1
|
Elbestawy A, Ellakany H, Sedeik M, Gado A, Abdel-Latif M, Noreldin A, Orabi A, Radwan I, El-Ghany WA. Superior Efficacy of Apathogenic Genotype I (V4) over Lentogenic Genotype II (LaSota) Live Vaccines against Newcastle Disease Virus Genotype VII.1.1 in Pathogen-Associated Molecular Pattern-H9N2 Vaccinated Broiler Chickens. Vaccines (Basel) 2023; 11:1638. [PMID: 38005970 PMCID: PMC10674370 DOI: 10.3390/vaccines11111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
A comparison of the efficacy of apathogenic genotype I (V4) and lentogenic genotype II (LaSota) strains of live Newcastle disease virus (NDV) vaccines was performed following vaccination with pathogen-associated molecular pattern (PAMP) H9N2 avian influenza vaccine and challenge with velogenic NDV genotype VII.1.1 (vNDV-VII.1.1). Eight groups (Gs) of day-old chicks were used (n = 25). Groups 1-4 received a single dose of PAMP-H9N2 subcutaneously, while Gs (1, 5) and (2, 6) received eye drops of V4 and LaSota, respectively, as two doses. All Gs, except for 4 and 8, were intramuscularly challenged with vNDV-VII.1.1 at 28 days of age. No signs were detected in Gs 1, 5, 4, and 8. The mortality rates were 0% in Gs 1, 4, 5, and 8; 40% in G2; 46.66% in G6; and 100% in Gs 3 and 7. Lesions were recorded as minimal in Gs 1 and 5, but mild to moderate in Gs 2 and 6. The lowest significant viral shedding was detected in Gs 1, 2, and 5. In conclusion, two successive vaccinations of broilers with a live V4 NDV vaccine provided higher protection against vNDV-VII.1.1 challenge than LaSota. PAMP-H9N2 with live NDV vaccines induced more protection than the live vaccine alone.
Collapse
Affiliation(s)
- Ahmed Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Hany Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mahmoud Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ahmed Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.E.); (A.G.)
| | - Mervat Abdel-Latif
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ismail Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Wafaa Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| |
Collapse
|
2
|
|
3
|
Al-Garib S, Gielkens A, Gruys E, Kochi G. Review of Newcastle disease virus with particular references to immunity and vaccination. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20030011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S.O. Al-Garib
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Al-Fateh University, P.O. Box 13662 Tripoli, Libya
| | - A.L.J. Gielkens
- Institute for Animal Science and Health (ID-Lelystad), P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - E. Gruys
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
| | - G. Kochi
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
| |
Collapse
|
4
|
Wang C, Chu Z, Liu W, Pang Y, Gao X, Tang Q, Ma J, Lu K, Adam FEA, Dang R, Xiao S, Wang X, Yang Z. Newcastle disease virus V protein inhibits apoptosis in DF-1 cells by downregulating TXNL1. Vet Res 2018; 49:102. [PMID: 30290847 PMCID: PMC6389150 DOI: 10.1186/s13567-018-0599-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023] Open
Abstract
Many viral proteins are related to suppressing apoptosis in target cells and are hence beneficial to viral replication. The V protein of Newcastle disease virus (NDV) is one such protein that plays an important role in inhibiting apoptosis in a species-specific manner. However, to date, there have been no reports clarifying the antiapoptotic mechanisms of the V protein. The present study was undertaken to determine the apoptotic potential of the V protein in a chicken embryo fibroblast cell line (DF-1 cell) and to elucidate its molecular mechanisms of action. Here, a yeast two-hybrid system was used to screen the host proteins that interact with the V protein and identified thioredoxin-like protein 1 (TXNL1) as a potential binding partner. Immuno-colocalization of V protein and TXNL1 protein in DF-1 cells further verified the interaction of the two proteins. Through the overexpression of TXNL1 protein and knockdown of TXNL1 protein in DF-1 cells, the effects of NDV replication and cell apoptosis were examined. Cell apoptosis was detected by flow cytometry. The mRNA and protein expression levels of Bax, Bcl-2 and Caspase-3 were detected by quantitative real-time PCR (Q-PCR) and Western blotting. NDV expression was detected by Q-PCR and plaque assay. The results revealed that the TXNL1 protein induced apoptosis and inhibited NDV replication in DF-1 cells. Furthermore, the Western blot and Q-PCR results suggested that TXNL1 induced cell apoptosis through a pathway involving Bcl-2\Bax and Caspase-3. Finally, this work provides insight into the mechanism by which the V protein inhibits apoptosis.
Collapse
Affiliation(s)
- Caiying Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Wenkai Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yu Pang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiuxia Tang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Fathalrhman E. A. Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
- Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, P.O Box: 155, Nyala, Sudan
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
5
|
Wanyana A, Mugimba KK, Bosco OJ, Kirunda H, Nakavuma JL, Teillaud A, Ducatez MF, Byarugaba DK. Genotypic characterisation of Avian paramyxovirus type-1 viruses isolated from aquatic birds in Uganda. ACTA ACUST UNITED AC 2018; 85:e1-e7. [PMID: 30035597 PMCID: PMC6238811 DOI: 10.4102/ojvr.v85i1.1510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/21/2017] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
Avian paramyxovirus type-1 (APMV-1) viruses of the lentogenic pathotypes are often isolated from wild aquatic birds and may mutate to high pathogenicity when they cross into poultry and cause debilitating Newcastle disease. This study characterised AMPV-1 isolated from fresh faecal droppings from wild aquatic birds roosting sites in Uganda. Fresh faecal samples from wild aquatic birds at several waterbodies in Uganda were collected and inoculated into 9–10-day-old embryonated chicken eggs. After isolation, the viruses were confirmed as APMV-1 by APMV-1-specific polymerase chain reaction (PCR). The cleavage site of the fusion protein gene for 24 representative isolates was sequenced and phylogenetically analysed and compared with representative isolates of the different APMV-1 genotypes in the GenBank database. In total, 711 samples were collected from different regions in the country from which 72 isolates were recovered, giving a prevalence of 10.1%. Sequence analysis of 24 isolates revealed that the isolates were all lentogenic, with the typical 111GGRQGR’L117 avirulent motif. Twenty-two isolates had similar amino acid sequences at the cleavage site, which were different from the LaSota vaccine strain by a silent nucleotide substitution T357C. Two isolates, NDV/waterfowl/Uganda/MU150/2011 and NDV/waterfowl/Uganda/MU186/2011, were different from the rest of the isolates in a single amino acid, with aspartate and alanine at positions 124 and 129, respectively. The results of this study revealed that Ugandan aquatic birds indeed harbour APMV-1 that clustered with class II genotype II strains and had limited genetic diversity.
