1
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Lu W, Cheng S, Xu J, Xiao Z, Yu Y, Xie Q, Fang Y, Chen R, Shen B, Xie Y, Ding X. Roles of AhR/CYP1s signaling pathway mediated ROS production in uremic cardiomyopathy. Toxicol Lett 2024; 396:81-93. [PMID: 38670245 DOI: 10.1016/j.toxlet.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Wei Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Shi Cheng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Zilong Xiao
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiwen Xie
- Department of Nephrology, Xiamen Branch, Zhongshan hospital, Fudan University; Nephrology, China; Clinical Quality Control Center of Xiamen, No.668 Jinhu Road, Xiamen, Fujian 361006, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Ruizhen Chen
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Yeqing Xie
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| |
Collapse
|
3
|
Xia G, Zhou G, Jiang W, Chu C, Wang L, Moorthy B. Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Induced Carcinogenesis and Tumorigenesis by Omega-3 Fatty Acids in Mice In Vivo. Int J Mol Sci 2024; 25:3781. [PMID: 38612589 PMCID: PMC11012139 DOI: 10.3390/ijms25073781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.
Collapse
Affiliation(s)
- Guobin Xia
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Guodong Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Childrens’ Hospital, Houston, TX 77030, USA; (G.X.); (W.J.); (C.C.); (L.W.)
| |
Collapse
|
4
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Hesperetin protects hippocampal neurons from the neurotoxicity of Aflatoxin B1 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115782. [PMID: 38056121 DOI: 10.1016/j.ecoenv.2023.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
6
|
Cai J, Yi L, Xia Z, Huang X, Yang M, Zhao Z, Gao C, Yang H, Zhang J, Peng Z, Qiu D. Design, Synthesis, and Evaluation of 18F-Labeling CYP1B1 PET Tracer Based on 2-Phenylquinazolin. Bioorg Med Chem Lett 2023; 96:129533. [PMID: 37865282 DOI: 10.1016/j.bmcl.2023.129533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Cytochrome P450 (CYP)1B1 has been identified to be specifically overexpressed in several solid tumors, thus it's a potential target for the detection of tumors. Based on the 2-Phenylquinazolin CYP1B1 inhibitors, we designed and synthesized several positron emission computed tomography (PET) imaging probes targeting CYP1B1. Through IC50 determinations, most of these probes exhibited good affinity and selectivity to CYP1B1. Considering their affinity, solubility, and their 18F labeling methods, we chose compound 5c as the best candidate. The 18F radiolabeling of [18F] 5c was easy to handle with good radiolabeling yield and radiochemical purity. In vitro and in vivo stability study indicated that probe [18F]5c has good stability. In cell binding assay, [18F]5c could be specifically taken up by tumor cells, especially HCT-116 cells. Although the tumor-blood (T/B) and tumor-muscle (T/M) values and PET imaging results were unsatisfied, it is still possible to develop PET probes targeting CYP1B1 by structural modification on the basis of 5c in the future.
Collapse
Affiliation(s)
- Jiajing Cai
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lan Yi
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Huang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Meixian Yang
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghuan Zhao
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chenyang Gao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Hengyi Yang
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jiayuan Zhang
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhiping Peng
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dachuan Qiu
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
8
|
Luo A, Wu Z, Li S, McReynolds CB, Wang D, Liu H, Huang C, He T, Zhang X, Wang Y, Liu C, Hammock BD, Hashimoto K, Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J Transl Med 2023; 21:71. [PMID: 36732752 PMCID: PMC9896784 DOI: 10.1186/s12967-023-03917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1β (IL-1β) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.
Collapse
Affiliation(s)
- Ailin Luo
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shan Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Cindy B. McReynolds
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Di Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Hanyu Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061 China
| | - Teng He
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xinying Zhang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yuanyuan Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Cunming Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Bruce D. Hammock
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Maier AM, Huth K, Alessandrini F, Schnautz B, Arifovic A, Riols F, Haid M, Koegler A, Sameith K, Schmidt-Weber CB, Esser-von-Bieren J, Ohnmacht C. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages. Front Immunol 2023; 14:1157373. [PMID: 37081886 PMCID: PMC10110899 DOI: 10.3389/fimmu.2023.1157373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.
Collapse
Affiliation(s)
- Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Huth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anela Arifovic
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Koegler
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
10
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
12
|
Yu Y, Yang W, Yu T, Zhao X, Zhou Z, Yu Y, Xiong L, Yang H, Bilotta AJ, Yao S, Golovko G, Plasencia A, Quintana FJ, Zhou L, Li Y, Cong Y. Glucose promotes regulatory T cell differentiation to maintain intestinal homeostasis. iScience 2022; 25:105004. [PMID: 36093065 PMCID: PMC9460814 DOI: 10.1016/j.isci.2022.105004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Glucose, the critical energy source in the human body, is considered a potential risk factor in various autoimmune diseases when consumed in high amounts. However, the roles of glucose at moderate doses in the regulation of autoimmune inflammatory diseases and CD4+ T cell responses are controversial. Here, we show that while glucose at a high concentration (20% w/v) promotes intestinal inflammation, it suppresses colitis at a moderate dose (6% w/v), which increases the proportion of intestinal regulatory T (Treg) cells but does not affect effector CD4+ T cells. Glucose treatment promotes Treg cell differentiation but it does not affect Treg stability. Feeding glucose alters gut microbiota compositions, which are not involved in the glucose induction of Treg cells. Glucose promotes aryl hydrocarbon receptor (AhR) activation to induce Treg polarization. These findings reveal the different effects of glucose at different doses on the intestinal immune response.
