 adverse reactions to radiotherapy were compared with normal control (NC) and hyper-radiosensitive ataxia-telangiectasia mutated (ATM) cells. DSB repair and repair fidelity were studied by Southern blotting and hybridization to Alu repetitive sequence and to a specific 3.2-Mbp NotI restriction fragment on chromosome 21, respectively. Results for DNA repair kinetics using the NotI fidelity assay showed significant differences (P < 0.001) with higher levels of misrepaired (misrejoined and unrejoined) DSBs in RS and ATM compared with NC. At 24-h postradiation, the relative fractions of misrepaired DSBs were 10.64, 23.08, and 44.70% for NC, RS, and ATM, respectively. The Alu assay showed significant (P < 0.05) differences in unrepaired DSBs only between the ATM and both NC and RS at the time points of 12 and 24 h. At 24 h, the relative percentages of DSBs unrepaired were 1.33, 3.43, and 12.13% for NC, RS, and ATM, respectively. The comparison between the two assays indicated an average of 5-fold higher fractions of misrepaired (NotI assay) than unrepaired (Alu assay) DSBs. In conclusion, this patient with increased radiotoxicity displayed more prominent misrepaired than unrepaired DSBs, suggesting that DNA repair fidelity is a potential marker for the adverse reactions to radiotherapy. More studies are required to confirm these results and further develop DSB repair fidelity as a hallmark biomarker for interindividual differences in radiosensitivity.
Collapse
Affiliation(s)
- Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Experimental Radiation Oncology Department, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Najla Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sheikh Ismail
- Experimental Radiation Oncology Department, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Commercialization & Entrepreneurship Department, Texas A&M University, Bellaire, TX, United States
| | - Michael Story
- Experimental Radiation Oncology Department, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Radiation Oncology Department, University of Texas Southwestern Medical Centre, Dallas, TX, United States
| |
Collapse
|
25
|
Flint DB, Bright SJ, McFadden CH, Konishi T, Ohsawa D, Turner B, Lin SH, Grosshans DR, Chiu HS, Sumazin P, Shaitelman SF, Sawakuchi GO. Cell lines of the same anatomic site and histologic type show large variability in intrinsic radiosensitivity and relative biological effectiveness to protons and carbon ions. Med Phys 2021; 48:3243-3261. [PMID: 33837540 DOI: 10.1002/mp.14878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To show that intrinsic radiosensitivity varies greatly for protons and carbon (C) ions in addition to photons, and that DNA repair capacity remains important in governing this variability. METHODS We measured or obtained from the literature clonogenic survival data for a number of human cancer cell lines exposed to photons, protons (9.9 keV/μm), and C-ions (13.3-77.1 keV/μm). We characterized their intrinsic radiosensitivity by the dose for 10% or 50% survival (D10% or D50% ), and quantified the variability at each radiation quality by the coefficient of variation (COV) in D10% and D50% . We also treated cells with DNA repair inhibitors prior to irradiation to assess how DNA repair capacity affects their variability. RESULTS We found no statistically significant differences in the COVs of D10% or D50% between any of the radiation qualities investigated. The same was true regardless of whether the cells were treated with DNA repair inhibitors, or whether they were stratified into histologic subsets. Even within histologic subsets, we found remarkable differences in radiosensitivity for high LET C-ions that were often greater than the variations in RBE, with brain cancer cells varying in D10% (D50% ) up to 100% (131%) for 77.1 keV/μm C-ions, and non-small cell lung cancer and pancreatic cancer cell lines varying up to 55% (76%) and 51% (78%), respectively, for 60.5 keV/μm C-ions. The cell lines with modulated DNA repair capacity had greater variability in intrinsic radiosensitivity across all radiation qualities. CONCLUSIONS Even for cell lines of the same histologic type, there are remarkable variations in intrinsic radiosensitivity, and these variations do not differ significantly between photon, proton or C-ion radiation. The importance of DNA repair capacity in governing the variability in intrinsic radiosensitivity is not significantly diminished for higher LET radiation.
Collapse
Affiliation(s)
- David B Flint
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daisuke Ohsawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Broderick Turner
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua-Sheng Chiu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel O Sawakuchi
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Zahnreich S, Schmidberger H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers (Basel) 2021; 13:cancers13112607. [PMID: 34073340 PMCID: PMC8198981 DOI: 10.3390/cancers13112607] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer represents the leading cause of disease-related death and treatment-associated morbidity in children with an increasing trend in recent decades worldwide. Nevertheless, the 5-year survival of childhood cancer patients has been raised impressively to more than 80% during the past decades, primarily attributed to improved diagnostic technologies and multiagent cytotoxic regimens. This strong benefit of more efficient tumor control and prolonged survival is compromised by an increased risk of adverse and fatal late sequelae. Long-term survivors of pediatric tumors are at the utmost risk for non-carcinogenic late effects such as cardiomyopathies, neurotoxicity, or pneumopathies, as well as the development of secondary primary malignancies as the most detrimental consequence of genotoxic chemo- and radiotherapy. Promising approaches to reducing the risk of adverse late effects in childhood cancer survivors include high precision irradiation techniques like proton radiotherapy or non-genotoxic targeted therapies and immune-based treatments. However, to date, these therapies are rarely used to treat pediatric cancer patients and survival rates, as well as incidences of late effects, have changed little over the past two decades in this population. Here we provide an overview of the epidemiology and etiology of childhood cancers, current developments for their treatment, and therapy-related adverse late health consequences with a special focus on second primary malignancies.
