1
|
Fung WH, van Lingen MR, Broos JY, Lam KH, van Dam M, Fung WK, Noteboom S, Koubiyr I, de Vries HE, Jasperse B, Teunissen CE, Giera M, Killestein J, Hulst HE, Strijbis EMM, Schoonheim MM, Kooij G. 9-HODE associates with thalamic atrophy and predicts white matter damage in multiple sclerosis. Mult Scler Relat Disord 2024; 92:105946. [PMID: 39447246 DOI: 10.1016/j.msard.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage. OBJECTIVES To investigate the potential association between plasma-derived LMs and MRI-quantified WM damage using fractional anisotropy (FA) and grey matter (GM) atrophy in dimethyl fumarate-treated relapsing remitting MS (RRMS) patients. METHODS Severity of FA-based WM damage and GM atrophy was determined in RRMS patients (n = 28) compared to age- and sex-matched controls (n = 31) at treatment initiation (baseline) and after 6 months. Plasma LMs were assessed using HPLC-MS/MS and baseline LMs were correlated to changes in FA and brain volumes. RESULTS We observed significant WM damage in RRMS patients (mean age 41.4 [SD 9.1]) at baseline and follow-up (z-score=-0.33 and 0.31, respectively) compared to controls (mean age 41.9 [SD 9.5]; p < 0.001 for both comparisons). Patients with severe WM damage showed a decline of thalamic volume (p = 0.02), and this decline correlated (r = 0.51, p < 0.001) with lower baseline levels of 9-HODE. This LM also predicted FA worsening (beta = 0.14, p < 0.001) over time at 6 months. CONCLUSION Despite the relatively small sample size, lower baseline levels of the LM 9-HODE correlated with more thalamic atrophy and predicted subsequent worsening of WM damage in RRMS patients.
Collapse
Affiliation(s)
- Wing Hee Fung
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Marike R van Lingen
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jelle Y Broos
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Leiden University Medical Centre (LUMC), Center of Proteomics and Metabolomics, Leiden, the Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Maureen van Dam
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wing Ka Fung
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- MS Center Amsterdam, Neurochemistry Laboratory, Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martin Giera
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Khan I, Timsina L, Chauhan R, Ingersol C, Wang DR, Rinne E, Muraru R, Mohan G, Minto RE, Van Natta BW, Hassanein AH, Kelley-Patteson C, Sinha M. Oxylipins in Breast Implant-Associated Systemic Symptoms. Aesthet Surg J 2024; 44:NP695-NP710. [PMID: 38857184 PMCID: PMC11403815 DOI: 10.1093/asj/sjae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND A subset of females with breast implants have reported a myriad of nonspecific systemic symptoms collectively termed systemic symptoms associated with breast implants (SSBI). SSBI symptoms are similar to manifestations associated with autoimmune and connective tissue disorders. Breast tissue is rich in adipose cells, comprised of lipids. Insertion of an implant creates an oxidative environment leading to lipid oxidation. Oxylipins can influence immune responses and inflammatory processes. OBJECTIVES In this study we explored the abundance of a spectrum of oxylipins in the periprosthetic tissue surrounding the breast implant. Because oxylipins are immunogenic, we sought to determine if they were associated with the SSBI patients. We have also attempted to determine if the common manifestations exhibited by such patients have any association with oxylipin abundance. METHODS The study included 120 patients divided into 3 cohorts. We analyzed 46 patients with breast implants exhibiting manifestations associated with SSBI; 29 patients with breast implants not exhibiting manifestations associated with SSBI (control cohort I, non-SSBI); and 45 patients without implants (control cohort II, no-implant tissue). Lipid extraction and oxylipin quantification were performed with liquid chromatography mass spectrometry (LC-MS/MS). LC-MS/MS targeted analysis of the breast adipose tissue was performed. RESULTS Of the 15 oxylipins analyzed, 5 exhibited increased abundance in the SSBI cohort when compared to the non-SSBI and no-implant cohorts. CONCLUSIONS The study documents the association of the oxylipins with each manifestation reported by the patient. This study provides an objective assessment of the subjective questionnaire, highlighting which symptoms may be more relevant than the others. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mithun Sinha