Collapse
Affiliation(s)
- Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Hui Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anthony J. Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Wang Z, Chen D, Fan Q, Wu Z, Dong J, Cui J, Wang J, Xu T, Meng Q, Li S. Design, Synthesis and In Vivo Fluorescence Imaging Study of a Cytochrome P450 1B1 Targeted NIR Probe Containing a Chelator Moiety. Chembiochem 2022; 23:e202200268. [PMID: 35567365 DOI: 10.1002/cbic.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 (CYP) 1B1 has been found to be overexpressed specifically in tumor tissues at early stage, which makes it a potential cancer biomarker for molecular imaging of cancer. Multimodal imaging combines different imaging modalities and offers more comprehensive information. Thus, imaging probes bearing more than one kind of signal fragment have been extensively explored and displayed great promise. Herein, we developed a near infrared (NIR) probe with a chelator moiety targeting CYP1B1 by conjugating α-naphthoflavone (ANF) derivatives with both a NIR dye and a chelator for potential application in bimodal imaging. Enzymatic inhibitory studies demonstrated inhibitory activity against CYP1B1 and selectivity among CYP1 were successfully retained after chemical modification. Cell-based saturation study indicated nanomolar range binding affinity between the probe and CYP1B1 overexpressed cancer cells. In vitro competitive binding assay monitored by confocal microscopy revealed that the probe could specifically accumulate in tumor cells. In vivo and ex vivo imaging studies demonstrated the probe could effectively lighten up the tumor tissues as early as 2 hours post injection. Besides, the fluorescence was significantly blocked by co-injection of CYP1B1 inhibitor, which indicated the probe accumulation in tumor sites was due to specific binding towards CYP1B1.
Collapse
Affiliation(s)
- Zengtao Wang
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Dongmei Chen
- Shanghai Jiao Tong University, School of Pharmacy, Shanghai, CHINA
| | - Qiqi Fan
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Zhihao Wu
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jinyun Dong
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jiahua Cui
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jie Wang
- Shanghai Jiao Tong University, School of Medicine, CHINA
| | - Ting Xu
- Shanghai Jiao Tong University, School of Medicine, Shanghai, CHINA
| | - Qingqing Meng
- Shanghai Jiao Tong University, School of pharmacy, 800 Dongchuan Road, 200240, Shanghai, CHINA
| | - Shaoshun Li
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, China, 200240, shanghai, CHINA
| |
Collapse
|
14
|
Age- and Diet-Dependent Changes in Hepatic Lipidomic Profiles of Phospholipids in Male Mice: Age Acceleration in Cyp2b-Null Mice. J Lipids 2022; 2022:7122738. [PMID: 35391786 PMCID: PMC8983274 DOI: 10.1155/2022/7122738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Increases in traditional serum lipid profiles are associated with obesity, cancer, and cardiovascular disease. Recent lipidomic analysis has indicated changes in serum lipidome profiles, especially in regard to specific phosphatidylcholines, associated with obesity. However, little work has evaluated murine hepatic liver lipidomic profiles nor compared these profiles across age, high-fat diet, or specific genotypes, in this case the lack of hepatic Cyp2b enzymes. In this study, the effects of age (9 months old), high-fat diet (4.5 months old), and the loss of three primarily hepatic xeno- and endobiotic metabolizing cytochrome P450 (Cyp) enzymes, Cyp2b9, Cyp2b10, and Cyp2b13 (Cyp2b-null mice), on the male murine hepatic lipidome were compared. Hierarchical clustering and principal component analysis show that age perturbs hepatic phospholipid profiles and serum lipid markers the most compared to young mice, followed by a high-fat diet and then loss of Cyp2b. Several lipid biomarkers such as PC/PE ratios, PE 38 : 6, and LPC concentrations indicate greater potential for NAFLD and hypertension with mixed effects in Cyp2b-null mice(less NAFLD and greater hypertension-associated markers). Lipid profiles from older mice contain greater total and n-6 fatty acids than normal diet (ND)-fed young mice; however, surprisingly, young Cyp2b-null mice contain high n-6 : n-3 ratios. Overall, the lack of Cyp2b typically enhanced adverse physiological parameters observed in the older (9 mo) mice with increased weight gain combined with a deteriorating cholesterol profile, but not necessarily all phospholipid profiles were adversely perturbed.