Collapse
|
27
|
Gupta A, Mathew D, Bhat SA, Ghoshal S, Pal A. Genetic Variants of DNA Repair Genes as Predictors of Radiation-Induced Subcutaneous Fibrosis in Oropharyngeal Carcinoma. Front Oncol 2021; 11:652049. [PMID: 34079756 PMCID: PMC8165303 DOI: 10.3389/fonc.2021.652049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the impact of genetic variants of DNA repair and pro-fibrotic pathway genes on the severity of radiation-induced subcutaneous fibrosis in patients of oropharyngeal carcinoma treated with radical radiotherapy. Materials and Methods Patients of newly diagnosed squamous cell carcinoma of oropharynx being treated with two-dimensional radical radiotherapy were enrolled in the study. Patients who had undergone surgery or were receiving concurrent chemotherapy were excluded. Patients were followed up at 6 weeks post completion of radiotherapy and every 3 months thereafter for a median of 16 months. Subcutaneous fibrosis was graded according to the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) grading system and the maximum grade was recorded over the length of the patient’s follow-up. Patients with severe fibrosis (≥G3), were compared to patients with minor (≤G2) fibrotic reactions. Eight single nucleotide polymorphisms of 7 DNA repair genes and 2 polymorphisms of a single pro-fibrotic pathway gene were analyzed by Polymerase Chain Reaction and Restriction Fragment Length Polymorphism and were correlated with the severity of subcutaneous fibrosis. Results 179 patients were included in the analysis. Subcutaneous fibrosis was seen in 168 (93.9%) patients. 36 (20.1%) patients had severe (grade 3) fibrosis. On multivariate logistic regression analysis, Homozygous CC genotype of XRCC3 (722C>T, rs861539) (p=0.013*, OR 2.350, 95% CI 1.089-5.382), Homozygous AA genotype of ERCC4 Ex8 (1244G>A, rs1800067) (p=0.001**, OR 11.626, 95% CI 2.490-275.901) and Homozygous TT genotype of XRCC5 (1401G>T, rs828907) (p=0.020*, OR 2.188, 95% CI 1.652-7.334) were found to be predictive of severe subcutaneous fibrosis. On haplotype analysis, the cumulative risk of developing severe fibrosis was observed in patients carrying both haplotypes of variant Homozygous AA genotype of ERCC4 Ex8 (1244G>A, rs1800067) and Homozygous TT genotype of XRCC5 (1401 G>T, rs828907) (p=0.010*, OR 26.340, 95% CI 4.014-76.568). Conclusion We demonstrated significant associations between single nucleotide polymorphisms of DNA repair genes and radiation-induced subcutaneous fibrosis in patients of oropharyngeal carcinoma treated with radiotherapy. We propose to incorporate these genetic markers into predictive models for identifying patients genetically predisposed to the development of radiation-induced fibrosis, thus guiding personalized treatment protocols.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Don Mathew
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shabir Ahmad Bhat
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Gaito S, Abravan A, Richardson J, Lowe M, Indelicato DJ, Burnet N, Smith E. Skin Toxicity Profile of Photon Radiotherapy versus Proton Beam Therapy in Paediatric and Young Adult Patients with Sarcomas. Clin Oncol (R Coll Radiol) 2021; 33:507-516. [PMID: 33820695 DOI: 10.1016/j.clon.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
AIMS Radiotherapy is key in the management of patients with both Ewing sarcoma and rhabdomyosarcoma. However, there is little evidence in the literature with regards to radiation-induced skin toxicities (RISTs) for patients treated with conventional radiotherapy with X-rays (XRT) or proton beam therapy (PBT) for these two conditions. In the present study we evaluated acute and late RIST in patients treated within European protocols with either PBT or XRT, taking both clinical and dosimetric variables into consideration. MATERIALS AND METHODS This was a retrospective analysis of 79 paediatric/young adult patients treated with radical radiotherapy (with XRT or PBT) and concurrent chemotherapy. In all cases, radiotherapy was given in conventional fractionation (1.8 Gy/fraction). Acute and late RISTs were registered according to the Radiation Therapy Oncology Group (RTOG) scoring system. RESULTS With regards to acute RIST, 47.9% (23/48) of XRT patients and 48.4% (15/31) of PBT patients had acute grade 2/3 toxicity. When it comes to late RIST, 17.5% (7/40 with known toxicity profile) of XRT patients and 29.0% (9/31) of PBT patients had grade 1/2 toxicity. This difference of -11.5% (95% confidence interval -31.2 to 7.9%) in grade 1/2 toxicity between XRT and PBT was not statistically significant (P = 0.25). Regardless of the radiotherapy technique, V30Gy seems a good predictor of acute RIST. Moreover, for the same value of V30Gy, patients who receive PBT may have a higher risk of moderate-severe acute RIST. Perhaps due to the small sample, definitive conclusions on the predictive factors of late RIST could not be drawn. CONCLUSIONS No clinically meaningful differences in acute and late RIST were observed between PBT and XRT subgroups. Systematic differences in the modelling of the build-up region may exist between XRT and PBT algorithms, which could make the comparison of dose metrics between techniques potentially biased. A more comprehensive analysis of dosimetric data on larger patient cohorts is needed to elucidate the most relevant skin dose metrics. Dose-effect models of RIST for this unique patient population would be an invaluable tool in radiotherapy plan optimisation.