- Corresponding Author: Dr Mithun Sinha, Indiana University School of Medicine, 975 W Walnut St, Medical Research Library Building, Suite # 444A, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|
3
|
Li X, Li J, Yu F, Feng X, Luo Y, Liu Z, Zhao T, Xia J. The Untargeted Metabolomics Reveals Differences in Energy Metabolism in Patients with Different Subtypes of Ischemic Stroke. Mol Neurobiol 2024; 61:5308-5319. [PMID: 38183570 DOI: 10.1007/s12035-023-03884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
AIMS Ischemic stroke (IS) is the most common subtype of stroke. The risk factors and pathogenesis of IS are complex and varied due to different subtypes. Therefore, we used metabolomics technology to investigate the biomarkers and potential pathophysiological mechanisms of different subtypes of IS. METHODS We included 126 IS patients and divided them into two groups based on the TOAST classification: large-artery atherosclerosis (LAA) group (n = 87) and small-vessel occlusion (SVO) group (n = 39). Plasma metabolomics analysis was performed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify metabolic profiles in LAA and SVO subtype IS patients and to determine metabolic differences between patients with the two subtypes of IS. RESULTS We identified 26 differential metabolites between LAA and SVO subtype IS. A multiple prediction model based on the plasm metabolites had good predictive ability for IS subtyping (AUC = 0.822, accuracy = 77.8%), with 12,13-DHOME being the most important differential metabolite in the model. The differential metabolic pathways between the two subtypes of IS patients included tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, and pyruvate metabolism, mainly focused on energy metabolism. CONCLUSION 12,13-DHOME emerged as the primary discriminatory metabolite between LAA and SVO subtypes of IS. In LAA subtype IS patients, energy metabolism, encompassing pyruvate metabolism and the TCA cycle, exhibited lower activity levels when compared to patients with the SVO subtype IS. The utilization of targeted metabolomics holds the potential to improve diagnostic accuracy for distinguishing stroke subtypes.
Collapse
Affiliation(s)
- Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Tingting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Montecillo-Aguado M, Soca-Chafre G, Antonio-Andres G, Morales-Martinez M, Tirado-Rodriguez B, Rocha-Lopez AG, Hernandez-Cueto D, Sánchez-Ceja SG, Alcala-Mota-Velazco B, Gomez-Garcia A, Gutiérrez-Castellanos S, Huerta-Yepez S. Upregulated Nuclear Expression of Soluble Epoxide Hydrolase Predicts Poor Outcome in Breast Cancer Patients: Importance of the Digital Pathology Approach. Int J Mol Sci 2024; 25:8024. [PMID: 39125591 PMCID: PMC11312095 DOI: 10.3390/ijms25158024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Giovanny Soca-Chafre
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Mario Morales-Martinez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Angelica G. Rocha-Lopez
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
| | - Daniel Hernandez-Cueto
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Sandra G. Sánchez-Ceja
- Laboratorio de Patología, Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Berenice Alcala-Mota-Velazco
- Departamento de Patología, Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Anel Gomez-Garcia
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sergio Gutiérrez-Castellanos
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| |
Collapse
|
5
|
Tan Z, Shen P, Wen Y, Sun HY, Liang HY, Qie HJ, Dai RW, Gao Y, Huang Z, Zhou W, Tang LJ. Assessment of metabolomic variations among individuals returning to plain areas after exposure to high altitudes: a metabolomic analysis of human plasma samples with high-altitude de-acclimatization syndrome. Front Mol Biosci 2024; 11:1375360. [PMID: 38962282 PMCID: PMC11220191 DOI: 10.3389/fmolb.2024.1375360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background High altitude de-acclimatization (HADA) is gradually becoming a public health concern as millions of individuals of different occupations migrate to high-altitude areas for work due to economic growth in plateau areas. HADA affects people who return to lower elevations after exposure to high altitudes. It causes significant physiological and functional changes that can negatively impact health and even endanger life. However, uncertainties persist about the detailed mechanisms underlying HADA. Methods We established a population cohort of individuals with HADA and assessed variations in metabolite composition. Plasm