Collapse
Affiliation(s)
- Agnes Wanyana
- College of Veterinary Medicine, Makerere University.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bergfeld J, Meers J, Bingham J, Harper J, Payne J, Lowther S, Marsh G, Tachedjian M, Middleton D. An Australian Newcastle Disease Virus With a Virulent Fusion Protein Cleavage Site Produces Minimal Pathogenicity in Chickens. Vet Pathol 2017; 54:649-660. [PMID: 28494702 DOI: 10.1177/0300985817705173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Newcastle disease is an important disease of poultry caused by virulent strains of Newcastle disease virus (NDV). During the 1998 to 2002 outbreaks of Newcastle disease in Australia, it was observed that the mild clinical signs seen in some chickens infected with NDV did not correlate with the viruses' virulent fusion protein cleavage site motifs or standard pathogenicity indices. The pathogenicity of 2 Australian NDV isolates was evaluated in experimentally challenged chickens based on clinical evaluation, histopathology, immunohistochemistry, and molecular techniques. One of these virus isolates, Meredith/02, was shown to induce only very mild clinical signs with no mortalities in an experimental setting, in contrast to the velogenic Herts 33/56 and Texas GB isolates. This minimal pathogenicity was associated with decreased virus replication and antigen distribution in tissues. This demonstrates that the Australian Meredith/02 NDV, despite possessing a virulent fusion protein cleavage site, did not display a velogenic phenotype.
Collapse
Affiliation(s)
- Jemma Bergfeld
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Joanne Meers
- 2 School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - John Bingham
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jennifer Harper
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jean Payne
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sue Lowther
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Glenn Marsh
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mary Tachedjian
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Deborah Middleton
- 1 CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs. J Virol 2015; 90:2052-63. [PMID: 26656697 DOI: 10.1128/jvi.01801-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED It has been reported that lentogenic Newcastle disease virus (NDV) isolates have the potential to become velogenic after their transmission and circulation in chickens, but the underlying mechanism is unclear. In this study, a highly velogenic NDV variant, JS10-A10, was generated from the duck-origin lentogenic isolate JS10 through 10 consecutive passages in chicken air sacs. The velogenic properties of this selected variant were determined using mean death time (MDT) assays, intracerebral pathogenicity index (ICPI), the intravenous pathogenicity index (IVPI), histopathology, and the analysis of host tissue tropism. In contrast, JS10 remained lentogenic after 20 serial passages in chicken eggs (JS10-E20). The JS10, JS10-A10, and JS10-E20 genomes were sequenced and found to be nearly identical, suggesting that both JS10-A10 and JS10-E20 were directly generated from JS10. To investigate the mechanism for virulence enhancement, the partial genome covering the F0 cleavage site of JS10 and its variants were analyzed using ultradeep pyrosequencing (UDPS) and the proportions of virulence-related genomes in the quasispecies were calculated. Velogenic NDV genomes accumulated as a function of JS10 passaging through chicken air sacs. Our data suggest that lentogenic NDV strains circulating among poultry might be a risk factor to future potential velogenic NDV outbreaks in chickens. IMPORTANCE An avirulent isolate, JS10, was passaged through chicken air sacs and embryos, and the pathogenicity of the variants was assessed. A virulent variant, JS10-A10, was generated from consecutive passage in air sacs. We developed a deep-sequencing approach to detect low-frequency viral variants across the NDV genome. We observed that virulence enhancement of JS10 was due to the selective accumulation of velogenic quasispecies and the concomitant disappearance of lentogenic quasispecies. Our results suggest that because it is difficult to avoid contact between natural waterfowl reservoirs and sensitive poultry operations, circulating lentogenic NDV strains may represent a potential reservoir for emergent velogenic NDV strains that could cause outbreaks in chickens.
Collapse
|
8
|
Assessment of cellular and mucosal immune responses in chicks to Newcastle disease oral pellet vaccine (D58 strain) using qPCR. Virusdisease 2014; 25:467-73. [PMID: 25674624 DOI: 10.1007/s13337-014-0230-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022] Open
Abstract
To assess the cell mediated and mucosal immune responses in chicks to Newcastle disease vaccine, expression levels of certain genes encoding cytokines and chemokines were quantified by q-PCR. The utility of cytokine and chemokine gene expression profile in estimating the cell mediated and humoral immune response has been established. The cell mediated immune response was assessed by quantifying the IFN-γ gene expression in splenocytes and compared with colorimetric blastogenesis assay. The mucosal immune response was assessed by quantifying the expression of IL-8, IL1-β, MIP1-β, K60 and K203 in the intestinal cells and compared with IgA ELISA. On 14th day post vaccination, the expression of IFN-γ was upregulated by 12-folds in the Group I, which have received oral pellet vaccine and fourfolds in the Group II where birds have received live thermostable vaccine as occulonasal instillation. 3 and 7 days after receiving booster, the same cytokine gene was upregulated by 12-folds and 27-folds respectively in the Group III, where birds have received live thermostable ND vaccine as priming vaccine and oral pellet vaccine as booster. On 21st day post vaccination the expression of IL-8 was upregulated by 42.8-folds in Group I and 3.3-folds in the Group II. The expression of IL-1β was upregulated by eightfolds on 3rd day post vaccination and 23-folds on 21st day post vaccination in Group I. The expression of macrophage inflammatory protein-1β (MIP-1β) was upregulated by 16-folds in Group I and 70-folds in Group II on 14th day post vaccination. No significant change in expression of chemokine genes K60 and K203 in vaccinated birds. The results were comparable with the results of conventional tests and proved the utility of qPCR in estimating the cellular and mucosal immune responses.
Collapse
|
9
|
Newcastle disease virus: current status and our understanding. Virus Res 2014; 184:71-81. [PMID: 24589707 PMCID: PMC7127793 DOI: 10.1016/j.virusres.2014.02.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.