Collapse
Affiliation(s)
- S Gaito
- Clinical Oncology, Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK.
| | - A Abravan
- Division of Clinical Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| | - J Richardson
- Medical Physics and Engineering, Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - M Lowe
- Medical Physics and Engineering, Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - D J Indelicato
- University of Florida Department of Radiation Oncology, Jacksonville, Florida, USA
| | - N Burnet
- Clinical Oncology, Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - E Smith
- Clinical Oncology, Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Shelke S, Das B. Radio-adaptive response and correlation of non-homologous end joining repair gene polymorphisms [XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T)] in human peripheral blood mononuclear cells exposed to gamma radiation. Genes Environ 2021; 43:9. [PMID: 33685509 PMCID: PMC7938547 DOI: 10.1186/s41021-021-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radio-adaptive response (RAR) is transient phenomena, where cells conditioned with a small dose (priming) of ionizing radiation shows significantly reduced DNA damage with a subsequent high challenging dose. The role of DNA double strand break repair gene polymorphism in RAR is not known. In the present study attempt was made to find out the influence of NHEJ repair gene polymorphisms [a VNTR; XRCC5 (3R/2R/1R/0R); two single nucleotide polymorphisms (SNPs); XRCC6 (C/G) and XRCC7 (G/T)] with DNA damage, repair and mRNA expression in human PBMCs in dose and adaptive response studies. Genomic DNA extracted from venous blood samples of 20 random healthy donors (16 adaptive and 4 non-adaptive) and genotyping of NHEJ repair genes was carried out using PCR amplified length polymorphism. RESULTS The dose response study revealed significant positive correlation of genotypes at XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T) with DNA damage. Donors having genotypes with 2R allele at XRCC5 showed significant positive correlation with mRNA expression level (0R/2R: r = 0.846, P = 0.034; 1R/2R: r = 0.698, P = 0.0001 and 2R/2R: r = 0.831, P = 0.0001) for dose response. Genotypes C/C and C/G of XRCC6 showed a significant positive correlation (P = 0.0001), whereas, genotype T/T of XRCC7 showed significant negative correlation (r = - 0.376, P = 0.041) with mRNA expression. CONCLUSION Interestingly, adaptive donors having C/G genotype of XRCC6 showed significantly higher (P < 0.05) mRNA expression level in primed cells suggesting their role in RAR. In addition, NHEJ repair gene polymorphisms play crucial role with radio-sensitivity and RAR in human PBMCs.
Collapse
Affiliation(s)
- Shridevi Shelke
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
30
|
Spasić J, Radosavljević D, Nagorni-Obradović L. The influence of genetic polymorphisms on the toxicity of platinum-based chemotherapy in the treatment of non-small cell lung cancer. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the most frequent and the deadliest of malignant diseases throughout the world. Target and immune therapy have revolutionalized the treatment of this disease, but platinum-based chemotherapy still has a place in the treatment algorithm. The toxicity profile of cisplatin is well known and can be a limiting factor in the adequate treatment delivery of the drug. There are important inter-individual differences in the efficacy and the toxicity of all chemotherapy drugs, which cannot be explained solely by the characteristics of the tumor. In order to define predictive factors for the occurrence of toxic effects, numerous genetic alterations have been investigated - especially single nucleotide polymorphisms (SNPs). The investigated genes are those involved in DNA repair mechanisms, signal pathways of apoptosis, DNA synthesis, transport mechanisms, but often with inconclusive and opposing results. It is clear that the effect of SNPs on the occurrence of cisplatin toxicity cannot be explained by investigating just one or several genes alone, but epigenetic interactions must be investigated, as well as interactions with outside factors. The study of SNPs is, however, a relatively simple and inexpensive method and, as such, can be used as one of the prognostic tools for everyday practice.
Collapse
|
31
|
Plasma antioxidant substances apparently do not influence the radiodermatitis occurrence. SCIENTIA MEDICA 2020. [DOI: 10.15448/1980-6108.2020.1.35844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS: Radiation affects not only tumors but also healthy tissues through the increment of oxidative stress. Thus, this study aimed to evaluate the oxidative stress degree as well as non-enzymatic antioxidant defenses in the plasma of patients submitted to radiotherapy and to verify if these parameters are modified in those patients who develop radiodermatitis.METHODS: Forty-one patients submitted to radiotherapy for treatment of breast cancer were followed. From these patients, plasma samples were obtained at the beginning, in the middle and at the end of the treatment, for analysis of thiobarbituric acid reactive substances (TBARS) and ferric reducing ability of plasma (FRAP).RESULTS: No significant differences were observed in terms of TBARS and FRAP in plasma harvested from these patients at the beginning and at the middle of the treatment. There was lower incidence of grade two radiodermatitis among patients undergoing radiotherapy with hypofractionated doses. There were no differences in FRAP or TBARS among patients who developed radiodermatitis of any degree in relation to those who did not develop this side effect. No differences of FRAP or TBARS were observed between patients that presented grade two radiodermatitis regarding to the others studied.CONCLUSION: There was no clear relationship between changes in TBARS or FRAP with the occurrence or severity of radiodermatitis.