samples of four groups, including subjects staying at plain (P) and high altitude (H) as well as subjects suffering from HADA syndrome with almost no reaction (r3) and mild-to-moderate reaction (R3) after returning to plain from high altitude, were collected and analyzed by Liquid Chromatography-Mass Spectrometry metabolomic. Multivariate statistical analyses were used to explore significant differences and potential clinical prospect of metabolites. Result Although significantly different on current HADAS diagnostic symptom score, there were no differences in 17 usual clinical indices between r3 and R3. Further multivariate analyses showed isolated clustering distribution of the metabolites among the four groups, suggesting significant differences in their metabolic characteristics. Through K-means clustering analysis, we identified 235 metabolites that exhibited patterns of abundance change consistent with phenotype of HADA syndrome. Pathway enrichment analysis indicated a high influence of polyunsaturated fatty acids under high-altitude conditions. We compared the metabolites between R3 and r3 and found 107 metabolites with differential abundance involved in lipid metabolism and oxidation, suggesting their potential role in the regulation of oxidative stress homeostasis. Among them, four metabolites might play a key role in the occurrence of HADA, including 11-beta-hydroxyandrosterone-3-glucuronide, 5-methoxyindoleacetate, 9,10-epoxyoctadecenoic acid, and PysoPC (20:5). Conclusion We observed the dynamic variation in the metabolic process of HADA. Levels of four metabolites, which might be provoking HADA mediated through lipid metabolism and oxidation, were expected to be explore prospective indices for HADA. Additionally, metabolomics was more efficient in identifying environmental risk factors than clinical examination when dramatic metabolic disturbances underlying the difference in symptoms were detected, providing new insights into the molecular mechanisms of HADAS.
Collapse
Affiliation(s)
- Zhen Tan
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi Wen
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hong-yu Sun
- Department of Central Lab, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hong-yin Liang
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hua-ji Qie
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Rui-wu Dai
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-jun Tang
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Hossain Hrithik MT, Shahmohammadi N, Jin G, Lee DH, Singh N, Vik A, Hammock BD, Kim Y. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104104. [PMID: 38494144 PMCID: PMC11062637 DOI: 10.1016/j.ibmb.2024.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Upon immune challenge, recognition signals trigger insect immunity to remove the pathogens through cellular and humoral responses. Various immune mediators propagate the immune signals to nearby tissues, in which polyunsaturated fatty acid (PUFA) derivatives play crucial roles. However, little was known on how the insects terminate the activated immune responses after pathogen neutralization. Interestingly, C20 PUFA was detected at the early infection stage and later C18 PUFAs were induced in a lepidopteran insect, Spodoptera exigua. This study showed the role of epoxyoctadecamonoenoic acids (EpOMEs) in the immune resolution at the late infection stage to quench the excessive and unnecessary immune responses. In contrast, dihydroxy-octadecamonoenoates (DiHOMEs) were the hydrolyzed and inactive forms of EpOMEs. The hydrolysis is catalyzed by soluble epoxide hydrolase (sEH). Inhibitors specific to sEH mimicked the immunosuppression induced by EpOMEs. Furthermore, the inhibitor treatments significantly enhanced the bacterial virulence of Bacillus thuringiensis against S. exigua. This study proposes a negative control of the immune responses using EpOME/DiHOME in insects.
Collapse
Affiliation(s)
| | - Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Dong-Hee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong, 36729, South Korea
| | - Nalin Singh
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA; UCD Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA; UCD Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
7
|
Takić M, Ranković S, Girek Z, Pavlović S, Jovanović P, Jovanović V, Šarac I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int J Mol Sci 2024; 25:4909. [PMID: 38732139 PMCID: PMC11084241 DOI: 10.3390/ijms25094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.
