1
|
Wu YY, Wu FH, Chen IC, Liao TL, Munir M, Liu HJ. Oncolytic avian reovirus-sensitized tumor infiltrating CD8 + T cells triggering immunogenic apoptosis in gastric cancer. Cell Commun Signal 2024; 22:514. [PMID: 39434159 PMCID: PMC11494775 DOI: 10.1186/s12964-024-01888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a leading malignant disease in numerous countries, including Taiwan with limited therapeutic options. Animal viruses including oncolytic avian reovirus (ARV) have the possibility to avoid pre-existing immunity in humans, while being safe and immunostimulatory. Here, we provide a novel insight into oncolytic ARV and UV-ARV-sensitized patient's peripheral blood mononuclear cells (P-PBMCs) and tumor infiltrating lymphocytes (TILs) killing primary GC (PGC) cells through the surface TLR3 and TRAIL/DR4/DR5 immunogenic apoptosis pathway. METHODS We conducted a comprehensive study to reveal whether ARV- or UV-inactivated ARV (UV-ARV)-modulated P-PBMCs or TILs killing ARV- and UV-ARV-sensitized AGS cells and PGC cells derived from clinical patients and to investigate the regulation of surface TLR3 receptor and upstream signaling pathways. Apoptosis analysis by flow cytometry and Western blot, suppression of signal pathway by specific inhibitors, in situ proximity ligation assay (PLA), time-resolved flurometry and lactate dehydrogenase (LDH) cytotoxicity assays, and an in vitro co-culture model were established to study the interplay between ARV- and UV-ARV-sensitized P-PBMCs and TILs to kill PGC cells and their upstream pathways. RESULTS Our results reveal that increased levels of DR4 and DR5 were observed in ARV and UV-ARV sensitized PGC cells through the TLR3/p38/p53 signaling pathway. Importantly, we found that the σC protein of ARV or UV-ARV interacted with surface TLR3 of CD8+ TILs, thereby triggering the TLR3/NF-κB/IFN-γ/TRAIL signaling pathway which induces immunogenic apoptosis of PGC cells. This study sheds further light on the molecular basis behind ARV oncolysis and facilitates the ARV or UV-ARV as a cancer therapeutic. CONCLUSIONS The study provides novel insights into ARV- or UV-ARV-sensitized P-PBMCs and CD8+ TILs to kill PGC cells through the immunogenic apoptosis pathway. We conclude that P-PBMCs can easily be obtained from GC patients and provide a rich source as TILs to kill PGC cells.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Feng-Hsu Wu
- Department of Critical Care, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - I-Chun Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Shabbir MZ, Yu H, Lighty ME, Dunn PA, Wallner-Pendleton EA, Lu H. Diagnostic investigation of avian reovirus field variants circulating in broiler chickens in Pennsylvania of United States between 2017 and 2022. Avian Pathol 2024; 53:400-407. [PMID: 38629680 DOI: 10.1080/03079457.2024.2342889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Avian reovirus (ARV) has been continuously affecting the poultry industry in Pennsylvania (PA) in recent years. This report provides our diagnostic investigation on monitoring ARV field variants from broiler chickens in Pennsylvania. Genomic characterization findings of 72 ARV field isolates obtained from broiler cases during the last 6 years indicated that six distinct cluster variant strains (genotype I-VI), which were genetically diverse and distant from the vaccine and vaccine-related field strains, continuously circulated in PA poultry. Most of the variants clustered within genotype V (24/72, 33.3%), followed by genotype II (16/72, 22.2%), genotype IV (13/72, 18.1%), genotype III (13/72, 18.1%), genotype VI (05/72, 6.94%), and genotype I (1/72, 1.38%). The amino acid identity between 72 field variants and the vaccine strains (1133, 1733, 2408, 2177) varied from 45.3% to 99.7%, while the difference in amino acid counts ranged from 1-164. Among the field variants, the amino acid identity and count difference ranged from 43.3% to 100% and 0 to 170, respectively. Variants within genotype V had maximum amino acid identity (94.7-100%), whereas none of the variants within genotypes II and VI were alike. These findings indicate the continuing occurrence of multiple ARV genotypes in the environment.