Collapse
|
10
|
Zhang YY, Shao MY, Yu XH, Zhao J, Zhang GZ. Molecular characterization of chicken-derived genotype VIId Newcastle disease virus isolates in China during 2005-2012 reveals a new length in hemagglutinin-neuraminidase. INFECTION GENETICS AND EVOLUTION 2013; 21:359-66. [PMID: 24333370 DOI: 10.1016/j.meegid.2013.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
Newcastle disease (ND) is one of the most important diseases of poultry, and causes severe economic losses in the global poultry industry. Although all Newcastle disease virus (NDV) isolates belong to a single serotype, significant genetic diversity has been described between different NDV isolates. Here, we report the molecular characterization of 23 virulent genotype VIId NDV isolates of class II circulating in China. Phylogenetic construction and analysis revealed the existence of distinctly genomic and amino acid differences that clearly distinguished these isolates from other typical NDV genotypes and vaccine strains. We also report a new 582-amino-acid hemagglutinin-neuraminidase in genotype VII NDV strains. This is believed to be the first study to investigate systematically the most predominant NDV strains, and provides more information on the genetic nature of genotype VIId NDV of class II circulating in China.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Meng-Yu Shao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao-Hui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Guo-Zhong Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
11
|
Tolf C, Wille M, Haidar AK, Avril A, Zohari S, Waldenström J. Prevalence of avian paramyxovirus type 1 in Mallards during autumn migration in the western Baltic Sea region. Virol J 2013; 10:285. [PMID: 24028398 PMCID: PMC3847450 DOI: 10.1186/1743-422x-10-285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/13/2013] [Indexed: 11/30/2022] Open
Abstract
Background Newcastle disease virus (NDV) is the causative agent of the Newcastle disease, a severe disease in birds associated with substantial economic losses to the poultry industry worldwide. Sweden is situated along the Western European waterfowl flyway and applies a non-vaccination policy combined with directives of immediate euthanisation of NDV infected flocks. During the last decades there have been several outbreaks with NDV in poultry in Sweden. However, less is known about the virus prevalence in the wild bird population including waterfowl, a well-established reservoir of avian paramyxovirus type 1 (APMV-1), the paramyxovirus serotype that include pathogenic NDV. Methods The survey constituted of 2332 samples from Mallards (Anas platyrhynchos), trapped in the southern part of Sweden during autumn migration in 2010. These samples were screened for APMV-1 by real-time reverse transcription PCR, and viral strains from positive samples were isolated and characterized by sequence analysis of the fusion gene and by phylogenetic analysis. Conclusions Twenty of these samples were positive for APMV-1, hence a virus prevalence of 0.9% (95% Confidence Interval [95% CI]=0.54%, 1.35%). The highest APMV-1 prevalence was detected in juvenile Mallards sampled in November (n=887, prevalence 1.24% ([95% CI])=0.67%, 2.24%). Sequence analysis and evaluation of phylogenetic relatedness indicated that isolated APMV-1 strains were lentogenic, and phylogenetically most closely related to genotype Ib strains within the clade of class II viruses. The sampling system employed enabled us to follow APMV-1 infections and the shedding of one particular viral strain in one individual bird over several days. Furthermore, combining previous screening results with the APMV-1 detections in this study showed that more than 50% of Mallards that tested positive for APMV-1 RNA were co-infected with influenza A virus.
Collapse
Affiliation(s)
- Conny Tolf
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University, Kalmar SE-391 82, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
McFarlane RA, Sleigh AC, McMichael AJ. Land-use change and emerging infectious disease on an island continent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2699-719. [PMID: 23812027 PMCID: PMC3734451 DOI: 10.3390/ijerph10072699] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/07/2013] [Accepted: 06/14/2013] [Indexed: 01/23/2023]
Abstract
A more rigorous and nuanced understanding of land-use change (LUC) as a driver of emerging infectious disease (EID) is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history--continental Australia. We do this by examining land-use and native vegetation change (LUCC) associations with infectious disease emergence identified through a systematic (1973-2010) and historical (1788-1973) review of infectious disease literature of humans and animals. We find that 22% (20) of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence.
Collapse
Affiliation(s)
- Rosemary A McFarlane
- National Centre for Epidemiology and Population Health, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
13
|
Abstract
Over the past two decades, enormous advances have occurred in the structural and biological characterization of Newcastle disease virus (NDV). As a result, not only the complete sequence of the viral genome has been fully determined, but also a clearer understanding of the viral proteins and their respective roles in the life cycle has been achieved. This article reviews the progress in the molecular biology of NDV with emphasis on the new technologies. It also identifies the fundamental problems that need to be addressed and attempts to predict some research opportunities in NDV that can be realized in the near future for the diagnosis, prevention and treatment of disease(s).
Collapse
|
14
|
Cavanagh D. Innovation and discovery: the application of nucleic acid-based technology to avian virus detection and characterization. Avian Pathol 2012; 30:581-98. [PMID: 19184952 DOI: 10.1080/03079450120092071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Polymerase chain reaction (PCR)-based approaches to the detection, differentiation and characterization of avian pathogens continue to be developed and refined. The PCRs, or reverse transcriptase-PCRs, may be general, designed to detect all or most variants of a pathogen, or to be serotype, genotype or pathotype specific. Progress is being made with respect to making nucleic acid approaches more suitable for use in diagnostic laboratories. Robotic workstations are now available for extraction of nucleic acid from many samples in a short time, for routine diagnosis. Following general PCR, the DNA products are commonly analyzed by restriction endonuclease mapping (restriction fragment length polymorphism), using a small number of restriction endonucleases, based on a large body of sequence data. Increasingly, however, nucleotide sequencing is being used to analyze the DNA product, in part due to the expanding use of non-radioactive sequencing methods that are safe and enable high throughout. In this review, I highlight some recent developments with many avian viruses: Newcastle disease virus; circoviruses in canary and pigeon; infectious bursal disease virus (Gumboro disease virus); avian adenoviruses, including Angara disease/infectious hydropericardium virus, haemorrhagic enteritis virus of turkeys, and egg drop syndrome virus; avian herpesviruses, including infectious laryngotracheitis virus, duck plague virus, psittacine herpesvirus (Pacheco's parrot disease virus), Marek's disease virus and herpesvirus of turkeys; avian leukosis virus (associated with lymphoid leukosis or myeloid leukosis, and egg transmission); avian pneumoviruses (turkey rhinotracheitis virus); avian coronaviruses, including infectious bronchitis virus, turkey coronavirus and pheasant coronavirus; astrovirus, in the context of poult enteritis and mortality syndrome, and avian nephritis virus; and avian encephalomyelitis virus, a picornavirus related to hepatitis A virus.
Collapse
|
15
|
Meng C, Qiu X, Jin S, Yu S, Chen H, Ding C. Whole genome sequencing and biological characterization of Duck/JS/10, a new lentogenic class I Newcastle disease virus. Arch Virol 2012; 157:869-80. [PMID: 22310996 DOI: 10.1007/s00705-012-1248-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/06/2012] [Indexed: 11/25/2022]
Abstract
A lentogenic Newcastle disease virus (NDV), Duck/JS/10 (JS10), was isolated from an unvaccinated duck in China. The complete genome of the virus contained 15,198 nucleotides. Based on length of the genome and a partial sequence of the F gene, the virus was classified as a class I genotype 4 NDV. The antigenicity of the virus was compared with that of NDV strain La Sota via hemagglutination inhibition (HI), virus neutralization (VN) assay and animal experiments. Our results show that JS10 generates higher HI and VN titers than La Sota against both class I and II virulent NDV strains. Experiments on animals demonstrate that virus shedding from chickens vaccinated with JS10 is significantly reduced when compared to those vaccinated with La Sota. Overall, this study strongly suggests that JS10 may qualify as a new vaccine candidate against Newcastle disease.