Collapse
|
32
|
Zahnreich S, Poplawski A, Hartel C, Eckhard LS, Galetzka D, Hankeln T, Löbrich M, Marron M, Mirsch J, Ritter S, Scholz-Kreisel P, Spix C, Schmidberger H. Spontaneous and Radiation-Induced Chromosome Aberrations in Primary Fibroblasts of Patients With Pediatric First and Second Neoplasms. Front Oncol 2020; 10:1338. [PMID: 32850427 PMCID: PMC7427586 DOI: 10.3389/fonc.2020.01338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to investigate whether former childhood cancer patients who developed a subsequent secondary primary neoplasm (SPN) are characterized by elevated spontaneous chromosomal instability or cellular and chromosomal radiation sensitivity as surrogate markers of compromised DNA repair compared to childhood cancer patients with a first primary neoplasm (FPN) only or tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1 or on prematurely condensed chromosomes of cells irradiated and analyzed in G2. Fluorescence in situ hybridization was applied to investigate spontaneous transmissible aberrations in selected donors. No significant difference in clonogenic survival or the average yield of spontaneous or radiation-induced aberrations was found between the study populations. However, two donors with an SPN showed striking spontaneous chromosomal instability occurring as high rates of numerical and structural aberrations or non-clonal and clonal translocations. No correlation was found between radiation sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN. Together, the results of this unique case-control study show genomic stability and normal radiation sensitivity in normal somatic cells of donors with an early and high intrinsic or therapy-associated tumor risk. These findings provide valuable information for future studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as for the establishment of predictive biomarkers based on altered DNA repair processes.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carola Hartel
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Lukas Stefan Eckhard
- Department of Orthopedic Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Marron
- Department of Epidemiological Methods and Etiologic Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Sylvia Ritter
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Correa DD, Satagopan J, Martin A, Braun E, Kryza-Lacombe M, Cheung K, Sharma A, Dimitriadoy S, O'Connell K, Leong S, Karimi S, Lyo J, DeAngelis LM, Orlow I. Genetic variants and cognitive functions in patients with brain tumors. Neuro Oncol 2020; 21:1297-1309. [PMID: 31123752 PMCID: PMC6784270 DOI: 10.1093/neuonc/noz094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer's disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population. METHODS One hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood-brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs. RESULTS Multivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities. CONCLUSION This novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.
Collapse
Affiliation(s)
- Denise D Correa
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel Martin
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erica Braun
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Kenneth Cheung
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ajay Sharma
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sofia Dimitriadoy
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelli O'Connell
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Siok Leong
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sasan Karimi
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Lyo
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
Clear AD, Manthey GM, Lewis O, Lopez IY, Rico R, Owens S, Negritto MC, Wolf EW, Xu J, Kenjić N, Perry JJP, Adamson AW, Neuhausen SL, Bailis AM. Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast. ACTA ACUST UNITED AC 2020; 7:270-285. [PMID: 33015141 PMCID: PMC7517009 DOI: 10.15698/mic2020.10.732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
Collapse
Affiliation(s)
- Alissa D Clear
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,bioStrategies Group, Chicago, IL, USA
| | - Glenn M Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Olivia Lewis
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Barbara Bush Houston Literacy Foundation, Houston, TX, USA
| | - Isabelle Y Lopez
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,California State Polytechnic University at Pomona, Pomona, CA, USA
| | - Rossana Rico
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shannon Owens
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA, USA
| | | | - Elise W Wolf
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Jason Xu
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikola Kenjić
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - J Jefferson P Perry
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Djansugurova L, Altynova N, Cherednichenko O, Khussainova E, Dubrova YE. The effects of DNA repair polymorphisms on chromosome aberrations in the population of Kazakhstan. Int J Radiat Biol 2020; 96:614-621. [PMID: 31914346 DOI: 10.1080/09553002.2020.1711460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To analyze the effects of DNA repair polymorphism and other factors on the frequency chromosome aberrations in an irradiated cohort of subjects living around the Semipalatinsk nuclear test site and non-exposed group of subjects from ecologically favorable zones of Kazakhstan.Materials and methods: Blood samples were collected in the rural areas of the East Kazakhstan district around the Semipalatinsk nuclear test site and ecologically favorable zones of Almaty region of Kazakhstan. Chromosome aberrations in the fresh and cryopreserved peripheral blood lymphocyte cultures were analyzed by Giemsa staining. Single nucleotide polymorphisms at eight DNA repair genes (XRCC1 rs1799782, XRCC1 rs25487, XRCC3 rs861539, ATM rs1801516, XPD rs1799793, XPD rs13181, APEX1 rs1130409, and hOGG1 rs1052133) were determined by PCR-RFLP method.Results: The age of donors and smoking significantly affected the frequency of chromosome aberrations among the irradiated and control subjects. In the irradiated and control cohorts, the frequency of chromosome aberrations was significantly increased in the heterozygous ATM rs1801516 (1853 Asp/Asn) individuals; for the rest of the loci no significant associations between polymorphism and the frequency of chromosome aberrations were detected.Conclusions: The age of donors, smoking, and the ATM rs1801516 polymorphism significantly affect the frequency of chromosome aberrations among individuals inhabiting contaminated area around the Semipalatinsk nuclear weapon test site, as well as among those inhabiting ecologically favorable zones of Kazakhstan.
