1
|
Dewey BE, Remedios SW, Sanjayan M, Rjeily NB, Lee AZ, Wyche C, Duncan S, Prince JL, Calabresi PA, Fitzgerald KC, Mowry EM. Super-Resolution in Clinically Available Spinal Cord MRIs Enables Automated Atrophy Analysis. AJNR Am J Neuroradiol 2025; 46:823-831. [PMID: 39366765 PMCID: PMC11979833 DOI: 10.3174/ajnr.a8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND PURPOSE Measurement of the mean upper cervical cord area (MUCCA) is an important biomarker in the study of neurodegeneration. However, dedicated high-resolution (HR) scans of the cervical spinal cord are rare in standard-of-care imaging due to timing and clinical usability. Most clinical cervical spinal cord imaging is sagittally acquired in 2D with thick slices and anisotropic voxels. As a solution, previous work describes HR T1-weighted brain imaging for measuring the upper cord area, but this is still not common in clinical care. MATERIALS AND METHODS We propose using a zero-shot super-resolution technique, synthetic multi-orientation resolution enhancement (SMORE), already validated in the brain, to enhance the resolution of 2D-acquired scans for upper cord area calculations. To incorporate super-resolution in spinal cord analysis, we validate SMORE against HR research imaging and in a real-world longitudinal data analysis. RESULTS Super-resolved (SR) images reconstructed by using SMORE showed significantly greater similarity to the ground truth than low-resolution (LR) images across all tested resolutions (P < .001 for all resolutions in peak signal-to-noise ratio [PSNR] and mean structural similarity [MSSIM]). MUCCA results from SR scans demonstrate excellent correlation with HR scans (r > 0.973 for all resolutions) compared with LR scans. Additionally, SR scans are consistent between resolutions (r > 0.969), an essential factor in longitudinal analysis. Compared with clinical outcomes such as walking speed or disease severity, MUCCA values from LR scans have significantly lower correlations than those from HR scans. SR results have no significant difference. In a longitudinal real-world data set, we show that these SR volumes can be used in conjunction with T1-weighted brain scans to show a significant rate of atrophy (-0.790, P = .020 versus -0.438, P = .301 with LR). CONCLUSIONS Super-resolution is a valuable tool for enabling large-scale studies of cord atrophy, as LR images acquired in clinical practice are common and available.
Collapse
Affiliation(s)
- Blake E Dewey
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Samuel W Remedios
- Department of Computer Science (S.W.R.), Johns Hopkins University, Baltimore, Maryland
| | - Muraleetharan Sanjayan
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Nicole Bou Rjeily
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Alexandra Zambriczki Lee
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Chelsea Wyche
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Safiya Duncan
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Jerry L Prince
- Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, Maryland
| | - Peter A Calabresi
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Kathryn C Fitzgerald
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Ellen M Mowry
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Gazzeri R, Galarza M, Occhigrossi F, Viswanath O, Varrassi G, Leoni MLG. Prophylactic Fibrin Glue Application for Immediate Management of Dural Puncture during Spinal Cord Stimulation Lead Placement: a Simple and Effective Technique. Curr Pain Headache Rep 2025; 29:70. [PMID: 40131573 DOI: 10.1007/s11916-025-01381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Accidental dural puncture during epidural lead insertion for Spinal Cord Stimulation (SCS) is a recognized surgical complication that may lead to cerebrospinal fluid (CSF) leakage and subsequent postdural puncture headache (PDPH). The optimal technical approach to prevent CSF leakage remains controversial. This study aimed to evaluate a simple and efficient intraoperative technique for managing accidental dural puncture during SCS lead placement. MATERIALS AND METHODS A retrospective review was conducted of the medical records and imaging studies of all patients who underwent SCS procedures between January 2020 and April 2024. Signs or symptoms associated with dural puncture were recorded, including subcutaneous fluid collections, pseudomeningocele formation, PDPH, wound infection, and meningitis. RESULTS Among 107 patients who underwent SCS implantation, involving a total of 194 lead insertions, 4 cases (3.7%) of intraoperative CSF leakage due to iatrogenic dural puncture were identified. Each case was managed by injecting fibrin glue through the introducer needle into the epidural space, directly over the dural lesion. CONCLUSIONS Prophylactic application of fibrin glue following dural puncture appears to be highly effective in sealing the damage and preventing CSF leakage. This technique offers a valuable intraoperative solution for surgeons to immediately address dural injuries during SCS lead placement, potentially minimizing postoperative complications and improving patient outcomes.
Collapse
Affiliation(s)
- Roberto Gazzeri
- Interventional and Surgical Pain Management Unit, San Giovanni-Addolorata Hospital, Rome, Italy.
| | - Marcelo Galarza
- Regional Service of Neurosurgery, "Virgen de la Arrixaca" University Hospital, Murcia, Spain
| | - Felice Occhigrossi
- Interventional and Surgical Pain Management Unit, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Omar Viswanath
- Department of Anesthesiology, Creighton University School of Medicine, Phoenix, AZ, USA
- Mountain View Headache and Spine Institute, Phoenix, AZ, USA
| | | | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Zhang D, Wang W, Han S, Duan H, Hou M, Zhou X, Guo X, Chen H, Kong X, Zhang X, Zhou H, Feng S. Nano-fiber/net artificial bionic dura mater promotes neural stem cell differentiating by time sequence external-oral administration to repair spinal cord injury. Theranostics 2025; 15:2579-2596. [PMID: 39990224 PMCID: PMC11840742 DOI: 10.7150/thno.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025] Open
Abstract
Rationale: The inflammatory microenvironment and resulting neuronal loss following spinal cord injury (SCI) impede the repair process. Endogenous neural stem cells (NSCs), which are constrained by neuroinflammation and slow differentiation rates, are unable to effectively facilitate recovery. Method: In this study, coaxial electrospinning technology was employed to fabricate a nano-fiber/net artificial bionic dura mater (NABDM). This structure featured a core-shell structure, with nafamostat mesylate (NM) encapsulated in the outer layer of poly (lactic-co-glycolic acid) (PLGA) and neurotrophins-3 (NT3) encapsulated in the inner layer of poly (l-lactic acid) (PLLA). Results: The NABDM modifies the polarization direction of microglia in vitro, and promotes the differentiation of NSCs by activating the cGMP-PKG and cAMP signaling pathways. In a mouse SCI model, NABDM effectively reduces local neuroinflammation, accelerates the differentiation of endogenous NSCs, increases the number of mature neurons, and enhances motor, sensory, and autonomic nerve functions in mice. Conclusion: NABDM promotes the differentiation of NSCs and facilitates the repair of SCI in a time sequence external-oral way. This approach represents a rapid and effective new treatment method.