Collapse
Affiliation(s)
- Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Kim BY, Lee DH, Kim MS, Jang JH, Lee YN, Park JK, Yuk SS, Lee JB, Park SY, Choi IS, Song CS. Exchange of Newcastle disease viruses in Korea: the relatedness of isolates between wild birds, live bird markets, poultry farms and neighboring countries. INFECTION GENETICS AND EVOLUTION 2011; 12:478-82. [PMID: 22197764 DOI: 10.1016/j.meegid.2011.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Newcastle disease virus (NDV) has a worldwide distribution and is often carried by wild ducks, which may represent one of the natural reservoirs. However, the epidemiological relatedness of NDV between wild ducks and domestic poultry is unclear. A total of 14 isolates were obtained from 8439 samples from live bird markets (LBMs) and wild bird populations in Korea during from 2007 to 2010. These isolates were characterized genetically and phylogenetic analysis was conducted to investigate the relatedness between isolates from wild birds, LBM and poultry farms. In phylogenetic analysis, all 14 isolates belonged to genotype I virus within class II. Of these, nine isolates from wild birds were most closely related to the Aomori-like cluster. The five LBM isolates were most closely related to the V4-like cluster. All isolates in this study were closely related to isolates from domestic duck farms in Korea and Chinese LBM isolates. The results indicate that NDV exchange occurs between wild birds, poultry farms, LBMs and neighboring countries. Enhanced NDV surveillance is required to monitor the introduction of variant NDV in consequence of evolution in LBMs and to investigate NDV epidemiology in various species of putative hosts.
Collapse
Affiliation(s)
- Byoung-Yoon Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruenphet S, Jahangir A, Shoham D, Takehara K. Situation of serum antibodies against Newcastle disease virus in slaughter-age ostriches after vaccination campaign in Japan. J Vet Med Sci 2011; 74:477-80. [PMID: 22075709 DOI: 10.1292/jvms.11-0427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A total of 516 slaughter-age ostrich sera were collected in Japan during 2006-2009. Sixty-one of five hundred and sixteen were positive by virus neutralization (VN) test and the titer of most positive samples was low level. Within the 61 positive sera, 35 sera were collected from unvaccinated ostriches. This result implies that these ostriches might have been infected naturally with low-virulent Newcastle disease virus (NDV). Within the 455 negative samples, 125 samples were from vaccinated ostriches. Since ostrich farmers use live attenuated vaccines, it is reasonable that the titer decreased to below detection level by 1 or 1.5 year-old. The above data indicate that NDV has infiltrated into ostrich farms in Japan, and that the efficacy of ostrich ND vaccination is often time-limited.
Collapse
Affiliation(s)
- Sakchai Ruenphet
- Laboratory of Animal Health, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
18
|
Yongolo MG, Christensen H, Handberg K, Minga U, Olsen JE. On the origin and diversity of Newcastle disease virus in Tanzania. ACTA ACUST UNITED AC 2011; 78:312. [PMID: 23327213 DOI: 10.4102/ojvr.v78i1.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/19/2011] [Accepted: 04/08/2011] [Indexed: 11/01/2022]
Abstract
Free-range rural chickens (FRCs) dominate the poultry industry in developing countries and chickens are exposed to multi-host infections, including Newcastle disease virus (NDV). The knowledge about the characteristics of NDV from FRCs is limited. This study investigated the persistence, spread and risks of NDV from FRCs. NDV isolates (n = 21) from unvaccinated FRCs in Tanzania were characterised by conventional intracerebral pathogenicity index (ICPI) and sequence analysis of a partial region of the deduced fusion protein encompassing the cleavage site. Results showed that five isolates were screened as lentogenic, nine as mesogenic and six as velogenic. Phylogenetic analysis of the 21 isolates compared to reference sequences revealed three, four, nine and five isolates in genotypes 1, 2, 3c and 4a, respectively. Genotype 3c also included published sequences of Tanzanian isolates obtained from exotic birds and chicken isolates from Uganda. The analysis showed that NDV were persistently present among chicken populations and possibly spread through live chicken markets or migration of wild birds. Differences in amino acid sequences detected around the cleavage site separated the isolates in six types. However, cleavage site pattern could not fully differentiate mesogenic isolates from velogenic isolates.
Collapse
Affiliation(s)
- Mmeta G Yongolo
- Department of Veterinary Disease Biology, University of Copenhagen.
| | | | | | | | | |
Collapse
|
19
|
Monitoring of wild birds for Newcastle disease virus in north Queensland, Australia. Prev Vet Med 2011; 103:49-62. [PMID: 21945812 DOI: 10.1016/j.prevetmed.2011.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/31/2023]
Abstract
Wild aquatic birds (WABs) are considered as reservoir hosts for Newcastle disease viruses (NDVs) and may act as vectors for transferring these viruses to poultry, causing outbreaks of disease. A 3-year epidemiological study was conducted on WABs of north Queensland from April 2007 to March 2010. Swab and fresh moist faecal samples of WABs were screened to detect Newcastle disease viral (NDV) RNA by one-step real time reverse transcriptase polymerase chain reaction (rRT-PCR) in multiplex primers, targeting the matrix gene. The potential reactor samples in rRT-PCR were processed for sequencing of the different NDV genes using conventional PCR. The overall NDV RNA prevalence was 3.5% for live bird samples (N=1461) and 0.4% for faecal samples (N=1157). Plumed whistling ducks (PWDs) had a higher prevalence (4.2%) than Pacific black ducks (PBDs) (0.9%) (χ(2) test, p=0.001). Univariate and multivariate logistic regression analyses were used to estimate the association between the proportion of reactor and non-reactor NDV RNA samples of PWDs and potential risk factors. The odds of reactor samples were 2.7 (95% Confidence Interval 1.5-4.9) times more likely in younger than older ducks (p=0.001) (data set B, multivariate analysis). Both NDV RNA class-one and class-two types were identified in samples of WABs (12 and 59, respectively) (Supplementary Table 1). Phylogenetic analysis of the matrix gene identified two reactor sequences of class-one type NDV RNA (PWD-48 and 55) which were closely related to the sequences of Australian Ibis and duck isolates (Fig. 2). Another reactor sample sequence was determined as class-two type NDV RNA (PWD-46, avirulent) based on analysis of the matrix and fusion genes which was more similar to the sequences of Australian I-2 progenitor virus and vaccine strain virus (Figs. 3 and 4). Our findings of higher prevalence in PWDs along with confirmation of class-one and class-two type NDV RNAs will significantly contribute to the design of surveillance programs for NDVs in northern Australia.