Collapse
Affiliation(s)
- Leyla Djansugurova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Nazym Altynova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Oksana Cherednichenko
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Elmira Khussainova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Yuri E Dubrova
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Liu C, Liao K, Gross N, Wang Z, Li G, Zuo W, Zhong S, Zhang Z, Zhang H, Yang J, Hu G. Homologous recombination enhances radioresistance in hypopharyngeal cancer cell line by targeting DNA damage response. Oral Oncol 2019; 100:104469. [PMID: 31756687 DOI: 10.1016/j.oraloncology.2019.104469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Radiotherapy is a central treatment option for hypopharyngeal squamous cell carcinoma, but the prognoses of patients treated with radiotherapy only are not satisfactory due to radioresistance. The underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of radioresistance are currently unavailable. METHODS In this study, we first established a specifically radioresistant FaDu cell line by repeated exposure to ionizing radiation with a total dose of 60 Gy (FaDu-RR). The validation of FaDu-RR cells was performed by clonogenic cell survival assay and cell proliferation assay. Microarrays and bioinformatics were analyzed to determine the differentially expressed mRNAs and their functions. DNA-repair capabilities were tested by cell cycle analysis and comet assay. The expressions of four key proteins in homologous recombination pathways, including BRCA1, BRCA2, RPA1, and Rad51, were detected both in FaDu-RR cells and radioresistant xenograft. RESULTS We established the specifically radioresistant FaDu cell line. Through microarrays and bioinformatics, homologous recombination pathways were suggested to play important roles in radioresistant mechanisms. High expression levels of key proteins in homologous recombination pathways were then detected both in FaDu-RR cells and radioresistant xenograft. Silencing RPA1 could reduce the radioresistance of FaDu-RR cells. CONCLUSION Our results provided strong evidence that homologous recombination enhances the radioresistance in hypopharyngeal carcinoma. Proteins in homologous recombination pathways may be potential biomarkers to predict hypopharyngeal carcinoma response to radiotherapy, establishing a basis for their utility in clinical practice.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kui Liao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Wenqi Zuo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zixin Zhang
- Department of Oncology, The Affiliated Hospital of Ningxia Medical University, Ningxia, China
| | - Hua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Jianming Yang
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Ferreira S, Dutreix M. DNA repair inhibitors to enhance radiotherapy: Progresses and limitations. Cancer Radiother 2019; 23:883-890. [PMID: 31615730 DOI: 10.1016/j.canrad.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often associated with dysregulated DNA damage response and repair. Recently, a number of strategies have been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have emerged so far.
Collapse
Affiliation(s)
- S Ferreira
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France
| | - M Dutreix
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
38
|
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 2019; 14:150. [PMID: 31438980 PMCID: PMC6704696 DOI: 10.1186/s13014-019-1344-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Measurement of γ-H2AX foci levels in cells provides a sensitive and reliable method for quantitation of the radiation-induced DNA damage response. The objective of the present study was to develop a rapid, high-throughput γ-H2AX assay based on imaging flow cytometry (IFC) using the ImageStream®X Mk II (ISX) platform to evaluate DNA double strand break (DSB) repair kinetics in human peripheral blood cells after exposure to ionizing irradiation. Methods The γ-H2AX protocol was developed and optimized for small volumes (100 μL) of human blood in Matrix™ 96-tube format. Blood cell lymphocytes were identified and captured by ISX INSPIRE™ software and analyzed by Data Exploration and Analysis Software. Results Dose- and time-dependent γ-H2AX levels corresponding to radiation exposure were measured at various time points over 24 h using the IFC system. γ-H2AX fluorescence intensity at 1 h after exposure, increased linearly with increasing radiation dose (R2 = 0.98) for the four human donors tested, whereas the dose response for the mean number of γ-H2AX foci/cell was not as robust (R2 = 0.81). Radiation-induced γ-H2AX levels rapidly increased within 30 min and reached a maximum by ~ 1 h, after which time there was fast decline by 6 h, followed by a much slower rate of disappearance up to 24 h. A mathematical approach for quantifying DNA repair kinetics using the rate of γ-H2AX decay (decay constant, Kdec), and yield of residual unrepaired breaks (Fres) demonstrated differences in individual repair capacity between the healthy donors. Conclusions The results indicate that the IFC-based γ-H2AX protocol may provide a practical and high-throughput platform for measurements of individual global DNA DSB repair capacity which can facilitate precision medicine by predicting individual radiosensitivity and risk of developing adverse effects related to radiotherapy treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA. .,Present Address: Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| |
Collapse
|
39
|