Collapse
|
15
|
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 2022; 19:384-408. [PMID: 34876704 PMCID: PMC8891297 DOI: 10.1038/s41423-021-00791-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular metabolism orchestrates the intricate use of tissue fuels for catabolism and anabolism to generate cellular energy and structural components. The emerging field of immunometabolism highlights the importance of cellular metabolism for the maintenance and activities of immune cells. Macrophages are embryo- or adult bone marrow-derived leukocytes that are key for healthy tissue homeostasis but can also contribute to pathologies such as metabolic syndrome, atherosclerosis, fibrosis or cancer. Macrophage metabolism has largely been studied in vitro. However, different organs contain diverse macrophage populations that specialize in distinct and often tissue-specific functions. This context specificity creates diverging metabolic challenges for tissue macrophage populations to fulfill their homeostatic roles in their particular microenvironment and conditions their response in pathological conditions. Here, we outline current knowledge on the metabolic requirements and adaptations of macrophages located in tissues during homeostasis and selected diseases.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| | - Gillian Dunphy
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
16
|
Chai Y, Xu Y, Xia Z, Huang X, Zhang L, Jiang Z. Study on the effects of Zhuanggu Guanjie Pill, a modern Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114521. [PMID: 34390794 DOI: 10.1016/j.jep.2021.114521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuanggu Guanjie Pill (ZGGJP), a modern Chinese medicine formula, is composed of 12 herbs and has been used to treat osteoporosis in China for almost 30 years. However, no in vivo study of the influences of ZGGJP on the cytochrome P450 (CYP) activities have been reported. AIM OF THE STUDY The aim of this study was to evaluate the effects of ZGGJP on the activities and the mRNA expression of CYP enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A) and their corresponding nuclear receptor levels in rats. MATERIALS AND METHODS After 7 days oral treatment of ZGGJP at low- and high-dose, cocktail solution was given to rats. Blood samples were collected at series of time points. The plasma concentrations of probe drugs and their corresponding metabolites were determined by UPLC-MS/MS. The influence of ZGGJP on the activities of seven CYPs were evaluated the metabolic ratios (Cmax and AUC0-t) for metabolites/probe drugs. In addition, the effects of ZGGJP on the mRNA expression of CYPs and their corresponding nuclear receptors in rat liver were evaluated by real-time PCR. RESULTS ZGGJP showed significant inductive effects on CYP1A2 and CYP2B6 of both male and female rats. The influence of ZGGJP on CYP2C9 and CYP3A showed gender difference. ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but have no influence on the activities in male rats. ZGGJP had no effects on CYP2D6, CYP2C19 and CYP2E1. The mRNA expression results of CYPs were in accordance with the pharmacokinetic results. The mRNA expression levels of constitutive androstane receptor (CAR) and vitamin D receptor (VDR) were increased significantly in female rats at high dosage, but no significant changes were observed in male rats. CONCLUSION ZGGJP had inductive effects on CYP1A2 and CYP2B6 in both male and female rats. The results showed that ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but had no effect in male rats. This may suggest that the influence of ZGGJP on CYP2C9 and CYP3A exhibit gender difference. The inductive effects of ZGGJP on the activities of CYPs, exhibiting gender difference, may be regulated by CAR and VDR. Therefore, co-administration of ZGGJP with other drugs, especially using CYP2C9 and CYP3A substrates in females, may need dose adjustment to avoid herb-drug interaction.
Collapse
Affiliation(s)
- Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunxia Xu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyin Xia
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Zhu Q, Ma Y, Liang J, Wei Z, Li M, Zhang Y, Liu M, He H, Qu C, Cai J, Wang X, Zeng Y, Jiao Y. AHR mediates the aflatoxin B1 toxicity associated with hepatocellular carcinoma. Signal Transduct Target Ther 2021; 6:299. [PMID: 34373448 PMCID: PMC8352983 DOI: 10.1038/s41392-021-00713-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin exposure is a crucial factor in promoting the development of primary hepatocellular carcinoma (HCC) in individuals infected with the hepatitis virus. However, the molecular pathways leading to its bioactivation and subsequent toxicity in hepatocytes have not been well-defined. Here, we carried out a genome-wide CRISPR-Cas9 genetic screen to identify aflatoxin B1 (AFB1) targets. Among the most significant hits was the aryl hydrocarbon receptor (AHR), a ligand-binding transcription factor regulating cell metabolism, differentiation, and immunity. AHR-deficient cells tolerated high concentrations of AFB1, in which AFB1 adduct formation was significantly decreased. AFB1 triggered AHR nuclear translocation by directly binding to its N-terminus. Furthermore, AHR mediated the expression of P450 induced by AFB1. AHR expression was also elevated in primary tumor sections obtained from AFB1-HCC patients, which paralleled the upregulation of PD-L1, a clinically relevant immune regulator. Finally, anti-PD-L1 therapy exhibited greater efficacy in HCC xenografts derived from cells with ectopic expression of AHR. These results demonstrated that AHR was required for the AFB1 toxicity associated with HCC, and implicate the immunosuppressive regimen of anti-PD-L1 as a therapeutic option for the treatment of AFB1-associated HCCs.