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Shuwei Han
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Huiquan Duan
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Mengfan Hou
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, P.R. China
| | - Xiaolong Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Xianzheng Guo
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Haosheng Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Xiaohong Kong
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Hengxing Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, P. R. China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, P.R. China
| |
Collapse
|
4
|
Wolf K, Volz F, Lützen N, Mast H, Reisert M, Rahal AE, Fung C, Shah MJ, Beck J, Urbach H. Non-invasive biomarkers for spontaneous intracranial hypotension (SIH) through phase-contrast MRI. J Neurol 2024; 271:4336-4347. [PMID: 38643444 PMCID: PMC11233306 DOI: 10.1007/s00415-024-12365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Spontaneous intracranial hypotension (SIH) is an underdiagnosed disease. To depict the accurate diagnosis can be demanding; especially the detection of CSF-venous fistulas poses many challenges. Potential dynamic biomarkers have been identified through non-invasive phase-contrast MRI in a limited subset of SIH patients with evidence of spinal longitudinal extradural collection. This study aimed to explore these biomarkers related to spinal cord motion and CSF velocities in a broader SIH cohort. METHODS A retrospective, monocentric pooled-data analysis was conducted of patients suspected to suffer from SIH who underwent phase-contrast MRI for spinal cord and CSF velocity measurements at segment C2/C3 referred to a tertiary center between February 2022 and June 2023. Velocity ranges (mm/s), total displacement (mm), and further derivatives were assessed and compared to data from the database of 70 healthy controls. RESULTS In 117 patients, a leak was located (54% ventral leak, 20% lateral leak, 20% CSF-venous fistulas, 6% sacral leaks). SIH patients showed larger spinal cord and CSF velocities than healthy controls: e.g., velocity range 7.6 ± 3 mm/s vs. 5.6 ± 1.4 mm/s, 56 ± 21 mm/s vs. 42 ± 10 mm/s, p < 0.001, respectively. Patients with lateral leaks and CSF-venous fistulas exhibited an exceptionally heightened level of spinal cord motion (e.g., velocity range 8.4 ± 3.3 mm/s; 8.2 ± 3.1 mm/s vs. 5.6 ± 1.4 mm/s, p < 0.001, respectively). CONCLUSION Phase-contrast MRI might become a valuable tool for SIH diagnosis, especially in patients with CSF-venous fistulas without evidence of spinal extradural fluid collection.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Florian Volz
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Niklas Lützen
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjoerg Mast
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amir El Rahal
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Department of Neurosurgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Fung
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Mukesch J Shah
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Tamura A, Sakaue C. Effects of surface profile on porcine dural mechanical properties. Clin Biomech (Bristol, Avon) 2024; 112:106189. [PMID: 38295572 DOI: 10.1016/j.clinbiomech.2024.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Cerebrospinal fluid leakage through the spinal meninges is difficult to diagnose and treat. Moreover, its underlying mechanism remains unknown. Considering that the dura mater is structurally the strongest and outermost membrane among the three-layered meninges, we hypothesized that a dural mechanical tear would trigger spontaneous cerebrospinal fluid leakage, especially when a traumatic loading event is involved. Thus, accurate biomechanical properties of the dura mater are indispensable for improving computational models, which aid in predicting blunt impact injuries and creating artificial substitutes for transplantation and surgical training. METHOD We characterized the surface profile of the spinal dura and its mechanical properties (Young's moduli) with a distinction of its inherent anatomical sites (i.e., the cervical and lumbar regions as well as the dorsal and ventral sides of the spinal cord). FINDINGS Although the obtained Young's moduli exhibited no considerable difference between the aforementioned anatomical sites, our results suggested that the wrinkles structurally formed along the longitudinal direction would relieve stress concentration on the dural surface under in vivo and supraphysiological conditions, enabling mechanical protection of the dural tissue from a blunt impact force that was externally applied to the spine. INTERPRETATION This study provides fundamental data that can be used for accurately predicting cerebrospinal fluid leakage due to blunt impact trauma.
Collapse
Affiliation(s)
- Atsutaka Tamura
- Department of Mechanical and Aerospace Engineering, Graduate School of Engineering, Tottori University, Japan.
| | - Chikano Sakaue
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Japan
| |
Collapse
|
6
|
Madden LR, Graham RD, Lempka SF, Bruns TM. Multiformity of extracellular microelectrode recordings from Aδ neurons in the dorsal root ganglia: a computational modeling study. J Neurophysiol 2024; 131:261-277. [PMID: 38169334 PMCID: PMC11305647 DOI: 10.1152/jn.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Microelectrodes serve as a fundamental tool in electrophysiology research throughout the nervous system, providing a means of exploring neural function with a high resolution of neural firing information. We constructed a hybrid computational model using the finite element method and multicompartment cable models to explore factors that contribute to extracellular voltage waveforms that are produced by sensory pseudounipolar neurons, specifically smaller A-type neurons, and that are recorded by microelectrodes in dorsal root ganglia. The finite element method model included a dorsal root ganglion, surrounding tissues, and a planar microelectrode array. We built a multicompartment neuron model with multiple trajectories of the glomerular initial segment found in many A-type sensory neurons. Our model replicated both the somatic intracellular voltage profile of Aδ low-threshold mechanoreceptor neurons and the unique extracellular voltage waveform shapes that are observed in experimental settings. Results from this model indicated that tortuous glomerular initial segment geometries can introduce distinct multiphasic properties into a neuron's recorded waveform. Our model also demonstrated how recording location relative to specific microanatomical components of these neurons, and recording distance from these components, can contribute to additional changes in the multiphasic characteristics and peak-to-peak voltage amplitude of the waveform. This knowledge may provide context for research employing microelectrode recordings of pseudounipolar neurons in sensory ganglia, including functional mapping and closed-loop neuromodulation. Furthermore, our simulations gave insight into the neurophysiology of pseudounipolar neurons by demonstrating how the glomerular initial segment aids in increasing the resistance of the stem axon and mitigating rebounding somatic action potentials.NEW & NOTEWORTHY We built a computational model of sensory neurons in the dorsal root ganglia to investigate factors that influence the extracellular waveforms recorded by microelectrodes. Our model demonstrates how the unique structure of these neurons can lead to diverse and often multiphasic waveform profiles depending on the location of the recording contact relative to microanatomical neural components. Our model also provides insight into the neurophysiological function of axon glomeruli that are often present in these neurons.