Collapse
|
20
|
Susta L, Miller PJ, Afonso CL, Brown CC. Clinicopathological Characterization in Poultry of Three Strains of Newcastle Disease Virus Isolated From Recent Outbreaks. Vet Pathol 2010; 48:349-60. [DOI: 10.1177/0300985810375806] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Newcastle disease is a severe threat to the poultry industry and is caused by Newcastle disease virus, a member of the genus Avulavirus, family Paramyxoviridae. The virus is rapidly evolving, and several new genotypes have been discovered in the past few years. Characterization of these strains is important to evaluate field changes, anticipate new outbreaks, and develop adequate control measures. Three Newcastle disease isolates (APMV-1/duck/Vietnam, Long Bien/78/2002, APMV-1/chicken/Australia/9809-19-1107/1998, and APMV-1/double-crested cormorant/USA, Nevada/19529-04/2005) from recent outbreaks were investigated via clinicopathological assessment, immunohistochemistry (IHC), in situ hybridization, virus isolation, and serology in experimentally infected 4-week-old chickens. Phylogenetic studies showed that Australia isolate belongs to class II genotype I, Long Bien to class II genotype VIId, and Nevada cormorant to class II genotype V. Even though all 3 viruses had a virulent fusion protein cleavage site and ICPI values greater than 1.5, they all differed in their ability to cause clinical signs, in their lesions, and in their viral distribution in body tissues. The Long Bien isolate showed the most severe clinicopathological picture and the most widespread viral distribution. The Australia and Nevada cormorant isolates had a milder pathological phenotype, with viral replication restricted to only a few organs. The variability in clinicopathological characteristics despite the similarity in ICPI suggests that full clinicopathological assessment is necessary to fully characterize new isolates and that there are differences in pathogenesis among viruses of different genotypes.
Collapse
Affiliation(s)
- L. Susta
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - P. J. Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, USA
| | - C. L. Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, USA
| | - C. C. Brown
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
21
|
Aldous EW, Alexander DJ. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 2010; 30:117-28. [DOI: 10.1080/03079450120044515] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- E. W. Aldous
- a Avian Virology , VLA Weybridge , Addlestone , Surrey , KT15 3NB , UK
| | - D. J. Alexander
- a Avian Virology , VLA Weybridge , Addlestone , Surrey , KT15 3NB , UK
| |
Collapse
|
22
|
The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. PLoS Pathog 2010; 6:e1000872. [PMID: 20421950 PMCID: PMC2858710 DOI: 10.1371/journal.ppat.1000872] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/23/2010] [Indexed: 12/12/2022] Open
Abstract
Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins. Modified live virus (MLV) vaccines have been effective in reducing disease burden and economic loss caused by Newcastle Disease (ND) in domestic poultry. Because the vaccine is a live virus, it is transmissible among birds. Thus, vaccination strategies have the potential to impact the evolutionary genetics of wild type strains of aPMV-1 including those that cause ND. In this report, we provided evidence that viruses isolated from wild and domestic birds have recombined with vaccine strains, because vaccinated birds are protected from disease but not infection with other strains of aPMV-1. Despite the use of vaccines since the 1950s, the population size of the strain from which the most widely used vaccine was derived has steadily increased. In contrast, other contemporary genotypes, which emerged in the 1960s, experienced a decline in population size in 1998, which may reflect a change in poultry farming practices or disease. Vaccination imposed a unique selection profile on the genotypes derived from the vaccine-related strains when compared with nonvaccine-related strains. Although modified live viruses are important for controlling Newcastle Disease, the potential of vaccination strategies to change viral diversity and population dynamics should be considered.
Collapse
|
23
|
Jindal N, Chander Y, Chockalingam AK, de Abin M, Redig PT, Goyal SM. Phylogenetic analysis of Newcastle disease viruses isolated from waterfowl in the upper midwest region of the United States. Virol J 2009; 6:191. [PMID: 19891788 PMCID: PMC2776597 DOI: 10.1186/1743-422x-6-191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was conducted to characterize Newcastle disease virus (NDV) isolates obtained from waterfowl from the Upper Midwest region of the United States. A total of 43 NDVs were isolated by inoculation of cloacal samples in embryonated chicken eggs. These isolates were obtained from 24 mallards, seven American green-winged teals, six northern pintails, four blue-winged teals, and two wood ducks. Partial sequences of fusion gene were analyzed to determine the pathotypes and genotypes involved. RESULTS Deduced amino acid sequence of the cleavage site of fusion (F) protein revealed that all isolates had avirulent motifs. Of the 43 isolates, 23 exhibited sequence motif of (111)GGKQGRL(117) at the cleavage site, 19 exhibited (111)GEKQGRL(117) while one isolate showed (111)GERQGRL(117). Phylogenetic analysis based on comparison with different classes of NDVs revealed that all 43 isolates clustered with class II NDVs and none with class I NDVs. Within class II, five isolates were phylogenetically close to genotype I NDVs while the remaining 38 were close to genotype II. CONCLUSION We conclude that more than one genotype of NDV circulates in waterfowl in the Upper Midwest region of the US. Continuous surveillance may help better understand the epidemiology of NDVs maintained in wild bird populations and their relationship to NDVs in domestic poultry, if any.
Collapse
Affiliation(s)
- Naresh Jindal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Yogesh Chander
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Ashok K Chockalingam
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Martha de Abin
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Patrick T Redig
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Sagar M Goyal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
24
|
Newcastle disease: evolution of genotypes and the related diagnostic challenges. INFECTION GENETICS AND EVOLUTION 2009; 10:26-35. [PMID: 19800028 DOI: 10.1016/j.meegid.2009.09.012] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 11/20/2022]
Abstract
Since the discovery of Newcastle disease virus (NDV) in 1926, nine genotypes of class I viruses and ten of class II have been identified, representing a diverse and continually evolving group of viruses. The emergence of new virulent genotypes from global epizootics and the year-to-year changes observed in the genomic sequence of NDV of low and high virulence implies that distinct genotypes of NDV are simultaneously evolving at different geographic locations across the globe. This vast genomic diversity may be favored by the large variety of avian species susceptible to NDV infection and by the availability of highly mobile wild bird reservoirs. The genomic diversity of NDV increases the possibility of diagnostic failures, resulting in unidentified infections. Constant epidemiological surveillance and pro-active characterization of circulating strains are needed to ensure that the immunological and PCR reagents are effective in identifying NDV circulating worldwide. For example, in the United States, the widely used real-time reverse transcription polymerase chain reaction (RRT-PCR) matrix gene assay for the identification of NDV often fails to detect low virulence APMV-1 from waterfowl, while the RRT-PCR fusion gene assay, used to identify virulent isolates, often fails to detect certain virulent NDV genotypes. A new matrix-polymerase multiplex test that detects most of the viruses currently circulating worldwide and a modified fusion test for the identification of virulent pigeon viruses circulating in the U.S. and Europe have recently been developed. For newly isolated viruses with unknown sequences, recently developed random priming sequencing methods need to be incorporated into the diagnostic arsenal. In addition, the current system of classifying NDV into genotypes or lineages is inadequate. Here, we review the molecular epidemiology and recent diagnostic problems related to viral evolution of NDV and explain why a new system, based on objective criteria, is needed to categorize genotypes.