Collapse
Affiliation(s)
- Qing Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbo Liang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhewen Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Yixin Zeng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China. .,Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
21
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
22
|
Ye G, Gao H, Zhang X, Liu X, Chen J, Liao X, Zhang H, Huang Q. Aryl hydrocarbon receptor mediates benzo[a]pyrene-induced metabolic reprogramming in human lung epithelial BEAS-2B cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144130. [PMID: 33288249 DOI: 10.1016/j.scitotenv.2020.144130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbon exposure accelerates the initiation and progression of lung cancer through aryl hydrocarbon receptor (AHR) signaling. Metabolic reprogramming is a hallmark of cancer. However, how AHR reprograms metabolism related to the malignant transformation in of benzo[a]pyrene (BaP)-exposed lung cells remains unclear. After confirming that BaP exposure activated AHR signaling and relevant downstream factors and then promoted epithelial-mesenchymal transition, an untargeted metabolomics approach was employed to discover AHR-mediated metabolic reprogramming and potential therapeutic targets in BaP-exposed BEAS-2B cells. We found that 52 metabolites were significantly altered in BaP-exposed BEAS-2B cells and responsive to resveratrol (RSV) intervention. Pathway analysis revealed that 28 and 30 metabolic pathways were significantly altered in response to BaP exposure and RSV intervention, respectively. Notably, levels of most amino acids were significantly decreased, while those of most fatty acids were significantly increased in BaP-exposed BEAS-2B cells, and above changes were abolished by RSV intervention. Besides, levels of amino acids and fatty acids were highly correlated with those of many metabolites and AHR signaling upon BaP exposure and RSV intervention (the absolute values of Pearson correlation coefficients above 0.8). We further discovered a decrease in peroxisome proliferator-activated receptor (PPAR) A/G signaling and an increase in fatty acid import by the transporter FATP1 in BaP-exposed BEAS-2B cells. Furthermore, inhibition of AHR signaling by CH-223191 abolished BaP-induced repression of PPARA/G signaling and activation of FATP1 in BEAS-2B cells, demonstrating the regulatory role of AHR signaling in fatty acid accumulation via mediating PPARA/G-FATP1 signaling. These data suggested amino acid and fatty acid metabolism, AHR and PPAR-FATP1 signaling as potential therapeutic targets for intervening BaP-induced toxicity and related diseases. As far as we known, fatty acid accumulation and high correlations of AHR signaling with amino acid and fatty acid metabolism are novel phenomena discovered in BaP-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xu Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
23
|
Cano-Sancho G, Casas M. Interactions between environmental pollutants and dietary nutrients: current evidence and implications in epidemiological research. J Epidemiol Community Health 2020; 75:108-113. [PMID: 33023970 DOI: 10.1136/jech-2020-213789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 11/04/2022]
Abstract
Environmental pollutants and nutrients may be present in the same foodstuffs or dietary patterns; share internal mechanisms of transport, metabolism and cellular uptake; or target the same molecular signalling pathways and biological functions. Lipophilic pollutants and nutrients, like dioxins and polyunsaturated fatty acids, may often converge at all aforementioned levels and thus the interactions become more likely. Despite this fact, the topic seems overlooked in mainstream epidemiological research. In this essay, we illustrate different levels of documented interactions between pollutants and nutrients with experimental, interventional and epidemiological evidence, paying special attention to lipophilic chemicals. We first describe common pollutants and nutrients encountered in diets and the internal lipophilic interface such as adipose tissue and serum lipids. Next, we discuss the preventive effects of nutrients against absorption and the toxic effects of pollutants, as well as the pollutant-induced perturbation of nutrient metabolism. Finally, we discuss the implications of nutrient-pollutant interactions in epidemiology, providing some examples of negative confounding, modification effect and statistical interactions reported for different outcomes including fetal growth, diabetes and cancer. The evidence discussed in this essay supports that the health impacts of chemicals have likely been underestimated due to the high risk of residual and coexposure confounding in diseases where interactions between pollutants and nutrients may occur.
Collapse
Affiliation(s)
| | - Maribel Casas
- ISGlobal, Barcelona, Spain.,Pompeu Fabra University, Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
24
|
Yamaguchi M, Hankinson O. An aryl hydrocarbon receptor agonist suppresses the growth of human umbilical vein endothelial cells in vitro: Potent effect with polyunsaturated fatty acids. Int J Exp Pathol 2020; 101:248-263. [PMID: 32985761 DOI: 10.1111/iep.12373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Human umbilical vein endothelial cells (HUVECs) are a pivotal component of the hematopoietic microenvironment linked to the modulation of the immune response, inflammation and carcinogenesis. HUVEC expresses the aryl hydrocarbon receptor (AHR), which regulates gene expression by binding to the xenobiotic-responsive element. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent agonist for AHR signalling. Treatment with TCDD (0.1-100 nmol/L) was found to suppress the proliferation and to stimulate the death of HUVEC. TCDD's effects were abolished by culturing with CH223191, an inhibitor of AHR signalling. Mechanistically, TCDD treatment increased the protein levels of cell growth suppressors, including p53, Rb, p21 and regucalcin, and caspase-3 implicated in apoptotic cell death, and decreased the levels of Stat3, mitogen-activated protein kinase (MAPK/Erk1/2) and phospho-MAPK/Erk1/2. Treatment with polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid, eicosapentaenoic acid and arachidonic acid, suppressed the proliferation and stimulated the death of HUVEC in vitro, and decreased the levels of Stat3, MAPK/Erk1/2 and phospho-MAPK/Erk1/2 and increased caspase-3. Notably, the effects of TCDD in suppressing proliferation and stimulating death of HUVEC were modulated by coculturing with PUFAs. These effects were reversed by treatment with CH223191, an inhibitor of AHR. Treatment with both TCDD and PUFAs collaboratively enhanced the levels of AHR, CYP1A1, p53, p21, Rb and regucalcin. Moreover, TCDD suppressed migration with wound healing of HUVEC. Notably, the combination of TCDD and PUFAs revealed potent suppressive effects on angiogenesis of HUVEC, potentially related to disorders of the stromal microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Oliver Hankinson