Mandrioli M, Zanetti E, Nardelli A, Manicardi GC. Potential role of the heat shock protein 90 (hsp90) in buffering mutations to favour cyclical parthenogenesis in the peach potato aphid Myzus persicae (Aphididae, Hemiptera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:426-434. [PMID: 30205853 DOI: 10.1017/s0007485318000688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heat-shock proteins 90 (hsp90s) are a class of molecules able to stabilize a network of 'client' proteins that are involved in several processes. Furthermore, recent studies indicated that mutations in the hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden/cryptic mutations. In order to verify the role of hsp90 in aphids, we amplified and sequenced the hsp90 gene in 17 lineages of the peach potato aphid Myzus persicae (Sulzer, 1776) looking for the presence of mutations. In particular, we compared lineages with different reproductive modes (obligate vs. cyclical parthenogenesis), propensity to develop winged females and karyotype stability. Differently from the cyclical parthenogenetic lineages that possessed functional hsp90 genes, the seven analysed asexual lineages showed severe mutations (including frameshift and non-sense mutations). In vivo functional assays with the hsp90-inhibitor geldanamycin showed that some lineages with cyclical parthenogenesis may lose their ability to induce sexuales in the absence of active hsp90 revealing the presence of cryptic mutations in their genomes. As a whole, our data suggest that hsp90 could play in aphids a role in buffering hidden/cryptic mutations that disrupt cyclical parthenogenesis.
Collapse
Affiliation(s)
- M Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
| | - E Zanetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
| | - A Nardelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, via Campi 213/D, Modena, 41125, Italy
| | - G C Manicardi
- Padiglione Besta, via Amendola 2, Reggio Emilia, 42100, Italy
| |
Collapse
|
40
|
Ali TS, Tourell MC, Hugo HJ, Pyke C, Yang S, Lloyd T, Thompson EW, Momot KI. Transverse relaxation-based assessment of mammographic density and breast tissue composition by single-sided portable NMR. Magn Reson Med 2019; 82:1199-1213. [PMID: 31034648 DOI: 10.1002/mrm.27781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Elevated mammographic density (MD) is an independent risk factor for breast cancer (BC) as well as a source of masking in X-ray mammography. High-frequency longitudinal monitoring of MD could also be beneficial in hormonal BC prevention, where early MD changes herald the treatment's success. We present a novel approach to quantification of MD in breast tissue using single-sided portable NMR. Its development was motivated by the low cost of portable-NMR instrumentation, the suitability for measurements in vivo, and the absence of ionizing radiation. METHODS Five breast slices were obtained from three patients undergoing prophylactic mastectomy or breast reduction surgery. Carr-Purcell-Meiboom-Gill (CPMG) relaxation curves were measured from (1) regions of high and low MD (HMD and LMD, respectively) in the full breast slices; (2) the same regions excised from the full slices; and (3) excised samples after H2 O-D2 O replacement. T2 distributions were reconstructed from the CPMG decays using inverse Laplace transform. RESULTS Two major peaks, identified as fat and water, were consistently observed in the T2 distributions of HMD regions. The LMD T2 distributions were dominated by the fat peak. The relative areas of the two peaks exhibited statistically significant (P < .005) differences between HMD and LMD regions, enabling their classification as HMD or LMD. The relative-area distributions exhibited no statistically significant differences between full slices and excised samples. CONCLUSION T2 -based portable-NMR analysis is a novel approach to MD quantification. The ability to quantify tissue composition, combined with the low cost of instrumentation, make this approach promising for clinical applications.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Monique C Tourell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Chris Pyke
- Department of Surgery, Mater Hospital, University of Queensland, St Lucia, Australia
| | - Samuel Yang
- Department of Plastic and Reconstructive Surgery, Greenslopes Private Hospital, Brisbane, Australia
| | - Thomas Lloyd
- Division of Radiology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
41
|
Campi LB, Lopes FC, Soares LES, de Queiroz AM, de Oliveira HF, Saquy PC, de Sousa-Neto MD. Effect of radiotherapy on the chemical composition of root dentin. Head Neck 2018; 41:162-169. [PMID: 30552849 DOI: 10.1002/hed.25493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The radiotherapy can directly affect the bond strength of the adhesive materials, interfering in the prognosis of restorative treatments, which may be caused by chemical changes in dentin structure. METHODS Twenty inferior homologues premolars were distributed in 2 groups (in vitro study) (n = 10): nonirradiated and irradiated. The specimens were submitted to the analysis of phosphate (ν1 PO4 3- ;ν2 PO4 3- ;ν4 PO4 3- ), carbonate (ν3 CO3 2- ), amide I, CH2 , amide III, and amide I/III ratio by confocal Raman spectroscopy. Data were submitted to statistical analysis (T test, P < .05). RESULTS In intracanal dentin, the irradiated group had lower ν4 PO4 3- values (1.23 ± 0.06) compared to nonirradiated group (1.40 ± 0.18) (P < .05), with no difference for ν1 PO4 3- and ν2 PO4 3 peaks (P > .05). The irradiated (1.56 ± 0.06) had lower carbonate, amide III (1.05 ± 0.19), and amide I/III ratio values (0.19 ± 0.06) compared to nonirradiated group (1.42 ± 0.10, 1.28 ± 0.24, and 0.31 ± 0.10, respectively) (P < .05). For medium dentin irradiated group (1.30 ± 0.12) had lower phosphate values compared to nonirradiated group (1.48 ± 0.22) (P < .05). In cementum, there was no statistical difference between the groups. CONCLUSION The radiotherapy was able to cause changes in ν4 PO4 3- , carbonate, and amide III peaks of root dentin.