Collapse
Affiliation(s)
- Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Zdenka Girek
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Suzana Pavlović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Petar Jovanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| |
Collapse
|
8
|
Song H, Ren J, Yang L, Sun H, Yan G, Han Y, Wang X. Elucidation for the pharmacological effects and mechanism of Shen Bai formula in treating myocardial injury based on energy metabolism and serum metabolomic approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117670. [PMID: 38160867 DOI: 10.1016/j.jep.2023.117670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen Bai formula (SBF) is a proven effective traditional Chinese medicine for treating viral myocarditis (VMC) sequelae in clinic, and myocardial injury is the pathological basis of VMC sequelae. However, the pharmacological action and mechanism of SBF have not been systematically elucidated. AIM OF THE STUDY In present research, the doxorubicin-induced myocardial injury rat model was used to evaluate the efficacy of SBF, and energy metabolism and metabolomics approaches were applied to elucidate the effects of SBF on myocardial injury. MATERIALS AND METHODS Through energy metabolism measurement system and UPLC-Q-TOF-MS/MS oriented blood metabolomics, directly reflected the therapeutic effect of SBF at a macro level, and identified biomarkers of myocardial injury in microcosmic, revealing its metabolomic mechanism. RESULTS Results showed that SBF significantly improved the electrocardiogram (ECG), heart rate (HR), extent of myocardial tissue lesion, and ratio of heart and spleen. In addition, the serum levels of AST, CK, LDH, α-HBDH, cTnI, BNP, and MDA decreased, whereas SOD and ATP activity and content increased. Moreover, SBF increased locomotor activity and basic daily metabolism in rats with myocardial injury, restoring their usual level of energy metabolism. A total of 45 potential metabolomic biomarkers were identified. Among them, 44 biomarkers were significantly recalled by SBF, including representative biomarkers arachidonic acid (AA), 12-HETE, prostaglandin J2 (PGJ2), 15-deoxy-Δ-12,14-PGJ2, 15-keto-PGE2, 15(S)-HPETE, 15(S)-HETE, 8,11,14-eicosatrienoic acid and 9(S)-HODE, which involved AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism. CONCLUSION We successfully replicated a myocardial injury rat model with the intraperitoneal injection of doxorubicin, and elucidated the mechanism of SBF in treating myocardial injury. This key mechanism may be achieved by targeting action on COX, Alox, CYP, and 15-PGDH to increase or decrease the level of myocardial injury biomarker, and then emphatically interven in AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism, and participate in regulating purine metabolism, sphingolipid metabolism, primary bile acid biosynthesis, and steroid hormone synthesis.
Collapse
Affiliation(s)
- Hongwei Song
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Junling Ren
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
9
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
11
|
Zhang Y, Wu X, Li D, Huang R, Deng X, Li M, Du F, Zhao Y, Shen J, Chen Y, Zhang P, Hu C, Xiao Z, Wen Q. HPV-associated cervicovaginal microbiome and host metabolome characteristics. BMC Microbiol 2024; 24:94. [PMID: 38519882 PMCID: PMC10958955 DOI: 10.1186/s12866-024-03244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cervicovaginal microbiome plays an important role in the persistence of HPV infection and subsequent disease development. However, cervicovaginal microbiota varied cross populations with different habits and regions. Identification of population-specific biomarkers from cervicovaginal microbiota and host metabolome axis may support early detection or surveillance of HPV-induced cervical disease at all sites. Therefore, in the present study, to identify HPV-specific biomarkers, cervicovaginal secretion and serum samples from HPV-infected patients (HPV group, n = 25) and normal controls (normal group, n = 17) in Xichang, China were collected for microbiome (16S rRNA gene sequencing) and metabolome (UHPLC-MS/MS) analysis, respectively. RESULTS The results showed that key altered metabolites of 9,10-DiHOME, α-linolenic acid, ethylparaben, glycocholic acid, pipecolic acid, and 9,12,13-trihydroxy-10(E),15(Z)-octadecadienoic acid, correlating with Sneathia (Sneathia_amnii), Lactobacillus (Lactobacillus_iners), Atopobium, Mycoplasma, and Gardnerella, may be potential biomarkers of HPV infection. CONCLUSION The results of current study would help to reveal the association of changes in cervicovaginal microbiota and serum metabolome with HPV infections.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Dan Li