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Molecular Toxicology Program, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
25
|
Li X, Ma X, Chen Y, Peng D, Wang H, Chen S, Xiao Y, Li L, Zhou H, Cheng F, Gao Y, Chang J, Cheng T, Liu L. Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34 + cells via inhibition of senescence. Stem Cells Transl Med 2020; 9:1604-1616. [PMID: 32602209 PMCID: PMC7695631 DOI: 10.1002/sctm.20-0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
The stemness of ex vivo expanded hematopoietic stem cells (HSCs) is usually compromised by current methods. To explore the failure mechanism of stemness maintenance of human HSCs, which were expanded from human umbilical cord blood (hUCB) CD34+ cells, by differentiation inhibitor Stem Regenin 1 (SR1), an antagonist of aryl hydrocarbon receptor, we investigated the activity of p38 mitogen‐activated protein kinase α (p38 MAPKα, p38α) and mammalian target of rapamycin complex 1 (mTORC1), and their effect on SR1‐expanded hUCB CD34+ cells. Our results showed that cellular senescence occurred in the SR1‐expanded hUCB CD34+ cells in which p38α and mTORC1 were successively activated. Furthermore, their coinhibition resulted in a further decrease in hUCB CD34+ cell senescence without an effect on apoptosis, promoted the maintenance of expanded phenotypic HSCs without differentiation inhibition, increased the hematopoietic reconstitution ability of multiple lineages, and potentiated the long‐term self‐renewal capability of HSCs from SR1‐expanded hUCB CD34+ cells in NOD/Shi‐scid/IL‐2Rγnull mice. Our mechanistic study revealed that senescence inhibition by our strategy was mainly attributed to downregulation of the splicesome, proteasome formation, and pyrimidine metabolism signaling pathways. These results suggest that coinhibition of activated p38α and mTORC1 potentiates stemness maintenance of HSCs from SR1‐expanded hUCB CD34+ cells via senescence inhibition. Thus, we established a new strategy to maintain the stemness of ex vivo differentiation inhibitor‐expanded human HSCs via coinhibition of multiple independent senescence initiating signal pathways. This senescence inhibition‐induced stemness maintenance of ex vivo expanded HSCs could also have an important role in other HSC expansion systems.
Collapse
Affiliation(s)
- Xiaoyi Li
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huifang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Suhua Chen
- Department of Gynaecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Jiwei Chang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Science, Tianjin, People's Republic of China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Walsh-Wilcox MT, Kaye J, Rubinstein E, Walker MK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induces Vascular Dysfunction That is Dependent on Perivascular Adipose and Cytochrome P4501A1 Expression. Cardiovasc Toxicol 2020; 19:565-574. [PMID: 31115867 DOI: 10.1007/s12012-019-09529-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is associated with hypertension in humans and animals, and studies suggest that cytochrome P4501A1 (Cyp1a1) induction and vascular dysfunction may contribute. We investigated the role of perivascular adipose tissue (PVAT) and Cyp1a1 in TCDD-induced vascular dysfunction. Cyp1a1 wild-type (WT) and knockout (KO) male mice were fed a dough pill containing 1,4-p-dioxane (TCDD vehicle control) on days 0 and 7, or 1000 ng/kg TCDD on day 0 and 250 ng/kg TCDD on day 7. mRNA expression of Cyp1a1 was assessed on days 3, 7, and 14, and of Cyp1b1, 1a2, angiotensinogen, and phosphodiesterase 5a on day 14. Dose-dependent vasoconstriction to a thromboxane A2 mimetic (U46619), and vasorelaxation to acetylcholine and a nitric oxide donor (S-nitroso-N-acetyl-DL-penicillamine, SNAP), were investigated in the aorta with and without PVAT. Cyp1a1 and 1a2 mRNA was induced in aorta of WT mice only with PVAT, and Cyp1a1 induction was sustained through day 14. TCDD significantly enhanced constriction to U46619 in WT mice and inhibited relaxation to both acetylcholine and SNAP, but only in the presence of PVAT. The effects of TCDD on U46619 constriction and SNAP relaxation were not observed in Cyp1a1 KO mice. Finally, in aorta + PVAT of WT mice TCDD significantly induced expression of angiotensinogen and phosphodiesterase 5a both of which could contribute to the TCDD-induced vascular dysfunction. These data establish PVAT as a TCDD target which is critically involved in mediating vascular dysfunction. TCDD enhances vasoconstriction via the thromboxane/prostanoid (TP) receptor and inhibits vasorelaxation via nitric oxide (NO) signaling. This TCDD-induced vascular dysfunction requires perivascular adipose (PVAT) and cytochrome P4501a1 (CYP1a1) induction.
Collapse
Affiliation(s)
- Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA
| | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel.,Ayala Targeted Therapies, Rehovot, Israel
| | | | - Mary K Walker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA.
| |
Collapse
|
27
|
Bart AG, Harris KL, Gillam EMJ, Scott EE. Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability. J Biol Chem 2020; 295:5640-5653. [PMID: 32156703 PMCID: PMC7186169 DOI: 10.1074/jbc.ra119.010727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30-40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.