Collapse
Affiliation(s)
- Muhammad Zubair Shabbir
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haiyang Yu
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
- Tianjin Ringpu Bio-Technology Co, Ltd., Tianjin, People's Republic of China
| | - Megan E Lighty
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | - Patricia Ann Dunn
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | | | - Huaguang Lu
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Rafique S, Rashid F, Wei Y, Zeng T, Xie L, Xie Z. Avian Orthoreoviruses: A Systematic Review of Their Distribution, Dissemination Patterns, and Genotypic Clustering. Viruses 2024; 16:1056. [PMID: 39066218 PMCID: PMC11281703 DOI: 10.3390/v16071056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Avian orthoreviruses have become a global challenge to the poultry industry, causing significant economic impacts on commercial poultry. Avian reoviruses (ARVs) are resistant to heat, proteolytic enzymes, a wide range of pH values, and disinfectants, so keeping chicken farms free of ARV infections is difficult. This review focuses on the global prevalence of ARVs and associated clinical signs and symptoms. The most common signs and symptoms include tenosynovitis/arthritis, malabsorption syndrome, runting-stunting syndrome, and respiratory diseases. Moreover, this review also focused on the characterization of ARVs in genotypic clusters (I-VI) and their relation to tissue tropism or viral distribution. The prevailing strains of ARV in Africa belong to all genotypic clusters (GCs) except for GC VI, whereas all GCs are present in Asia and the Americas. In addition, all ARV strains are associated with or belong to GC I-VI in Europe. Moreover, in Oceania, only GC V and VI are prevalent. This review also showed that, regardless of the genotypic cluster, tenosynovitis/arthritis was the predominant clinical manifestation, indicating its universal occurrence across all clusters. Globally, most avian reovirus infections can be prevented by vaccination against four major strains: S1133, 1733, 2408, and 2177. Nevertheless, these vaccines may not a provide sufficient defense against field isolates. Due to the increase in the number of ARV variants, classical vaccine approaches are being developed depending on the degree of antigenic similarity between the vaccine and field strains, which determines how successful the vaccination will be. Moreover, there is a need to look more closely at the antigenic and pathogenic properties of reported ARV strains. The information acquired will aid in the selection of more effective vaccine strains in combination with biosecurity and farm management methods to prevent ARV infections.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi 46000, Pakistan;
| | - Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
4
|
de Matos TRA, Palka APG, de Souza C, Fragoso SP, Pavoni DP. Detection of avian reovirus (ARV) by ELISA based on recombinant σB, σC and σNS full-length proteins and protein fragments. J Med Microbiol 2024; 73. [PMID: 38935078 DOI: 10.1099/jmm.0.001836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.
Collapse
Affiliation(s)
- Tatiana Reichert Assunção de Matos
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Ana Paula Gori Palka
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
- Instituto de Tecnologia do Paraná/Tecpar, Curitiba/PR, Brazil
| | - Claudemir de Souza
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| | - Stenio Perdigão Fragoso
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
| | - Daniela Parada Pavoni
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biociências e Biotecnologia, Fundação Oswaldo Cruz, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba/PR, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná/UFPR, Curitiba/PR, Brazil
| |
Collapse
|
5
|
Gál B, Varga-Kugler R, Ihász K, Kaszab E, Farkas S, Marton S, Martella V, Bányai K. A Snapshot on the Genomic Epidemiology of Turkey Reovirus Infections, Hungary. Animals (Basel) 2023; 13:3504. [PMID: 38003122 PMCID: PMC10668827 DOI: 10.3390/ani13223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Reovirus infections in turkeys are associated with arthritis and lameness. Viral genome sequence data are scarce, which makes an accurate description of the viral evolution and epidemiology difficult. In this study, we isolated and characterized turkey reoviruses from Hungary. The isolates were identified in 2016; these isolates were compared with earlier Hungarian turkey reovirus strains and turkey reoviruses isolated in the 2010s in the United States. Gene-wise sequence and phylogenetic analyses identified the cell-receptor binding protein and the main neutralization antigen, σC, to be the most conserved. The most genetically diverse gene was another surface antigen coding gene, μB. This gene was shown to undergo frequent reassortment among chicken and turkey origin reoviruses. Additional reassortment events were found primarily within members of the homologous turkey reovirus clade. Our data showed evidence for low variability among strains isolated from independent outbreaks, a finding that suggests a common source of turkey reoviruses in Hungarian turkey flocks. Given that commercial vaccines are not available, identification of the source of these founder virus strains would permit a more efficient prevention of disease outbreaks before young birds are settled to fattening facilities.