Collapse
Affiliation(s)
- Lívia Bueno Campi
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiane Carneiro Lopes
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luís Eduardo Silva Soares
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, Univap, São José dos Campos, São Paulo, Brazil
| | - Alexandra Mussolino de Queiroz
- Department Children's Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Harley Francisco de Oliveira
- Medical Clinic Department, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo César Saquy
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manoel Damião de Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Zhou ZR, Yang ZZ, Yu XL, Guo XM. Highlights on molecular targets for radiosensitization of breast cancer cells: Current research status and prospects. Cancer Med 2018; 7:3110-3117. [PMID: 29856131 PMCID: PMC6051209 DOI: 10.1002/cam4.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
In the past, searching for effective radiotherapy sensitization molecular targets and improving the radiation sensitivity of malignant tumors was the hot topic for the oncologists, but with little achievements. We will summarize the research results about breast cancer irradiation sensitization molecular targets over the past two decades; we mainly focus on the following aspects: DNA damage repair and radiation sensitization, cell cycle regulation and radiation sensitization, cell autophagy regulation and radiation sensitization, and radiation sensitivity prediction and breast cancer radiotherapy scheme making. And based on this summary, we will put forward some of our viewpoints.
Collapse
Affiliation(s)
- Zhi-Rui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Zhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Li Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Mao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Zhou HP, Qian LX, Zhang N, Gu JJ, Ding K, Wu J, Lu ZW, Du MY, Zhu HM, Wu JZ, He X, Yin L. MIIP gene expression is associated with radiosensitivity in human nasopharyngeal carcinoma cells. Oncol Lett 2018; 15:9471-9479. [PMID: 29805670 DOI: 10.3892/ol.2018.8524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
The present study aims to investigate the radiosensitization effect of the migration and invasion inhibitory protein (MIIP) gene on nasopharyngeal carcinoma (NPC) cells. The MIIP gene was transfected into NPC 5-8F and CNE2 cells. The level of MIIP was analyzed by quantitative reverse transcription-polymerase chain reaction analysis and western blot. The changes in radiosensitivity of the cells were analyzed by colony formation assay. The changes in cell apoptosis and cycle distribution following irradiation were detected by flow cytometry. The expression of BCL2 associated X, apoptosis regulator/B-cell lymphoma 2 was evaluated using western blot. DNA damage was analyzed by counting γ-H2AX foci. The expression levels of γ-H2AX were evaluated by immunofluorescence and western blot. In a previous study by the authors, the results indicated that the expression of MIIP gene evidently increased in MIIP-transfected 5-8F (5-8F OE) and MIIP-transfected CNE2 (CNE2 OE) cells compared with the parental or negative control cells. In the present study, the survival rate of 5-8F OE and CNE2 OE cells markedly decreased following irradiation (0, 2, 4, 6 and 8 Gy) compared with the negative control (5-8F NC and CNE2 NC) and the untreated (5-8F and CNE2) groups. The expression of MIIP was able to increase apoptosis, which resulted in G2/M cell cycle arrest and DNA damage repair was attenuated in 5-8F and CNE2 cells following irradiation as measured by the accumulation of γ-H2AX. It was indicated that MIIP expression is associated with the radiosensitivity of NPC cells and has a significant role in regulating cell radiosensitivity.
Collapse
Affiliation(s)
- Hong-Ping Zhou
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Lu-Xi Qian
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Nan Zhang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Jia-Jia Gu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Kai Ding
- Department of Radiation Oncology, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Jing Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Zhi-Wei Lu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Ming-Yu Du
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Hong-Ming Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Jian-Zhong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Xia He
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Li Yin
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
44
|
Sanders JC, Showalter TN. How Big Data, Comparative Effectiveness Research, and Rapid-Learning Health-Care Systems Can Transform Patient Care in Radiation Oncology. Front Oncol 2018; 8:155. [PMID: 29868477 PMCID: PMC5954037 DOI: 10.3389/fonc.2018.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Big data and comparative effectiveness research methodologies can be applied within the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery and to help turn the dream of fully personalized medicine into a reality. We synthesize recent advances in genomics with trends in big data to provide a forward-looking perspective on the potential of new advances to usher in an era of personalized radiation therapy, with emphases on the power of RLHCS to accelerate discovery and the future of individualized radiation treatment planning.