Collapse
Affiliation(s)
- Aaron G Bart
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Kurt L Harris
- School of Chemistry and Molecular Biosciences, University of Queensland St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland St. Lucia, Brisbane 4072, Australia
| | - Emily E Scott
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
28
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
29
|
Wu B, Hong H, Xia Z, Liu H, Chen X, Chen J, Yan B, Liang Y. Transcriptome analyses unravel CYP1A1 and CYP1B1 as novel biomarkers for disinfection by-products (DBPs) derived from chlorinated algal organic matter. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121685. [PMID: 31776088 DOI: 10.1016/j.jhazmat.2019.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Disinfection by-products (DBPs) are generated during chlorination of drinking water. Previous studies demonstrate that DBPs are cytotoxic, genotoxic and associated with an increased risk of human cancer. However, the molecular basis of DBPs-induced toxic effects remains unclear. Here, we chlorinated samples of algal-derived organic matter (AOM) and sediment organic matter (SOM) from a local drinking water reservoir. Chemical properties, toxicities and transcriptomic profiles of human Caco-2 cell exposed to AOM and SOM were compared before and after chlorination. We analyzed chlorination-caused distinct gene expression patterns between AOM and SOM, and identified a set of 22 differentially expressed genes under chlorination of AOM that are different from chlorinated SOM. Consequent network analysis indicates that differential CYP1A1, CYP1B1, ID1 and ID2 are common targets of the upstream regulators predicted in the AOM group, but not the SOM group. Through experimental validation and data integration from previous reports related to DBPs or environmental stressors, we found that CYP1A1 and CYP1B1 are specifically up-regulated after chlorinating AOM. Our study demonstrates that the two CYP1 genes likely act as novel biomarkers of AOM derived DBPs, and this would be helpful for testing drinking water DBPs toxicity and further monitoring drinking water safety.
Collapse
Affiliation(s)
- Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhengyuan Xia
- Department of Anesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hailong Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xi Chen
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bin Yan
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, 518036, China; School of Biomedical Sciences & Department of Computer Science, The University of Hong Kong, Hong Kong, China..
| | - Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
30
|
Goya-Jorge E, Doan TQ, Scippo ML, Muller M, Giner RM, Barigye SJ, Gozalbes R. Elucidating the aryl hydrocarbon receptor antagonism from a chemical-structural perspective. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:209-226. [PMID: 31916862 DOI: 10.1080/1062936x.2019.1708460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) plays an important role in several biological processes such as reproduction, immunity and homoeostasis. However, little is known on the chemical-structural and physicochemical features that influence the activity of AhR antagonistic modulators. In the present report, in vitro AhR antagonistic activity evaluations, based on a chemical-activated luciferase gene expression (AhR-CALUX) bioassay, and an extensive literature review were performed with the aim of constructing a structurally diverse database of contaminants and potentially toxic chemicals. Subsequently, QSAR models based on Linear Discriminant Analysis and Logistic Regression, as well as two toxicophoric hypotheses were proposed to model the AhR antagonistic activity of the built dataset. The QSAR models were rigorously validated yielding satisfactory performance for all classification parameters. Likewise, the toxicophoric hypotheses were validated using a diverse set of 350 decoys, demonstrating adequate robustness and predictive power. Chemical interpretations of both the QSAR and toxicophoric models suggested that hydrophobic constraints, the presence of aromatic rings and electron-acceptor moieties are critical for the AhR antagonism. Therefore, it is hoped that the deductions obtained in the present study will contribute to elucidate further on the structural and physicochemical factors influencing the AhR antagonistic activity of chemical compounds.
Collapse
Affiliation(s)
- E Goya-Jorge
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, ULiège, Liège, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, ULiège, Liège, Belgium
| | - M Muller
- Laboratory for Organogenesis and Regeneration, GIGA-Research, ULiège, Liège, Belgium
| | - R M Giner
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - S J Barigye
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
| | - R Gozalbes
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
- R&D Department, MolDrug AI Systems SL, Valencia, Spain
| |
Collapse
|
31
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
32
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
33
|
Lin H, Hu B, He X, Mao J, Wang Y, Wang J, Zhang T, Zheng J, Peng Y, Zhang F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol 2020; 171:113733. [DOI: 10.1016/j.bcp.2019.113733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
34
|
Vyhlídalová B, Poulíková K, Bartoňková I, Krasulová K, Vančo J, Trávníček Z, Mani S, Dvořák Z. Mono-methylindoles induce CYP1A genes and inhibit CYP1A1 enzyme activity in human hepatocytes and HepaRG cells. Toxicol Lett 2019; 313:66-76. [PMID: 31201936 DOI: 10.1016/j.toxlet.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Mono-methylindoles (MMI) were described as agonists and/or antagonists of the human aryl hydrocarbon receptor (AhR). Here, we investigated the effects of MMI on AhR-CYP1A pathway in human hepatocytes and HepaRG cells derived from human progenitor hepatic cells. All MMI, except of 2-methylindole, strongly induced CYP1A1 and CYP1A2 mRNAs in HepaRG cells. Induction of CYP1A genes was absent in AhR-knock-out HepaRG cells. Consistently, CYP1A1 and CYP1A2 mRNAs and proteins were induced by all MMIs (except 2-methylindole), in human hepatocytes. The enzyme activity of CYP1A1 was inhibited by MMIs in human hepatocytes and LS180 colon cancer cells in a concentration-dependent manner (IC50 values from 1.2 μM to 23.8 μM and from 3.4 μM to 11.4 μM, respectively). Inhibition of CYP1A1 activity by MMI in human liver microsomes was much weaker as compared to that in intact cells. Incubation of parental MMI with human hepatocytes either diminished (4-methylindole, 6-methylindole) or enhanced (7-methylindole) their agonist effects on AhR in AZ-AHR reporter cells. In conclusion, overall effects of MMI on AhR-CYP1A pathway in human cells comprise the induction of CYP1A genes through AhR, the inhibition of CYP1A catalytic activity and possibly the metabolic transformation causing loss or gain of AhR agonist activity of parental compounds.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Iveta Bartoňková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Jan Vančo