Collapse
Affiliation(s)
- Bence Gál
- Intervet Hungária Kft, Lechner Odon Fasor 10/b, H-1095 Budapest, Hungary;
| | - Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Institute of Metagenomics, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Szilvia Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, Italy;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
6
|
Narvaez SA, Harrell TL, Oluwayinka O, Sellers HS, Khalid Z, Hauck R, Chowdhury EU, Conrad SJ. Optimizing the Conditions for Whole-Genome Sequencing of Avian Reoviruses. Viruses 2023; 15:1938. [PMID: 37766345 PMCID: PMC10536876 DOI: 10.3390/v15091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Whole-genome sequencing (WGS) is becoming an essential tool to characterize the genomes of avian reovirus (ARV), a viral disease of economic significance to poultry producers. The current strategies and procedures used to obtain the complete genome sequences of ARV isolates are not cost-effective because most of the genetic material data resulting from next-generation sequencing belong to the host and cannot be used to assemble the viral genome. The purpose of this study was to develop a workflow to enrich the ARV genomic content in a sample before subjecting it to next-generation sequencing (NGS). Herein, we compare four different ARV purification and enrichment approaches at the virion, RNA and cDNA levels to determine which treatment or treatment combination would provide a higher proportion of ARV-specific reads after WGS. Seven ARV isolates were subjected to different combinations of virion purification via ultracentrifugation in sucrose density gradient or Capto Core 700 resin with or without a subsequent Benzonase treatment, followed by a chicken rRNA depletion step after RNA extraction and a final ARV cDNA amplification step using a single-primer amplification assay. Our results show that the combination of Capto Core 700 resin, Chicken rRNA depletion and cDNA amplification is the most cost-effective strategy to obtain ARV whole genomes after short-read sequencing.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| | - Telvin L. Harrell
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| | - Olatunde Oluwayinka
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Holly S. Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Zubair Khalid
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (Z.K.); (R.H.)
| | - Ruediger Hauck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (Z.K.); (R.H.)
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, USA
| | - Erfan U. Chowdhury
- Alabama Department of Agriculture and Industries, Veterinary Diagnostic Laboratory System, Auburn, AL 36832, USA;
| | - Steven J. Conrad
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| |
Collapse
|
7
|
Gál B, Varga-Kugler R, Ihász K, Kaszab E, Domán M, Farkas S, Bányai K. Marked Genotype Diversity among Reoviruses Isolated from Chicken in Selected East-Central European Countries. Animals (Basel) 2023; 13:2137. [PMID: 37443935 DOI: 10.3390/ani13132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The concern that the vaccines currently used against Avian orthoreovirus (ARV) infections are less efficient in the field justifies the need for the close monitoring of circulating ARV strains. In this study, we collected necropsy samples from various chicken breeds and tested for ARV by virus isolation, RT-PCR assay and sequence analysis. ARVs were isolated from birds showing runting-stunting syndrome, uneven growth, lameness or increased mortality, with relative detection rates of 38%, 35%, 6% and 25%, respectively. Partial σC gene sequences were determined for nearly 90% of ARV isolates. The isolates could be classified into one of the major genetic clusters. Interestingly, cluster 2 and cluster 5 were isolated from vaccinated broiler breeders, while clusters 1 to 4 were isolated from unvaccinated broilers. The isolates shared less than 75% amino acid identities with the vaccine strains (range, 44.3-74.6%). This study reaffirms the global distribution of the major genetic clusters of ARVs in chicken. The diversity of ARV strains isolated from unvaccinated broilers was greater than those detected from vaccinated animals, however, the relative importance of passive and active immunity on the selection of novel strains in different chicken breeds needs to be better understood.