Collapse
Affiliation(s)
- Lauren R Madden
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Robert D Graham
- Department of Anesthesiology, Washington University, St. Louis, Missouri, United States
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Khurana D, Suresh A, Nayak R, Shetty M, Sarda RK, Knowles JC, Kim HW, Singh RK, Singh BN. Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dura mater alternatives. J Tissue Eng 2024; 15:20417314241228118. [PMID: 38343772 PMCID: PMC10858672 DOI: 10.1177/20417314241228118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/04/2025] Open
Abstract
The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.
Collapse
Affiliation(s)
- Dolphee Khurana
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ankitha Suresh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Nayak
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunath Shetty
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rohit Kumar Sarda
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| | - Rajendra K Singh
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Kurokawa R, Kurokawa M, Isshiki S, Harada T, Nakaya M, Baba A, Naganawa S, Kim J, Bapuraj J, Srinivasan A, Abe O, Moritani T. Dural and Leptomeningeal Diseases: Anatomy, Causes, and Neuroimaging Findings. Radiographics 2023; 43:e230039. [PMID: 37535461 DOI: 10.1148/rg.230039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Meningeal lesions can be caused by various conditions and pose diagnostic challenges. The authors review the anatomy of the meninges in the brain and spinal cord to provide a better understanding of the localization and extension of these diseases and summarize the clinical and imaging features of various conditions that cause dural and/or leptomeningeal enhancing lesions. These conditions include infectious meningitis (bacterial, tuberculous, viral, and fungal), autoimmune diseases (vasculitis, connective tissue diseases, autoimmune meningoencephalitis, Vogt-Koyanagi-Harada disease, neuro-Behçet syndrome, Susac syndrome, and sarcoidosis), primary and secondary tumors (meningioma, diffuse leptomeningeal glioneuronal tumor, melanocytic tumors, and lymphoma), tumorlike diseases (histiocytosis and immunoglobulin G4-related diseases), medication-induced diseases (immune-related adverse effects and posterior reversible encephalopathy syndrome), and other conditions (spontaneous intracranial hypotension, amyloidosis, and moyamoya disease). Although meningeal lesions may manifest with nonspecific imaging findings, correct diagnosis is important because the treatment strategy varies among these diseases. ©RSNA, 2023 Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Mariko Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Saiko Isshiki
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Taisuke Harada
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Moto Nakaya
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Shotaro Naganawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - John Kim
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Jayapalli Bapuraj
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Osamu Abe
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| |
Collapse
|
9
|
Risner V, Huang B, McCullagh K, Benefield T, Lee YZ. The Development and Application of a Cost-Effective Cervical Spine Phantom for Use in Fluoroscopically Guided Lateral C1-C2 Spinal Puncture Training. AJNR Am J Neuroradiol 2023; 44:873-878. [PMID: 37321858 PMCID: PMC10337607 DOI: 10.3174/ajnr.a7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE Lateral C1-C2 spinal punctures are uncommon procedures performed by radiologists for access to CSF and contrast injection when a lumbar approach is contraindicated and an alternate method of access becomes necessary. There are limited opportunities to learn and practice the technique. We aimed to develop and assess the efficacy of a low-cost, reusable cervical spine phantom for training in fluoroscopically guided lateral C1-C2 spinal puncture. MATERIALS AND METHODS The phantom was constructed with a cervical spine model, an outer tube representing the thecal sac, an inner balloon representing the spinal cord, and polyalginate to replicate soft tissue. The total cost of materials was approximately US $70. Workshops were led by neuroradiology faculty experienced in the procedure using the model under fluoroscopy. Survey questions were assessed on a 5-point Likert scale. Participants were given pre- and postsurveys assessing comfort, confidence, and knowledge of steps. RESULTS Twenty-one trainees underwent training sessions. There was significant improvement in comfort level (Δ: 2.00, SD: 1.00, P value < .001); confidence (Δ: 1.52 points, SD: 0.87, P value < .001); and knowledge (Δ: 2.19, SD: 0.93, P value < .001). Eighty-one percent of participants found the model "very helpful" (5/5 on Likert scale), and all participants were "very likely" to recommend this workshop to others. CONCLUSIONS This cervical phantom model is affordable and replicable and demonstrates training utility to prepare residents for performing lateral C1-C2 spinal puncture. This is a rare procedure, so the use of a phantom model before patient encounters is invaluable to resident education and training.