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
35
|
Nynca A, Sadowska A, Paukszto L, Molcan T, Ruszkowska M, Swigonska S, Orlowska K, Myszczynski K, Jastrzebski JP, Ciereszko RE. Temporal changes in the transcriptomic profile of granulosa cells of pigs treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anim Reprod Sci 2019; 207:83-94. [PMID: 31213330 DOI: 10.1016/j.anireprosci.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compound is an environmental chemical adversely affecting reproductive processes. Intracellular TCDD effects are mediated via aryl hydrocarbon receptor (AhR). The aim of the current study was to identify genes linking the AhR pathway with phenotypic consequences of TCDD action in granulosa cells of pigs. By applying multifactorial analysis, with TCDD and incubation time as factors, it was possible to determine temporal changes induced by TCDD in the cell transcriptome. Among the identified 144 differentially expressed genes (DEGs; Padjusted<0.05, log2 fold change (FC)≥1), 111 DEGs were classified as sustained genes (FC values changing between 3 and 24 h). Eighty six DEGs were classified as early genes and only nine as late genes (FC changes observed between 3 and 12 h or 12 and 24 h, respectively). The sustained gene category included genes related to TCDD mechanism of action (AHR, ARNTL, CYP1A1), cell proliferation (TGFβ3), follicular development and ovulation (PTGS2) as well as stress response (NR3C1). The early gene category contained DEGs associated with cell proliferation (DUSP4, TAB1) and cellular response to stress (DHX34). The CYP1A1 gene was the only DEG classified as an early, late and sustained gene. The multifactorial approach allowed for statistically analyzing TCDD-induced changes over time in the gene expression in granulosa cells of pigs. Changes over time in the granulosal transcriptome profile indicated the involvement of stress related molecules in the cellular response to TCDD and TCDD effects on ovulation. The TCDD effects were particularly evident during the early stage of action by this compound.
Collapse
Affiliation(s)
- Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720, Olsztyn, Poland.
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720, Olsztyn, Poland.
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-727, Olsztyn, Poland.
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Renata E Ciereszko
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 5, 10-720, Olsztyn, Poland; Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
36
|
Bao L, Liu W, Li Y, Wang X, Xu F, Yang Z, Yue Y, Zuo C, Zhang Q, Wang W. Carcinogenic Metabolic Activation Process of Naphthalene by the Cytochrome P450 Enzyme 1B1: A Computational Study. Chem Res Toxicol 2019; 32:603-612. [PMID: 30794404 DOI: 10.1021/acs.chemrestox.8b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic activation and transformation of naphthalene by the cytochrome P450 enzyme (CYP 1B1) plays an important role in its potential carcinogenicity. The process has been explored by a quantum mechanics/molecular mechanics (QM/MM) computational method. Molecular dynamic simulations were performed to explore the interaction between naphthalene and CYP 1B1. Naphthalene involves α- and β-carbon, the electrophilic addition of which would result in different reaction pathways. Our computational results show that both additions on α- and β-carbon can generate naphthalene 1,2-oxide. The activation barrier for the addition on β-carbon is higher than that for the α-carbon by 2.6 kcal·mol-1, which is possibly caused by the proximity between β-carbon and the iron-oxo group of Cpd I in the system. We also found that naphthalene 1,2-oxide is unstable and the O-C bond cleavage easily occurs via cellular hydronium ion, hydroxyl radical/anion; then it will convert to the potential ultimate carcinogen 1,2-naphthoquinone. The results demonstrate and inform a detailed process of generating naphthalene 1,2-oxide and new predictions for its conversion.
Collapse
Affiliation(s)
- Lei Bao
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wen Liu
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yanwei Li
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Xueyu Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Fei Xu
- Shenzhen Research Institute of Shandong University , Shenzhen 518057 , People's Republic of China
| | - Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Yue
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Chenpeng Zuo
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Qingzhu Zhang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wenxing Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| |
Collapse
|
37
|
Wang S, Dunlap TL, Huang L, Liu Y, Simmler C, Lantvit DD, Crosby J, Howell CE, Dong H, Chen SN, Pauli GF, van Breemen RB, Dietz BM, Bolton JL. Evidence for Chemopreventive and Resilience Activity of Licorice: Glycyrrhiza Glabra and G. Inflata Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prev Res (Phila) 2018; 11:819-830. [PMID: 30287522 DOI: 10.1158/1940-6207.capr-18-0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Women are increasingly using botanical dietary supplements (BDS) to reduce menopausal hot flashes. Although licorice (Glycyrrhiza sp.) is one of the frequently used ingredients in BDS, the exact plant species is often not identified. We previously showed that in breast epithelial cells (MCF-10A), Glycyrrhiza glabra (GG) and G. inflata (GI), and their compounds differentially modulated P450 1A1 and P450 1B1 gene expression, which are responsible for estrogen detoxification and genotoxicity, respectively. GG and isoliquiritigenin (LigC) increased CYP1A1, whereas GI and its marker compound, licochalcone A (LicA), decreased CYP1A1 and CYP1B1 The objective of this study was to determine the distribution of the bioactive licorice compounds, the metabolism of LicA, and whether GG, GI, and/or pure LicA modulate NAD(P)H quinone oxidoreductase (NQO1) in an ACI rat model. In addition, the effect of licorice extracts and compounds on biomarkers of estrogen chemoprevention (CYP1A1) as well as carcinogenesis (CYP1B1) was studied. LicA was extensively glucuronidated and formed GSH adducts; however, free LicA as well as LigC were bioavailable in target tissues after oral intake of licorice extracts. GG, GI, and LicA caused induction of NQO1 activity in the liver. In mammary tissue, GI increased CYP1A1 and decreased CYP1B1, whereas GG only increased CYP1A1 LigC may have contributed to the upregulation of CYP1A1 after GG and GI administration. In contrast, LicA was responsible for GI-mediated downregulation of CYP1B1 These studies highlight the polypharmacologic nature of botanicals and the importance of standardization of licorice BDS to specific Glycyrrhiza species and to multiple constituents.