Collapse
|
25
|
Singh R, Verma PC, Singh S. Immunogenicity and protective efficacy of virosome based vaccines against Newcastle disease. Trop Anim Health Prod 2009; 42:465-71. [PMID: 19728133 DOI: 10.1007/s11250-009-9444-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/14/2009] [Indexed: 11/28/2022]
Abstract
Virosome based vaccines against Newcastle disease (ND) were prepared and evaluated for their immunogenicity and protective efficacy in chickens. Envelop of Newcastle disease virus (NDV) was solubilised with Triton X-100 to yield virosomes which were later on encapsulated in poly-lactide-co-glycolide (PLG) microspheres. The birds were immunized intranasally with virosomes or PLG microspheres encapsulated virosomes, and efficacy of these preparations was compared with commercial LaSota vaccine. The preparations protected the chickens against virulent virus challenge infection, however the microencapsulated virosome vaccine gave slightly lesser degree of protection than non encapsulated counterpart. The humoral and cell mediated immune response generated as well as the protection afforded by virosome preparations were found to be comparable with LaSota vaccine. The results substantiate the potential of virosome based vaccines to provide high level of immunity and protection against Newcastle disease.
Collapse
Affiliation(s)
- Rajinder Singh
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | | | | |
Collapse
|
26
|
Kim LM, Suarez DL, Afonso CL. Detection of a Broad Range of Class I and II Newcastle Disease Viruses Using a Multiplex Real-Time Reverse Transcription Polymerase Chain Reaction Assay. J Vet Diagn Invest 2008; 20:414-25. [PMID: 18599845 DOI: 10.1177/104063870802000402] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prompt detection of virulent strains of Newcastle disease virus (vNDV) using real-time reverse transcription polymerase chain reaction (RT-PCR) is challenging because of the broad genetic variability across 2 clades comprising 18 recognized genotypes. A large proportion of class I low virulence ND viruses recently identified in samples recovered from wild birds and from poultry in live bird markets are not detected by the validated real-time RT-PCR assay that targets the matrix gene (M-gene assay). This study describes the identification and sequencing of a conserved region from the polymerase gene of class I NDV and the design and evaluation of a real-time RT-PCR assay (L-TET assay) that identifies a broad range of NDV, demonstrates a 10-fold increase in sensitivity over a previously reported L-gene assay, and works in conjunction with the existing M-gene assay using the same protocol. The L-TET assay detects ≤1 fg of homologous transcribed RNA from genotypes 5, 7, and 8 of class I, and from class II genotype II in either single- or multiplex format. Differential detection of mixed class I and II viruses down to 100 fg is possible because L-TET uses an alternate fluorophore from the M-gene assay. The multiplexed assay is capable of detecting a broad range of class I and II ND viruses with <1 threshold cycle decrease in sensitivity compared to the single probe. A total of 140 class I ( n = 108, genotypes 1–2 and 4–9) and class II ( n = 32, genotypes I–VII) were correctly identified by both the single- and multiplex formats.
Collapse
Affiliation(s)
- L. Mia Kim
- From the U.S. Department of Agriculture Animal Research Service, Southeast Poultry Research Laboratory, Athens, GA
| | - David L. Suarez
- From the U.S. Department of Agriculture Animal Research Service, Southeast Poultry Research Laboratory, Athens, GA
| | - Claudio L. Afonso
- From the U.S. Department of Agriculture Animal Research Service, Southeast Poultry Research Laboratory, Athens, GA
| |
Collapse
|
27
|
Zanetti F, Berinstein A, Carrillo E. Effect of host selective pressure on Newcastle disease virus virulence. Microb Pathog 2007; 44:135-40. [PMID: 17900851 DOI: 10.1016/j.micpath.2007.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/06/2007] [Indexed: 11/24/2022]
Abstract
Newcastle disease virus (NDV) causes an economically important disease that can vary from clinically inapparent to highly virulent forms. Generally, NDV strains isolated from wild birds are non-pathogenic for chicken. However, there are evidences supporting the fact that avirulent viruses maintained in feral birds could have caused outbreaks of virulent NDV in poultry. The strain-specific difference in virulence is determined by structural variations on the fusion glycoprotein (F). More basic amino acids are present in the F cleavage site of virulent strains. Nevertheless, other regions have been involved in virulence determination. When we subjected an avirulent NDV isolated from a wild bird to a host change we found that the virus arose was virulent for chicken. Nucleotide changes in the F protein cleavage site amino acid sequence and in the hemagglutinin-neuraminidase protein sequence are reported.
Collapse
Affiliation(s)
- Flavia Zanetti
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Las Cabañas y Los Reseros s/n, Hurlingham, Buenos Aires, Argentina.
| | | | | |
Collapse
|
28
|
Kite VG, Boyle DB, Heine HG, Pritchard I, Garner MG, East IJ. A serological and virological survey for evidence of infection with Newcastle disease virus in Australian chicken farms. Aust Vet J 2007; 85:236-42. [PMID: 17547637 DOI: 10.1111/j.1751-0813.2007.00161.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the prevalence and distribution of antibodies to Newcastle disease virus on Australian chicken farms and to determine the pathotype and relationships of the Newcastle disease viruses present on those farms. DESIGN A cross-sectional survey of 753 commercial chicken farms. PROCEDURE The survey comprised a detailed questionnaire and collection of venous blood samples. The titre of antibodies to Newcastle disease virus was determined by haemagglutination inhibition. Virus isolation was conducted from cloacal and tracheal swabs taken from chickens in serologically positive flocks. Virus isolates were pathotyped on the basis of the deduced Fusion protein cleavage site determined by nucleotide sequencing of a 265 bp region of the genome in the region of the cleavage site. RESULTS Antibody evidence of Newcastle disease virus infection was found on 300 of the 753 surveyed farms throughout all 11 geographic regions of the survey. The highest prevalence occurred in the Sydney basin, New South Wales and Victoria east regions. Antibody titres were also highest in the regions where serologically positive flocks were most prevalent. The 259 virus isolates revealed nine different RNA sequences. Of the nine virus groups isolated, the most common group W was identical in sequence to the V4 vaccine strain. Five of the other groups had novel RNA sequences in the region of the F protein cleavage site. CONCLUSIONS Antibodies to Newcastle disease virus are highly prevalent in the Australian chicken flock but all identified strains were avirulent in nature.