Collapse
Affiliation(s)
- V Risner
- From the Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - B Huang
- From the Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - K McCullagh
- From the Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - T Benefield
- From the Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Y Z Lee
- From the Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Garrudo FFF, Filippone G, Resina L, Silva JC, Barbosa F, Ferreira LFV, Esteves T, Marques AC, Morgado J, Ferreira FC. Production of Blended Poly(acrylonitrile): Poly(ethylenedioxythiophene):Poly(styrene sulfonate) Electrospun Fibers for Neural Applications. Polymers (Basel) 2023; 15:2760. [PMID: 37447406 DOI: 10.3390/polym15132760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids. PAN:PEDOT:PSS blends, prepared from PEDOT:PSS Clevios PH1000, were electrospun into fibers (PH1000) with a diameter of 515 ± 120 nm, which after being thermally annealed (PH1000 24H) and treated with heated sulfuric acid (PH1000 H2SO4), resulted in fibers with diameters of 437 ± 109 and 940 ± 210 nm, respectively. The fibers obtained over the stepwise process were characterized through infra-red/Raman spectroscopy and cyclic voltammetry. The final fiber meshes showed enhanced electroconductivity (3.2 × 10-3 S cm-1, four-points-assay). Fiber meshes biocompatibility was evaluated using fibroblasts and neural stem cells (NSCs) following, respectively, the ISO10993 guidelines and standard adhesion/proliferation assay. NSCs cultured on PH1000 H2SO4 fibers presented normal morphology and high proliferation rates (0.37 day-1 vs. 0.16 day-1 for culture plate), indicating high biocompatibility for NSCs. Still, the low initial NSC adhesion of 7% calls for improving seeding methodologies. PAN:PEDOT:PSS fibers, here successful produced for the first time, have potential applications in neural tissue engineering and soft electronics.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Giulia Filippone
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Resina
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - João C Silva
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Barbosa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís F V Ferreira
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Teresa Esteves
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Clara Marques
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Slot EMH, Bergmann W, Kinaci A, de Boer B, Moayeri N, Redegeld S, van Thoor S, van Doormaal TPC. Histological and magnetic resonance imaging assessment of Liqoseal in a spinal in vivo pig model. Animal Model Exp Med 2023; 6:74-80. [PMID: 36547216 PMCID: PMC9986228 DOI: 10.1002/ame2.12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Liqoseal (Polyganics, B.V.) is a dural sealant patch for preventing postoperative cerebrospinal fluid (CSF) leakage. It has been extensively tested preclinically and CE (Conformité Européenne) approved for human use after a first cranial in-human study. However, the safety of Liqoseal for spinal application is still unknown. The aim of this study was to assess the safety of spinal Liqoseal application compared with cranial application using histology and magnetic resonance imaging characteristics. METHODS Eight female Dutch Landrace pigs underwent laminectomy, durotomy with standard suturing and Liqoseal application. Three control animals underwent the same procedure without sealant application. The histological characteristics and imaging characteristics of animals with similar survival times were compared to data from a previous cranial porcine model. RESULTS Similar foreign body reactions were observed in spinal and cranial dura. The foreign body reaction consisted of neutrophils and reactive fibroblasts in the first 3 days, changing to a chronic granulomatous inflammatory reaction with an increasing number of macrophages and lymphocytes and the formation of a fibroblast layer on the dura by day 7. Mean Liqoseal plus dura thickness reached a maximum of 1.2 mm (range 0.7-2.0 mm) at day 7. CONCLUSION The spinal dural histological reaction to Liqoseal during the first 7 days was similar to the cranial dural reaction. Liqoseal did not swell significantly in both application areas over time. Given the current lack of a safe and effective dural sealant for spinal application, we propose that an in-human safety study of Liqoseal is the logical next step.
Collapse
Affiliation(s)
- Emma M H Slot
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wilhelmina Bergmann
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ahmet Kinaci
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart de Boer
- Department of Neurosurgery, Elizabeth TweeSteden ziekenhuis, Tilburg, the Netherlands
| | - Nizar Moayeri
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Tristan P C van Doormaal
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Cavelier S, Quarrington RD, Jones CF. Tensile properties of human spinal dura mater and pericranium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:4. [PMID: 36586044 PMCID: PMC9805418 DOI: 10.1007/s10856-022-06704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Autologous pericranium is a promising dural graft material. An optimal graft should exhibit similar mechanical properties to the native dura, but the mechanical properties of human pericranium have not been characterized, and studies of the biomechanical performance of human spinal dura are limited. The primary aim of this study was to measure the tensile structural and material properties of the pericranium, in the longitudinal and circumferential directions, and of the dura in each spinal region (cervical, thoracic and lumbar) and in three directions (longitudinal anterior and posterior, and circumferential). The secondary aim was to determine corresponding constitutive stress-strain equations using a one-term Ogden model. A total of 146 specimens were tested from 7 cadavers. Linear regression models assessed the effect of tissue type, region, and orientation on the structural and material properties. Pericranium was isotropic, while spinal dura was anisotropic with higher stiffness and strength in the longitudinal than the circumferential direction. Pericranium had lower strength and modulus than spinal dura across all regions in the longitudinal direction but was stronger and stiffer than dura in the circumferential direction. Spinal dura and pericranium had similar strain at peak force, toe, and yield, across all regions and directions. Human pericranium exhibits isotropic mechanical behavior that lies between that of the longitudinal and circumferential spinal dura. Further studies are required to determine if pericranium grafts behave like native dura under in vivo loading conditions. The Ogden parameters reported may be used for computational modeling of the central nervous system. Graphical abstract.
Collapse
Affiliation(s)
- Sacha Cavelier
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| |
Collapse
|
13
|
Yoshii T, Hirai T, Egawa S, Hashimoto M, Matsukura Y, Inose H, Sanjo N, Yokota T, Okawa A. Case Report: Dural Dissection With Ventral Spinal Fluid-Filled Collection in Superficial Siderosis: Insights Into the Pathology From Anterior-Approached Surgical Cases. Front Neurol 2022; 13:919280. [PMID: 35911908 PMCID: PMC9326050 DOI: 10.3389/fneur.2022.919280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Superficial siderosis (SS) of the central nervous system is a rare disease caused by chronic and repeated hemorrhages in the subarachnoid space. Recently, attention has been paid on the association of SS and dural defect with ventral fluid-filled collection in the spinal canal (VFCC). The pathophysiology of hemosiderin deposition in patients with SS and dural defects is still unclear. However, previous studies have suggested the possible mechanism: cerebrospinal fluid (CSF) leaks into the epidural space through the ventral dural defect, and repetitive bleeding occurs from the epidural vessels that circulate back to the subarachnoid space through the dural defect, leading to hemosiderin deposition on the surface of the brain, the central nerves, and the spinal cord. Previously, the surgical closure of dural defect via the posterior approach has been reported to be effective in arresting the continued subarachnoid bleeding and disease progression. Herein, we describe SS cases whose dural defects were repaired via the anterior approach. From the direct anterior approach to the ventral dural defect findings, we confirmed that the outer fibrous dura layer is intact, and the defect is localized in the inner thin layer. From the findings of this study, our proposed theory is that dural tear at the inner dural layer causes “dural dissection,” which is likely to occur between the outer fibrous layer and inner dural border cellular layer. Bleeding from the vessels between the inner and outer Line 39–40 dural layers seems to be the pathology of SS with dural defect.