Collapse
Affiliation(s)
- Shuai Wang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Lingyi Huang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel D Lantvit
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Jenna Crosby
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
38
|
Zhang S, Carriere J, Lin X, Xie N, Feng P. Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses 2018; 10:v10100521. [PMID: 30249998 PMCID: PMC6213852 DOI: 10.3390/v10100521] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolism and immune responses are two fundamental biological processes that serve to protect hosts from viral infection. As obligate intracellular pathogens, viruses have evolved diverse strategies to activate metabolism, while inactivating immune responses to achieve maximal reproduction or persistence within their hosts. The two-way virus-host interaction with metabolism and immune responses choreograph cytokine production via reprogramming metabolism of infected cells/hosts. In return, cytokines can affect the metabolism of virus-infected and bystander cells to impede viral replication processes. This review aims to summarize our current understanding of the cross-talk between metabolic reprogramming and cytokine responses, and to highlight future potential research topics. Although the focus is placed on viral pathogens, relevant findings from other microbes are integrated to provide an overall picture, particularly when corresponding information on viral infection is lacking.
Collapse
Affiliation(s)
- Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Jessica Carriere
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Xiaoxi Lin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Na Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| |
Collapse
|
39
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
40
|
Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer. Arch Toxicol 2018; 92:1639-1655. [PMID: 29362861 PMCID: PMC5882637 DOI: 10.1007/s00204-018-2160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10-7-10-4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10-3-10-1 M) with PhIP (10-7-10-4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Collapse
|
41
|
Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog Lipid Res 2017; 67:38-57. [PMID: 28606467 DOI: 10.1016/j.plipres.2017.06.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates.
Collapse
|
42
|
Mahiout S, Lindén J, Esteban J, Sánchez-Pérez I, Sankari S, Pettersson L, Håkansson H, Pohjanvirta R. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats. Toxicol Appl Pharmacol 2017; 326:54-65. [PMID: 28433708 DOI: 10.1016/j.taap.2017.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1,2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1,2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75-92.5mg/kg) and 5-day repeated dosing at the highest doses achievable (IMA-08401: 100mg/kg/day; and IMA-07101: 75mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators.
Collapse
Affiliation(s)
- Selma Mahiout
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - Jere Lindén
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Satu Sankari
- Central Laboratory of the Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | | | - Helen Håkansson
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
43
|
Abstract
Cytochrome P450 1B1 (CYP1B1), a member of CYP superfamily, is expressed in liver and extrahepatic tissues carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. Surprisingly, CYP1B1 was also shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 and nuclear receptors including peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), and retinoic acid receptors (RAR) contribute to the maintenance of the homeostasis of these endogenous compounds. Many natural flavonoids and synthetic stilbenes show inhibitory activity toward CYP1B1 expression and function, notably isorhamnetin and 2,4,3',5'-tetramethoxystilbene. Accumulating evidence indicates that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis, and prevent obesity, hypertension, atherosclerosis, and cancer. Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases.
Collapse
|
44
|
Fader KA, Zacharewski TR. Beyond the Aryl Hydrocarbon Receptor: Pathway Interactions in the Hepatotoxicity of 2,3,7,8-Tetrachlorodibenzo- p-dioxin and Related Compounds. CURRENT OPINION IN TOXICOLOGY 2017; 2:36-41. [PMID: 28948239 PMCID: PMC5609723 DOI: 10.1016/j.cotox.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical ligand for a group of environmental halogenated aromatic hydrocarbon contaminants which elicit hepatotoxicity and other toxic responses through activation of the aryl hydrocarbon receptor (AhR). Despite the conservation of the AhR and its signaling pathway, TCDD-elicited differential gene expression networks are species-specific, consistent with differences in sensitivity and toxic responses between species. This review integrates gene expression studies with complementary phenotypic analyses (e.g., metabolomics, clinical biochemistry, and histopathology) to elucidate the pathways through which TCDD and related compounds cause hepatotoxicity beyond AhR activation. We propose that AhR-mediated toxicity is a collective response to the cumulative burden of metabolic reprogramming across multiple pathways. Consequently, nutrition, health status, and genetic background establish the basis for differences in sensitivity and predisposition to adverse outcomes between species, sub-populations, tissues, and cells.
Collapse
Affiliation(s)
- Kelly A. Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824
| | - Timothy R. Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
45
|
Wiest EF, Walsh-Wilcox MT, Rothe M, Schunck WH, Walker MK. Dietary Omega-3 Polyunsaturated Fatty Acids Prevent Vascular Dysfunction and Attenuate Cytochrome P4501A1 Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin. Toxicol Sci 2016; 154:43-54. [PMID: 27492226 DOI: 10.1093/toxsci/kfw145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction.
Collapse
Affiliation(s)
- Elani F Wiest
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| | - Mary T Walsh-Wilcox
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| | | | | | - Mary K Walker
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| |
Collapse
|