Collapse
Affiliation(s)
- Bence Gál
- Intervet Hungária Kft, Lechner Ödön fasor 10/b, H-1095 Budapest, Hungary
| | - Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Marianna Domán
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Szilvia Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
8
|
Kovács E, Varga-Kugler R, Mató T, Homonnay Z, Tatár-Kis T, Farkas S, Kiss I, Bányai K, Palya V. Identification of the main genetic clusters of avian reoviruses from a global strain collection. Front Vet Sci 2023; 9:1094761. [PMID: 36713877 PMCID: PMC9878682 DOI: 10.3389/fvets.2022.1094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Avian reoviruses (ARV), an important pathogen of poultry, have received increasing interest lately due to their widespread occurrence, recognized genetic diversity, and association to defined disease conditions or being present as co-infecting agents. The efficient control measures require the characterization of the available virus strains. Methods The present study describes an ARV collection comprising over 200 isolates from diagnostic samples collected over a decade from 34 countries worldwide. One hundred and thirty-six ARV isolates were characterized based on σC sequences. Results and discussion The samples represented not only arthritis/tenosynovitis and runting-stunting syndrome, but also respiratory symptoms, egg production problems, and undefined disease conditions accompanied with increased mortality, and were obtained from broiler, layer or breeder flocks. In 31 percent of the cases other viral or bacterial agents were demonstrated besides ARV. The most frequent co-infectious agent was infectious bronchitis virus followed by infectious bursal disease virus and adenoviruses. All isolates could be classified in one of the major genetic clusters, although we observed marked discrepancies in the genotyping systems currently in use, a finding that made genotype assignment challenging. Reovirus related clinical symptoms could not be unequivocally connected to any particular virus strains belonging to a specific genetic group, suggesting the lack of strict association between disease forms of ARV infection and the investigated genetic features of ARV strains. Also, large genetic differences were seen between field and vaccine strains. The presented findings reinforce the need to establish a uniform, widely accepted molecular classification scheme for ARV and further, highlight the need for ARV strain identification to support more efficient control measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Szilvia Farkas
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - István Kiss
- Ceva-Phylaxia Ltd., Budapest, Hungary,*Correspondence: István Kiss ✉
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | |
Collapse
|
9
|
Lunge VR, De Carli S, Fonseca ASK, Ikuta N. Avian Reoviruses in Poultry Farms from Brazil. Avian Dis 2022; 66:459-464. [PMID: 36715480 DOI: 10.1637/aviandiseases-d-22-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Avian reovirus (ARV) is highly disseminated in commercial Brazilian poultry farms, causing arthritis/tenosynovitis, runting-stunting syndrome, and malabsorption syndrome in different meat- and egg-type birds (breeders, broilers, grillers, and layers). In Brazil, ARV infection was first described in broilers in the 1970s but was not considered an important poultry health problem for decades. A more concerning outcome of field infections has been observed in recent years, including condemnations at slaughterhouses because of the unsightly appearance of chicken body parts, mainly the legs. Analyses of the performance of poultry flocks have further evidenced economic losses to farms. Genetic and antigenic characterization of ARV field strains from Brazil demonstrated a high diversity of lineages circulating in the entire country, including four of the five main phylogenetic groups previously described (I, II, III, and V). It is still unclear if all of them are associated with different diseases affecting flocks' performance in Brazilian poultry. ARV infections have been controlled in Brazilian poultry farms by immunization of breeders and young chicks with classical commercial live vaccine strains (S1133, 1733, 2408, and 2177) used elsewhere in the Western Hemisphere. However, genetic and antigenic variations of the field isolates have prevented adequate protection against associated diseases, so killed autogenous vaccines are being produced from isolates obtained on specific farms. In conclusion, ARV field variants are continuously challenging poultry farming in Brazil. Epidemiological surveillance combined with molecular biological analyses from the field samples, as well as the development of vaccine strains directed toward the ARV circulating variants, are necessary to control this economically important poultry pathogen.