Collapse
Affiliation(s)
- Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Toshitaka Yoshii
| | - Takashi Hirai
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Egawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motonori Hashimoto
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Matsukura
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Sanjo
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Li J, Tian J, Li C, Chen L, Zhao Y. A hydrogel spinal dural patch with potential anti-inflammatory, pain relieving and antibacterial effects. Bioact Mater 2022; 14:389-401. [PMID: 35386815 PMCID: PMC8964987 DOI: 10.1016/j.bioactmat.2022.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
CSFL caused by spinal dural defect is a common complication of spinal surgery, which need repair such as suture or sealants. However, low intracranial pressure symptoms, wound infection and prolonged hospital associated with pin-hole leakage or loose seal effect were often occurred after surgical suture or sealants repair. Stable, pressure resistance and high viscosity spinal dural repair patch in wet environment without suture or sealants was highly needed. Herein, a bioactive patch composed of alginate and polyacrylamide hydrogel matrix cross-linked by calcium ions, and chitosan adhesive was proposed. This fabricated patch exhibits the capabilities of promoting defect closure and good tight seal ability with the bursting pressure is more than 790 mm H2O in wet environment. In addition, the chitosan adhesive layer of the patch could inhibit the growth of bacterial in vitro, which is meaningful for the postoperative infection. Furthermore, the patch also significantly reduced the expression of GFAP, IBA-1, MBP, TNF-α, and COX-2 in early postoperative period in vivo study, exerting the effects of anti-inflammatory, analgesic and adhesion prevention. Thus, the bioactive patch expected to be applied in spinal dural repair with the good properties of withstanding high pressure, promoting defect closure and inhibiting postoperative infection. A self-adhesive spinal dural patch that can be applied directly by pressing. A spinal dural patch maintains more than 790 mm H2O sealing pressure in a wet environment. A spinal dural patch with potential anti-inflammatory, analgesic and anti-bacterial properties.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxu Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author.
| |
Collapse
|
15
|
Subdural neural interfaces for long-term electrical recording, optical microscopy and magnetic resonance imaging. Biomaterials 2021; 281:121352. [PMID: 34995902 DOI: 10.1016/j.biomaterials.2021.121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023]
Abstract
Though commonly used, metal electrodes are incompatible with brain tissues, often leading to injury and failure to achieve long-term implantation. Here we report a subdural neural interface of hydrogel functioning as an ionic conductor, and elastomer as a dielectric. We demonstrate that it incurs a far less glial reaction and less cerebrovascular destruction than a metal electrode. Using a cat model, the hydrogel electrode was able to record electrical signals comparably in quality to a metal electrode. The hydrogel-elastomer neural interface also readily facilitated multimodal functions. Both the hydrogel and elastomer are transparent, enabling in vivo optical microscopy. For imaging, cerebral vessels and calcium signals were imaged using two-photon microscopy. The new electrode is compatible with magnetic resonance imaging and does not cause artifact images. Such a new multimodal neural interface could represent immediate opportunity for use in broad areas of application in neuroscience research and clinical neurology.
Collapse
|
16
|
Cavelier S, Quarrington RD, Jones CF. Mechanical properties of porcine spinal dura mater and pericranium. J Mech Behav Biomed Mater 2021; 126:105056. [PMID: 34953436 DOI: 10.1016/j.jmbbm.2021.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The objective of this study was to characterize and compare the mechanical properties of porcine pericranium and spinal dura mater, to evaluate the mechanical suitability of pericranium as a dural graft. METHOD Eighty-eight spinal dura (cervical, thoracic, and lumbar regions, in ventral longitudinal, dorsal longitudinal and circumferential orientations) and eighteen pericranium samples (ventral-dorsal, and lateral orientations) from four pigs, were harvested and subjected to uniaxial loading while hydrated. The stiffness, strain at toe-linear regions transition, strain at linear-yield regions transition and other structural and mechanical properties were measured. Stress-strain curves were fitted to a one-term Ogden model and Ogden parameters were calculated. Linear regression models with cluster-robust standard errors were used to assess the effect of region and orientation on material and structural properties. RESULTS Both spinal dura and pericranium exhibited distinct anisotropy and were stiffer in the longitudinal direction. The tissues exhibited structural and mechanical similarities especially in terms of stiffness and strains in the linear region. Stiffness ranged from 1.28 to 5.32 N/mm for spinal dura and 2.42-3.90 N/mm for pericranium. In the circumferential and longitudinal directions, the stiffness of spinal dura specimens was statistically similar to that of pericranium in the same orientation. The strain at the upper bound of the linear region of longitudinal pericranium (28.0%) was statistically similar to that of any spinal dura specimens (24.4-32.9%). CONCLUSIONS Autologous pericranium has advantageous physical properties for spinal duraplasty. The present study demonstrated that longitudinally oriented pericranium is mechanically compatible with spinal duraplasty procedures. Autologous pericranium grafts will likely support the mechanical loads transmitted from the spinal dura, but further biomechanical analyses are required to study the effect of the lower yield strain of circumferential pericranium compared to spinal dura. Finally, the Ogden parameters calculated for pericranium, and the spinal dura at each spinal level, will be useful for computational models incorporating these soft tissues.