Collapse
Affiliation(s)
- Jason C Sanders
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
45
|
Zhao JZ, Mucaki EJ, Rogan PK. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Res 2018; 7:233. [PMID: 29904591 PMCID: PMC5981198 DOI: 10.12688/f1000research.14048.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2, PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2, CD8A, TALDO1, PCNA, EIF4G2, LCN2, CDKN1A, PRKCH, ENO1, and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.
Collapse
Affiliation(s)
- Jonathan Z.L. Zhao
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J. Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K. Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- CytoGnomix Inc., London, ON, N5X 3X5, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
46
|
Zhao JZ, Mucaki EJ, Rogan PK. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Res 2018; 7:233. [PMID: 29904591 PMCID: PMC5981198 DOI: 10.12688/f1000research.14048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 09/27/2023] Open
Abstract
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2, PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2, CD8A, TALDO1, PCNA, EIF4G2, LCN2, CDKN1A, PRKCH, ENO1, and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.
Collapse
Affiliation(s)
- Jonathan Z.L. Zhao
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J. Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K. Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- CytoGnomix Inc., London, ON, N5X 3X5, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
47
|
Tourell MC, Ali TS, Hugo HJ, Pyke C, Yang S, Lloyd T, Thompson EW, Momot KI. T 1 -based sensing of mammographic density using single-sided portable NMR. Magn Reson Med 2018; 80:1243-1251. [PMID: 29399874 DOI: 10.1002/mrm.27098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Monique C Tourell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Tonima S Ali
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Chris Pyke
- Department of Surgery, Mater Hospital, University of Queensland, St Lucia, Australia
| | - Samuel Yang
- Department of Plastic and Reconstructive Surgery, Greenslopes Private Hospital, Brisbane, Australia
| | - Thomas Lloyd
- Division of Radiology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
48
|
Wang Y, Gudikote J, Giri U, Yan J, Deng W, Ye R, Jiang W, Li N, Hobbs BP, Wang J, Swisher SG, Fujimoto J, Wistuba II, Komaki R, Heymach JV, Lin SH. RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non-small Cell Lung Cancer. Clin Cancer Res 2018; 24:341-350. [PMID: 29030353 DOI: 10.1158/1078-0432.ccr-17-1455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Although postoperative radiotherapy is often used to maintain local control after surgical resection and chemotherapy for locally advanced non-small cell lung cancer (NSCLC), both locoregional failure and distant metastasis remain problematic. The mechanisms of therapeutic resistance remain poorly understood.Experimental Design: We used reverse-phase protein arrays (RPPA) to profile the baseline expression of 170 total and phosphorylated proteins in 70 NSCLC cell lines to categorize pathways that may contribute to radiation resistance. Significant markers identified by RPPA were further analyzed in tissue microarrays (TMA) of specimens from 127 patients with NSCLC who had received surgery before receiving postoperative radiotherapy. Cox regression analysis and log-rank tests were used to identify potential predictive factors. We then validated the biological function of the markers in NSCLC cell lines in vitroResults: Of the 170 proteins or phospho-proteins profiled, a subset of 12 proteins was found to correlate with radiation response parameters. TMA analysis of the 12 proteins showing the greatest differences in expression in the RPPA analysis demonstrated that RAD50 had the strongest correlation with distant relapse-free survival, locoregional relapse-free survival, and disease-free survival in patients with NSCLC. We confirmed that knockdown of RAD50 sensitized NSCLC cells to radiation and that upregulation of RAD50 increased radioresistance in in vitro experiments.Conclusions: Upregulated RAD50 may be a predictor of radioresistance in patients with lung cancer who received radiotherapy. Clin Cancer Res; 24(2); 341-50. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jayanthi Gudikote
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Ye
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Du L, Yu W, Dai X, Zhao N, Huang X, Tong F, Liu F, Huang Y, Ju Z, Yang W, Cong X, Xie C, Liu X, Liang L, Han Y, Qu B. Association of DNA repair gene polymorphisms with the risk of radiation pneumonitis in lung cancer patients. Oncotarget 2017; 9:958-968. [PMID: 29416669 PMCID: PMC5787526 DOI: 10.18632/oncotarget.22982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
A total of 149 lung cancer patients were recruited to receive intensity modulated radiation therapy (IMRT). The association of developing radiation pneumonitis (RP) with genetic polymorphism was evaluated. The risks of four polymorphic sites in three DNA repair related genes (ERCC1, rs116615:T354C and rs3212986:C1516A; ERCC2, rs13181:A2251C; XRCC1, rs25487:A1196G) for developing grade ≥ 2 RP were assessed respectively. It was observed that ERCC1 T354C SNP had a significant effect on the development of grade ≥ 2 RP (CT/TT vs. CC, adjusted HR = 0.517, 95% CI, 0.285-0.939; adjusted P = 0.030). It is the first time demonstrating that CT/TT genotype of ERCC1 354 was significantly associated with lower RP risk after radio therapy.
Collapse
Affiliation(s)
- Lehui Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangkun Dai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nana Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Tong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yurong Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhongjian Ju
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohu Cong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuanbin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lanqing Liang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Han
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baolin Qu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
50
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|