Collapse
Affiliation(s)
- Vagner R Lunge
- Laboratório de Diagnóstico em Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, .,Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Goldenberg D. Avian Reovirus in Israel, Variants and Vaccines-A Review. Avian Dis 2022; 66:447-451. [PMID: 36715478 DOI: 10.1637/aviandiseases-d-22-99996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Avian reovirus (ARV) has been determined to be the etiologic agent of viral arthritis/tenosynovitis. In Israel, meat-type chickens, including broilers and breeders, are the most affected. Severe disease symptoms can appear in broiler flocks at a very young age because of early exposure and vertical transmission, causing significant welfare problems. Jewish laws define birds with inflamed, damaged, or torn gastrocnemius and digital flexor tendons as religious condemnations (non-kosher), resulting in severe economic losses for the poultry industry. Vaccination of breeders is a strategy to control the disease by reducing vertical transmission and providing maternal-derived antibodies to the progeny. This review describes Israel's ARV variants and the various vaccines developed over the years. Identification of co-circulating variants triggered the development of multivalent autogenous inactivated vaccines. However, the genotype-matched vaccines failed to provide protection, resulting in an increased prevalence of Cluster II ARV (classified as genotyping cluster 5 in the ARV common world classification). Since 2014, ARV Cluster II has been dominant in Israel. In 2015, the dominant variant s7585 tropism changed the virus pathogenesis and affected broilers with severe clinical signs between 12 and 15 days of age. A new vaccine approach developed in Israel used controlled exposure of the breeding flock to virulent ARV at the age when they are resistant to infection. This approach significantly reduced clinical field cases and reovirus isolations of breeding and broiler flocks between 2020 and 2022.
Collapse
Affiliation(s)
- Dana Goldenberg
- Phibro Animal Health Corporation, Airport City, 7010000 Israel,
| |
Collapse
|
11
|
Kim SW, Choi YR, Park JY, Wei B, Shang K, Zhang JF, Jang HK, Cha SY, Kang M. Isolation and Genomic Characterization of Avian Reovirus From Wild Birds in South Korea. Front Vet Sci 2022; 9:794934. [PMID: 35155656 PMCID: PMC8831841 DOI: 10.3389/fvets.2022.794934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Avian reoviruses (ARVs) cause severe arthritis, tenosynovitis, pericarditis, and depressed growth in chickens, and these conditions have become increasingly frequent in recent years. Studies on the role of wild birds in the epidemiology of ARVs are insufficient. This study provides information about currently circulating ARVs in wild birds by gene detection using diagnostic RT-PCR, virus isolation, and genomic characterization. In this study, we isolated and identified 10 ARV isolates from 7,390 wild birds' fecal samples, including migratory bird species (bean goose, Eurasian teal, Indian spot-billed duck, and mallard duck) from 2015 to 2019 in South Korea. On comparing the amino acid sequences of the σC-encoding gene, most isolates, except A18-13, shared higher sequence similarity with the commercial vaccine isolate S1133 and Chinese isolates. However, the A18-13 isolate is similar to live attenuated vaccine av-S1133 and vaccine break isolates (SD09-1, LN09-1, and GX110116). For the p10- and p17-encoding genes, all isolates have identical fusion associated small transmembrane (FAST) protein and nuclear localization signal (SNL) motif to chicken-origin ARVs. Phylogenetic analysis of the amino acid sequences of the σC-encoding gene revealed that all isolates were belonged to genotypic cluster I. For the p10- and p17-encoding genes, the nucleotide sequences of all isolates indicated close relationship with commercial vaccine isolate S1133 and Chinese isolates. For the σNS-encoding gene, the nucleotide sequences of all isolates indicated close relationship with the Californian chicken-origin isolate K1600657 and belonged to chicken-origin ARV cluster. Our data indicates that wild birds ARVs were derived from the chicken farms. This finding suggests that wild birds serve as natural carriers of such viruses for domestic poultry.
Collapse
|
12
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|