Collapse
Affiliation(s)
- S Cavelier
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Department of Mechanical Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, QC, H3A 0C3, Canada
| | - R D Quarrington
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - C F Jones
- Spinal Research Group & Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
17
|
Bereźniak M, Palczewski P, Czerwiński J, Deręgowska-Cylke M, Gołębiowski M. Intracranial Transthecal Fat Migration After a Sacral Fracture: 2 Case Reports. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932760. [PMID: 34637425 PMCID: PMC8522689 DOI: 10.12659/ajcr.932760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The presence of fat droplets within the subarachnoid space is an uncommon finding, which is almost exclusively associated with a ruptured dermoid cyst. In a trauma setting, transthecal migration of fat droplets is an extremely rare occurrence. We present 2 case reports of intracranial transthecal migration of fatty bone marrow after sacral fractures. CASE REPORT Both patients presented to the Emergency Department (ED) after falls from a standing height. The first patient, an 84-year-old woman, suffered a stable sacral fracture extending into a large meningeal cyst within the right S2 foramen. Her initial neurological assessment and computed tomography (CT) of the head were unremarkable. As the fracture did not require surgical treatment, she was discharged home and prescribed bed rest, analgesics, and venous thromboembolism prophylaxis. Three days after the injury, she was readmitted to the ED with a mild headache, dizziness, and an episode of nausea and vomiting. A follow-up head CT revealed fat droplets in the subarachnoid space and lateral ventricles. After successful symptomatic treatment, she was discharged home in good general condition. The second patient, a 60-year-old man, underwent a head CT for a scalp hematoma, which revealed fat droplets in the 3rd ventricle and right lateral ventricle. The pelvic CT revealed a large sacral meningeal cyst with microfractures in its wall. He was discharged home on the same day and prescribed bed rest and analgesics. CONCLUSIONS The detection of intracranial intrathecal fat droplets in association with a specific trauma mechanism should initiate the search for a sacral fracture.
Collapse
Affiliation(s)
- Marlena Bereźniak
- 1st Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Palczewski
- 1st Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Czerwiński
- Department of Emergency Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Gołębiowski
- 1st Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Campbell B, Anderson Z, Han D, Nebor I, Forbes J, Steckl AJ. Electrospinning of cyanoacrylate tissue adhesives for human dural repair in endonasal surgery. J Biomed Mater Res B Appl Biomater 2021; 110:660-667. [PMID: 34596966 DOI: 10.1002/jbm.b.34944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Cerebral spinal fluid (CSF) leakage is a major postoperative complication requiring surgical intervention, resulting in prolonged healing and higher costs. Biocompatible polymers, such as cyanoacrylates, are currently used as tissue adhesives for closing surgical defects and incisions. Coupling these polymers with nanofiber technology shows promising results for generating nanofibers used in wound care, tissue engineering, and drug delivery. Fiber membranes formed by electrospinning of n-octyl-2-cyanoacrylate (NOCA) are investigated for in situ dural closures after neurosurgery to improve the quality of the closure and prevent post-surgical CSF leaks. Electrospun NOCA fiber membranes showed significantly higher sealing capabilities of defects in human dura, with an average burst pressure of 149 mmHg, compared with that of an FDA-approved common dural sealant that had an average burst pressure of 37 mmHg. In this study, microfabrication of NOCA fibers demonstrates a promising technique for dural repairs.
Collapse
Affiliation(s)
- Brooke Campbell
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zoe Anderson
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daewoo Han
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ivanna Nebor
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonathan Forbes
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew J Steckl
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Garnon J, Olivier I, Lecigne R, Fesselier M, Dalili D, Auloge P, Cazzato RL, Jennings J, Koch G, Gangi A. Safety of Thermosensor Insertion in the Midline of the Spinal Canal Anterior to the Dura: A Cadaveric Study. Cardiovasc Intervent Radiol 2021; 44:1986-1993. [PMID: 34523021 DOI: 10.1007/s00270-021-02962-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the safety of the insertion of a blunt-tip thermosensor inside the anterior epidural space using the trans-osseous route in the dorsal spine and the double oblique trans-foraminal approach in the lumbar spine. MATERIALS AND METHODS A total of 10 attempts were made on a 91 years old human specimen. Thermosensors were inserted under fluoroscopic guidance in the anterior part of the spinal canal using various oblique angulations. Surgical dissection was then performed to identify the position of the thermosensor and look for any injury to the dural sac or the spinal cord/cauda equina. RESULTS Nine thermosensors could be deployed successfully in the anterior part of the spinal canal from Th8 to L5 while one attempt (L5 level) failed due to a technical issue on the coaxial needle. On anteroposterior projection, the tip of thermosensor relative to the midline was classified as centered in 5 cases, overcrossing in 3 cases and undercrossing in 1 case. At surgical dissection, the tip of the thermosensor was epidural posterior to the posterior longitudinal ligament in 8 cases and anterior to the longitudinal ligament in 1 case (the undercrossing case). There were 3 tears to the dura, all in the overcrossing group. There was no case of injury to the spinal cord/cauda equina. CONCLUSION Insertion of a thin blunt-tip thermosensor with optimal angulation leads to an epidural post-ligamentous position on the midline without damage to the dural sac. The blunt-tip did not prevent from dural tearing should the insertion overcross the midline.
Collapse
Affiliation(s)
- Julien Garnon
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France.
| | - Irène Olivier
- Department of Neurosurgery, Hôpital de Hautepierre, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| | - Romain Lecigne
- Department of Radiology, Hôpital Sud, 16, Boulevard de Bulgarie, 35200, Rennes, France
| | - Melissa Fesselier
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| | - Danoob Dalili
- Nuffield Orthopaedic Centre, King's College Hospital NHS Foundation Trust, Strand, London, WC2R 2LS, UK
| | - Pierre Auloge
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| | - Roberto Luigi Cazzato
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| | - Jack Jennings
- Mallinckrodt Institute of Radiology, 510 South Kingshighway Boulevard, St Louis, MO, 63110, USA
| | - Guillaume Koch
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| | - Afshin Gangi
- Department of Interventional Radiology, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67096, Strasbourg Cedex, France
| |
Collapse
|
20
|
Non-Invasive Low Pulsed Electrical Fields for Inducing BBB Disruption in Mice-Feasibility Demonstration. Pharmaceutics 2021; 13:pharmaceutics13020169. [PMID: 33513968 PMCID: PMC7911365 DOI: 10.3390/pharmaceutics13020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/30/2022] Open
Abstract
The blood–brain barrier (BBB) is a major hurdle for the treatment of central nervous system disorders, limiting passage of both small and large therapeutic agents from the blood stream into the brain. Thus, means for inducing BBB disruption (BBBd) are urgently needed. Here, we studied the application of low pulsed electrical fields (PEFs) for inducing BBBd in mice. Mice were treated by low PEFs using electrodes pressed against both sides of the skull (100–400 square 50 µs pulses at 4 Hz with different voltages). BBBd as a function of treatment parameters was evaluated using MRI-based treatment response assessment maps (TRAMs) and Evans blue extravasation. A 3D numerical model of the mouse brain and electrodes was constructed using finite element software, simulating the electric fields distribution in the brain and ensuring no significant temperature elevation. BBBd was demonstrated immediately after treatment and significant linear regressions were found between treatment parameters and the extent of BBBd. The maximal induced electric field in the mice brains, calculated by the numerical model, ranged between 62.4 and 187.2 V/cm for the minimal and maximal applied voltages. These results demonstrate the feasibility of inducing significant BBBd using non-invasive low PEFs, well below the threshold for electroporation.