Collapse
Affiliation(s)
- V G Kite
- Australian Chicken Meat Federation Inc, North Sydney, NSW 2059
| | | | | | | | | | | |
Collapse
|
29
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) to review Newcastle disease focussing on vaccination worldwide in order to determine its optimal use for disease control purposes. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Czeglédi A, Ujvári D, Somogyi E, Wehmann E, Werner O, Lomniczi B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 2006; 120:36-48. [PMID: 16766077 DOI: 10.1016/j.virusres.2005.11.009] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 10/24/2022]
Abstract
The goal of the study was to establish if there was a relationship between molecular patterns and virus evolution. Therefore the complete genome sequence of two distinct apathogenic Newcastle disease virus (NDV) strains was determined and a third genome size category, containing 15,198 nucleotides, was recognized. Phylogenetic analysis revealed that two major separations resulting in three genome size categories occurred during the history of NDV. An ancient division in the primordial reservoir (wild waterbird species) led to two basal sister clades, class I and II, with genome sizes 15,198 (due to a 12 nucleotide insert in the phosphoprotein gene) and 15,186 nucleotides, respectively. Ancestors of only class II viruses colonized chicken populations and subsequently converted to virulent forms. These took place more than once and resulted in an early lineage [including genotypes I-IV and H33(W)] with genome size of 15,186 nucleotides. A second division occurred in the 20th century in the secondary (chicken) host. This gave rise to the branching-off of a clade (including recent genotypes V-VIII consisting of only pathogenic viruses) with the concomitant insertion of six nucleotides into the 5' non-coding region of the nucleoprotein gene thereby increasing the genome size to 15,192 nucleotides.
Collapse
Affiliation(s)
- Alíz Czeglédi
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, PO Box 18, Budapest 1581, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
East I, Kite V, Daniels P, Garner G. A cross-sectional survey of Australian chicken farms to identify risk factors associated with seropositivity to Newcastle-disease virus. Prev Vet Med 2006; 77:199-214. [PMID: 16950528 DOI: 10.1016/j.prevetmed.2006.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 07/10/2006] [Accepted: 07/14/2006] [Indexed: 11/21/2022]
Abstract
Several outbreaks of virulent Newcastle-disease occurred in Australia in 1998-2000. We conducted a cross-sectional survey of 753 Australian chicken farms to identify risk factors associated with the seroprevalence of chicken flocks with Newcastle-disease virus (NDV). We had a 99.7% response rate to the survey and the overall prevalence of NDV seropositive farms was 39.8%. Associations were analysed for the layer, chicken-meat and breeder production sectors in sector-specific logistic-regression models using 187, 198 and 146 farms, respectively. In the layer sector, increased risk of seroprevalence was associated with increasing age of the chickens, and decreased risk when the nearest-neighbour poultry farm was >10 km distant (odds ratio (OR)=0.30). In the chicken-meat sector, increased risk of seroprevalence was associated with location in the Sydney basin (OR=13.67), eastern Victoria (OR=26.10) or western Victoria (OR=5.43), and decreased risk when the nearest-neighbour poultry farm was greater than 0.5 km distant (OR=0.34). In the breeder sector, increased risk of seroprevalence was associated with increasing age of the chickens, the presence of wild birds on the farm (OR=5.28) and location in eastern Victoria (OR=16.19). A conditional logistic-regression for 112 pairs of farms matched for age, survey region and production sector identified a distance of >1.0 km to the nearest-neighbour poultry farm (OR=0.24) and ownership by owner 2 (OR=0.02), owner 5 (OR=0.11) or owner 9 (OR=0.25) as significant in reducing the risk of NDV seroprevalence. Our survey found that high levels of biosecurity and hygiene practices had been adopted by most farms.
Collapse
Affiliation(s)
- I East
- Australian Government, Department of Agriculture, Fisheries and Forestry, PO Box 858, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
32
|
Homhuan A, Prakongpan S, Poomvises P, Maas RA, Crommelin DJA, Kersten GFA, Jiskoot W. Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity. Eur J Pharm Sci 2005; 22:459-68. [PMID: 15265516 DOI: 10.1016/j.ejps.2004.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/26/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to prepare and characterize virosomes and ISCOMs containing envelope proteins of Newcastle disease virus (NDV) and to evaluate their immunogenicity in target animals (chickens). Virosomes were prepared by solubilization of virus with either Triton X-100 or octyl glucoside (OG) followed by detergent removal. Biochemical analysis revealed that these virosomes contained both the haemagglutinin-neuraminidase protein (HN) and the fusion protein (F), with preserved biological activity. Acidic environment triggered the fusion between virosomes and chicken erythrocyte ghosts. Formation of ISCOMs was achieved by solubilizing phospholipids, cholesterol, envelope protein antigen and Quil A in Triton X-100. The ISCOM particles were formed by removal of the detergent. In each formulation the relative HN content correlated with the capability to agglutinate red blood cells. The immunogenicity of these lipid-based subunit vaccines was determined in chickens after subcutaneous immunization. The relative HN content of the subunit vaccines correlated with the haemagglutination-inhibition (HI) antibody titres. Virosomes prepared with Triton X-100 and ISCOMs offered high clinical protection (> 80%) upon challenge with virulent NDV. Virosomes prepared with OG yielded lower clinical protection despite high HI antibody titres. Virosomes with reduced antigen density showed poor immunogenicity and protection. In conclusion, ND virosomes and ISCOMs were found to be immunogenic and provided good protection.
Collapse
Affiliation(s)
- Atthachai Homhuan
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
33
|
Otim MO, Christensen H, Jørgensen PH, Handberg KJ, Bisgaard M. Molecular characterization and phylogenetic study of newcastle disease virus isolates from recent outbreaks in eastern Uganda. J Clin Microbiol 2004; 42:2802-5. [PMID: 15184476 PMCID: PMC427882 DOI: 10.1128/jcm.42.6.2802-2805.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Newcastle disease virus isolates from chickens in eastern Uganda in 2001 were found to be velogenic by fusion protein cleavage site sequence analysis and biological characterization; the intracerebral pathogenicity index was 1.8. Analysis of their hemagglutinin-neuraminidase protein gene sequences revealed a novel genotype unrelated to those that caused previous outbreaks.