Collapse
|
21
|
Bordoni B, Walkowski S, Ducoux B, Tobbi F. The Cranial Bowl in the New Millennium and Sutherland's Legacy for Osteopathic Medicine: Part 1. Cureus 2020; 12:e10410. [PMID: 33062527 PMCID: PMC7550223 DOI: 10.7759/cureus.10410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
A theoretical model that does not evolve with new information deriving from scientific research, by changing the assumptions from which it was born, becomes a philosophy; the scientist becomes a scholarch. Cranial manual osteopathic medicine is very controversial, although it is commonly practiced, from the clinician to the nonmedical health worker. The article, divided into two parts, reviews the assumptions with which the cranial model was created, highlighting the scientific innovations and new anatomical-physiological reflections. In the first part we will review the synthesis and movement of cerebrospinal fluid (CSF), the movement of the central and peripheral nervous system; we will highlight the mechanical characteristics of the meninges. The aim of the article is to highlight the need to renew the existing cranial model.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Ohio, USA
| | - Bruno Ducoux
- Osteopathy, Formation Recherche Osteopathie Prévention, Bordeaux, FRA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| |
Collapse
|
22
|
Zander HJ, Graham RD, Anaya CJ, Lempka SF. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. J Neural Eng 2020; 17:036019. [PMID: 32365340 PMCID: PMC8351789 DOI: 10.1088/1741-2552/ab8fc4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. Computational models represent a valuable tool to study the potential mechanisms of action of SCS and to optimize the design and implementation of SCS technologies. However, it is imperative that these computational models include the appropriate level of detail to accurately predict the neural response to SCS and to correlate model predictions with clinical outcomes. Therefore, the goal of this study was to investigate several anatomic and technical factors that may affect model-based predictions of neural activation during thoracic SCS. APPROACH We developed computational models that consisted of detailed finite element models of the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We positioned multicompartment models of sensory axons within the spinal cord to calculate the activation threshold for each sensory axon. We then investigated how activation thresholds changed as a function of several anatomical variables (e.g. spine geometry, dorsal rootlet anatomy), stimulation type (i.e. voltage-controlled vs. current-controlled), electrode impedance, lead position, lead type, and electrical properties of surrounding tissues (e.g. dura conductivity, frequency-dependent conductivity). MAIN RESULTS Several anatomic and modeling factors produced significant percent differences or errors in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced significant changes in activation thresholds for voltage-controlled stimulation (38% to 51%), but had little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing the dura conductivity also produced significant differences in activation thresholds. SIGNIFICANCE This study demonstrates several anatomic and technical factors that can affect the neural response to SCS. These factors should be considered in clinical implementation and in future computational modeling studies of thoracic SCS.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | |
Collapse
|
23
|
Stumpf TR, Tang L, Kirkwood K, Yang X, Zhang J, Cao X. Production and evaluation of biosynthesized cellulose tubes as promising nerve guides for spinal cord injury treatment. J Biomed Mater Res A 2020; 108:1380-1389. [DOI: 10.1002/jbm.a.36909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Taisa R. Stumpf
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Linda Tang
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Kathlyn Kirkwood
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology Haikou China
| | | | - Xudong Cao
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
- Ottawa‐Carleton Institute of Biomedical Engineering Ottawa Ontario Canada
| |
Collapse
|
24
|
Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM, Artzi N, Lee Y. Overcoming the translational barriers of tissue adhesives. NATURE REVIEWS MATERIALS 2020; 5:310-329. [DOI: 10.1038/s41578-019-0171-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/06/2025]
|
25
|
Kinaci A, Bergmann W, Bleys RL, van der Zwan A, van Doormaal TP. Histologic Comparison of the Dura Mater among Species. Comp Med 2020; 70:170-175. [PMID: 32014084 DOI: 10.30802/aalas-cm-19-000022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biocompatibility, biodegradation, feasibility, and efficacy of medical devices like dural sealants and substitutes are often evaluated in various animal models. However, none of these studies explain the rationale for choosing a particular species, and a systematic interspecies comparison of the dura is not available. We hypothesized that histologic characteristics of the dura would differ among species. We systematically investigated basic characteristics of the dura, including thickness, composition, and fibroblast orientation of the dura mater, in 34 samples representing 10 animal species and compared these features with human dura by using hematoxylin and eosin staining and light microscopy. Dura showed many similarities between species in terms of composition. In all species, dura consisted of at least one fibrovascular layer, which contained collagen, fibroblasts, and blood vessels, and a dural border cell layer beneath the fibrovascular layer. Differences between species included the number of fibrovascular layers, fibroblast orientation, and dural thickness. Human dura was the thickest (564 μm) followed by equine (313 μm), bovine (311 μm), and porcine (304 μm) dura. Given the results of this study and factors such as gross anatomy, feasibility, housing, and ethical considerations, we recommend the use of a porcine model for dural research, especially for in vivo studies.