Collapse
Affiliation(s)
- Maxwell O Otim
- Livestock Health Research Institute, P.O. Box 96, Tororo, Uganda.
| | | | | | | | | |
Collapse
|
34
|
de Leeuw OS, Hartog L, Koch G, Peeters BPH. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 2003; 84:475-484. [PMID: 12560582 DOI: 10.1099/vir.0.18714-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence of the fusion (F0) protein cleavage site. Full-length NDV cDNA clone pNDFL was used to generate infectious NDV with defined mutations in the F0 cleavage site (RRQRR downward arrow L, GRQGR downward arrow F, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F). All the mutants were viable and the mutations were maintained after virus propagation in embryonated eggs. The mutants showed single-cell infections on chicken embryo fibroblasts, which suggested that they were non-virulent. However, virulence tests in 1-day-old chickens resulted in an intracerebral pathogenicity index (ICPI) between 0 and 1.3. Moreover, virulent virus was isolated from chickens that had died in the virulence tests. Subsequent sequence analysis showed that the mutants RRQRR downward arrow L, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F gave rise to the appearance of revertants containing the virulent cleavage site RRQ(K/R)R downward arrow F and an ICPI of 1.4 or higher. This indicated that reversion to virulence was caused by alteration of the amino acid sequence of the F0 cleavage site from a non-virulent to a virulent type. Furthermore, the ICPI of the revertants was higher than that of cDNA-derived strain NDFLtag, which has the same cleavage site, RRQRR downward arrow F (ICPI=1.3). NDFLtag(Pass), which was isolated from dead chickens after intracerebral inoculation of NDFLtag, also showed an increase in the ICPI from 1.3 to 1.5. This study proves that reversion to virulence occurs within non-virulent NDV populations and that the virulence may increase after one passage in chicken brain.
Collapse
Affiliation(s)
- Olav S de Leeuw
- Department of Infectious Disease & Food Chain Quality, Institute for Animal Science and Health, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| | - Leo Hartog
- Central Institute for Animal Disease Control, PO Box 2004, NL-8203 AA Lelystad, The Netherlands
| | - Guus Koch
- Central Institute for Animal Disease Control, PO Box 2004, NL-8203 AA Lelystad, The Netherlands
| | - Ben P H Peeters
- Department of Infectious Disease & Food Chain Quality, Institute for Animal Science and Health, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| |
Collapse
|
35
|
Kommers GD, King DJ, Seal BS, Carmichael KP, Brown CC. Pathogenesis of six pigeon-origin isolates of Newcastle disease virus for domestic chickens. Vet Pathol 2002; 39:353-62. [PMID: 12014499 DOI: 10.1354/vp.39-3-353] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of six pigeon-origin isolates of Newcastle disease virus (NDV) was investigated in chickens. Four isolates were previously defined as the variant pigeon paramyxovirus 1 (PPMV-1), and two isolates were classified as avian paramyxovirus 1 (APMV-1). Birds inoculated with PPMV-1 isolates were euthanatized, and tissue samples were collected at 2, 5, and 10 days postinoculation (DPI). Birds inoculated with APMV-1 isolates died or were euthanatized, and tissue samples were collected at 2, 4, and 5 DPI. Tissues were examined by histopathology, immunohistochemistry (IHC) for the presence of NDV nucleoprotein, and in situ hybridization (ISH) for the presence of viral mRNA for the matrix gene. Spleen sections were stained by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and by IHC using an anti-active caspase-3 antibody (IHC-Casp) to detect apoptotic cells. Brain sections of PPMV-1-infected birds were examined by IHC to detect T and B lymphocytes and glial fibrillary acidic protein (GFAP). Histologically, birds inoculated with PPMV-1 isolates had marked lesions in the heart and brain. Presence of viral nucleoprotein and viral mRNA in the affected tissues was confirmed by IHC and ISH, respectively. Numerous reactive astrocytes were observed in brain sections stained for GFAP Among all the isolates, the IHC-Casp demonstrated that apoptosis was very prominent in the ellipsoid-associated cells of the spleen at 2 DPI. Results of the TUNEL assay indicated that apoptotic cells were prominent at 5 DPI and were more randomly distributed. The clinical signs and gross and histopathologic changes observed in the APMV-1-infected birds were characteristic of an extensive infection with highly virulent NDV evident by IHC.
Collapse
Affiliation(s)
- G D Kommers
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens 30602-7388, USA
| | | | | | | | | |
Collapse
|
36
|
Berinstein A, Sellers HS, King DJ, Seal BS. Use of a heteroduplex mobility assay to detect differences in the fusion protein cleavage site coding sequence among Newcastle disease virus isolates. J Clin Microbiol 2001; 39:3171-8. [PMID: 11526146 PMCID: PMC88314 DOI: 10.1128/jcm.39.9.3171-3178.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Accepted: 07/01/2001] [Indexed: 01/14/2023] Open
Abstract
Newcastle disease virus (NDV) is an economically important pathogen of poultry that may cause clinical disease that ranges from a mild respiratory syndrome to a virulent form with high mortality, depending on an isolate's pathotype. Infections with virulent NDV strains are required to be reported by member nations to the Office of International Epizootes (OIE). The primary determinant for virulence among NDV isolates is the presence or absence of dibasic amino acids in the fusion (F) protein cleavage activation site. Along with biological virulence determinations as the definitive tests, OIE accepts reporting of the F protein cleavage site sequence of NDV isolates as a virulence criterion. Nucleotide sequence data for many NDV isolates recently isolated from infected chickens and other avian species worldwide have been deposited in GenBank. Consequently, viral genomic information surrounding the F protein cleavage site coding sequence was used to develop a heteroduplex mobility assay (HMA) to aid in further identification of molecular markers as predictors of NDV virulence. Using common vaccine strains as a reference, we were able to distinguish virulent viruses among NDV isolates that correlated with phylogenetic analysis of the nucleotide sequence. This technique was also used to examine NDV isolates not previously characterized. We were able to distinguish vaccine-like viruses from other isolates potentially virulent for chickens. This technique will help improve international harmonization of veterinary biologics as set forth by the OIE and the Veterinary International Cooperation on Harmonization of Technical Requirements of Veterinary Medicinal Products. Ultimately, the HMA could be used for initial screening among a large number of isolates and rapid identification of potentially virulent NDV that continue to threaten commercial poultry worldwide.
Collapse
Affiliation(s)
- A Berinstein
- Instituto de Biotecnologia, Centro de Investigacion en Ciencias Veterinarias, Instituto Nacional de Tecnologia Agropecuria, CC7725 Castelar (1712), Buenos Aires, Argentina
| | | | | | | |
Collapse
|