Collapse
Affiliation(s)
- Ahmet Kinaci
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands;,
| | - Wilhelmina Bergmann
- Division ofPathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Albert van der Zwan
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands
| | - Tristan Pc van Doormaal
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands; Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Wilson S, Fredericks DC, Safayi S, DeVries-Watson NA, Holland MT, Nagel SJ, Gillies GT, Howard MA. Ovine Hemisection Model of Spinal Cord Injury. J INVEST SURG 2019; 34:380-392. [DOI: 10.1080/08941939.2019.1639860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - D. C. Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S. Safayi
- Graduate College, Rush University, Chicago, IL, USA
| | - N. A. DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - M. T. Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S. J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - G. T. Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - M. A. Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
27
|
Anderson DJ, Kipke DR, Nagel SJ, Lempka SF, Machado AG, Holland MT, Gillies GT, Howard MA, Wilson S. Intradural Spinal Cord Stimulation: Performance Modeling of a New Modality. Front Neurosci 2019; 13:253. [PMID: 30941012 PMCID: PMC6434968 DOI: 10.3389/fnins.2019.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction: Intradural spinal cord stimulation (SCS) may offer significant therapeutic benefits for those with intractable axial and extremity pain, visceral pain, spasticity, autonomic dysfunction and related disorders. A novel intradural electrical stimulation device, limited by the boundaries of the thecal sac, CSF and spinal cord was developed to test this hypothesis. In order to optimize device function, we have explored finite element modeling (FEM). Methods: COMSOL®Multiphysics Electrical Currents was used to solve for fields and currents over a geometric model of a spinal cord segment. Cathodic and anodic currents are applied to the center and tips of the T-cross component of the electrode array to shape the stimulation field and constrain charge-balanced cathodic pulses to the target area. Results: Currents from the electrode sites can move the effective stimulation zone horizontally across the cord by a linear step method, which can be diversified considerably to gain greater depth of penetration relative to standard epidural SCS. It is also possible to prevent spread of the target area with no off-target action potential. Conclusion: Finite element modeling of a T-shaped intradural spinal cord stimulator predicts significant gains in field depth and current shaping that are beyond the reach of epidural stimulators. Future studies with in vivo models will investigate how this approach should first be tested in humans.
Collapse
Affiliation(s)
- David J Anderson
- NeuroNexus Technologies, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Daryl R Kipke
- NeuroNexus Technologies, Ann Arbor, MI, United States
| | - Sean J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Mathew A Howard
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| |
Collapse
|
28
|
Dasgupta K, Jeong J. Developmental biology of the meninges. Genesis 2019; 57:e23288. [PMID: 30801905 DOI: 10.1002/dvg.23288] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
The meninges are membranous layers surrounding the central nervous system. In the head, the meninges lie between the brain and the skull, and interact closely with both during development. The cranial meninges originate from a mesenchymal sheath on the surface of the developing brain, called primary meninx, and undergo differentiation into three layers with distinct histological characteristics: the dura mater, the arachnoid mater, and the pia mater. While genetic regulation of meningeal development is still poorly understood, mouse mutants and other models with meningeal defects have demonstrated the importance of the meninges to normal development of the calvaria and the brain. For the calvaria, the interactions with the meninges are necessary for the progression of calvarial osteogenesis during early development. In later stages, the meninges control the patterning of the skull and the fate of the sutures. For the brain, the meninges regulate diverse processes including cell survival, cell migration, generation of neurons from progenitors, and vascularization. Also, the meninges serve as a stem cell niche for the brain in the postnatal life. Given these important roles of the meninges, further investigation into the molecular mechanisms underlying meningeal development can provide novel insights into the coordinated development of the head.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| | - Juhee Jeong
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| |
Collapse
|
29
|
Nagel SJ, Helland L, Woodroffe RW, Frizon LA, Holland MT, Machado AG, Yamaguchi S, Gillies GT, Howard MA, Wilson S. Durotomy Surrogate and Seals for Intradural Spinal Cord Stimulators: Apparatus and Review of Clinical Methods and Materials. Neuromodulation 2019; 22:916-929. [DOI: 10.1111/ner.12913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/14/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sean J. Nagel
- Neurological SurgeryCleveland Clinic Cleveland, OH USA
| | - Logan Helland
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| | - Royce W. Woodroffe
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| | | | - Marshall T. Holland
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| | | | - Satoshi Yamaguchi
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| | - George T. Gillies
- Department of Mechanical and Aerospace EngineeringUniversity of Virginia Charlottesville VA USA
| | - Matthew A. Howard
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| | - Saul Wilson
- Department of NeurosurgeryUniversity of Iowa Hospitals and Clinics Iowa City IA USA
| |
Collapse
|
30
|
Wilson S, Nagel SJ, Frizon LA, Fredericks DC, DeVries-Watson NA, Gillies GT, Howard MA. The Hemisection Approach in Large Animal Models of Spinal Cord Injury: Overview of Methods and Applications. J INVEST SURG 2018; 33:240-251. [PMID: 30380340 DOI: 10.1080/08941939.2018.1492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Translating basic science research into a safe and effective therapy for spinal cord injury (SCI) requires suitable large animal models for testing both implantable devices and biologic approaches to better approximate human anatomy and function. Hemisection lesions, routinely used for investigational purposes in small animals, are less frequently described in large animals that might be appropriate for translational studies. Size constraints of small animals (mice and rats) limits the predictability of the findings when scaled up. Our goal is to review the status of hemisection SCI in large animals across species and time to prepare for the testing of a novel intradural spinal cord stimulation device for control of spasticity in an ovine model. Methods and Results: We surveyed the literature on hemisection in quadrupeds and nonhuman primates, and catalogued the species, protocols and outcomes of the experimental work in this field. Feline, lapine, canine, simian, porcine, ovine and bovine models were the primary focal points. There is a consistent body of literature reporting use of the hemisection approach in large animals, but with differences in surgical technique depending on the goals and nature of the individual studies. While the injuries are not always consistent, the experimental variability is generally lower than that of the contusion-based approach. In general, as the body size of the animal increases, animal care requirements and the associated costs follow. In most cases, this is inversely correlated with the number of animals used in hemisection models. Conclusions: The hemisection approach to modeling SCI is straightforward compared with other methods such as the contusive impact and enables the transection of isolated ascending and descending tracts and segment specific cell bodies. This has certain advantages in models investigating post-injury axonal regrowth. However, this approach is not generally in line with the patho-physiologies encountered in SCI patients. Even so, the ability to achieve more control over the level of injury makes it a useful adjunct to contusive and ischemic approaches, and suggests a useful role in future translational studies.
Collapse
Affiliation(s)
- S Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - L A Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - D C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - N A DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - G T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - M A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|