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiangyu Deng
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Pingxiu Zhang
- Yanyuan County Maternal and Child Health and Family Planning Service Center, Xichang, Sichuan, China
| | - Congcui Hu
- Yanyuan County People's Hospital, Xichang, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs Key Laboratory of Luzhou, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| | - Qinglian Wen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
13
|
Chen P, Yang J, Zhou Y, Li X, Zou Y, Zheng Z, Guo M, Chen Z, Cho WJ, Chattipakorn N, Wu W, Tang Q, Liang G. Design, synthesis, and bioactivity evaluation of novel amide/sulfonamide derivatives as potential anti-inflammatory agents against acute lung injury and ulcerative colitis. Eur J Med Chem 2023; 259:115706. [PMID: 37572538 DOI: 10.1016/j.ejmech.2023.115706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
The uneven regulation of inflammation is related to various diseases, making anti-inflammation a potential option for the development of novel therapies. In this study, we designed and synthesized a total of fifty-eight novel amide/sulfonamide derivatives based on our previously reported anti-inflammatory compounds. The anti-inflammatory activities of these compounds were evaluated upon LPS-stimulated J774A.1 cells. Compounds 11a, 11b, 11c, and 11d potently reduced the release of IL-6 and TNF-α, and decreased the mRNA level of cytokines in J774A.1 cells. The most active compound 11d with IC50 value of 0.61 μM for IL-6 inhibition, and 4.34 μM for TNF-α inhibition restored IκB α and inhibited the translocation of phosphorylated p65 into the nucleus. In vivo evaluation indicated that 11d improved LPS-induced ALI and alleviated DSS-induced ulcerative colitis in mice. In conclusion, these results suggested compound 11d can be a new lead structure for the development of anti-inflammatory drugs against ALI and ulcerative colitis.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
14
|
Zhai T, Wang J, Chen Y. Honokiol affects the composition of gut microbiota and the metabolism of lipid and bile acid in methionine-choline deficiency diet-induced NASH mice. Sci Rep 2023; 13:15203. [PMID: 37709801 PMCID: PMC10502053 DOI: 10.1038/s41598-023-42358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Honokiol (HNK), one of the main active components of Magnolia officinalis, has a positive effect on non-alcoholic steatohepatitis (NASH). However, the effects of HNK on the composition of serum lipids and bile acids (BAs) and gut microbiota (GM) of NASH mice are still unknown.C57BL/6 mice were fed with methionine-choline deficiency (MCD) diet and gavaged with HNK (20 mg/kg/d) for 8 weeks, then the serum lipids and BAs were detected by LC-MS, the composition of ileum microflora and the mRNA expression of hepatic BAs homeostasis related genes were analyzed by 16S rDNA sequencing and RT-qPCR, respectively. HNK treatment decreased the degree of hepatic lipid drops, inflammatory cell infiltration and fibrosis. Meantime, the serum levels of 34 lipids and 4 BAs in MCD mice were significantly altered by HNK treatment, as well as the increased abundance of Ruminococcaceae, Caulobacteraceae and Brevundimonas, and the decreased abundance of Firmicutes and Dubosiella. Besides, HNK treatment increased the hepatic mRNA expression of Oatp1b2 in MCD mice. The ameliorating effect of HNK on NASH may be partly related to its correction on the disorders of GM, serum lipids and BAs of MCD mice.
Collapse
Affiliation(s)
- Ting Zhai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Junjun Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Hrithrik TH, Lee DH, Singh N, Vik A, Hammock BD, Kim Y. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548078. [PMID: 37461499 PMCID: PMC10350063 DOI: 10.1101/2023.07.07.548078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid: LA). They are metabolized into dihydroxyoctadecamonoenoic acids (DiHOMEs) in mammals. Unlike in mammals where they act as adipokines or lipokines, EpOMEs act as immunosuppressants in insects. However, the functional link between EpOMEs and pro-immune mediators such as PGE2 is not known. In addition, the physiological significance of DiHOMEs is not clear in insects. This study analyzed the physiological role of these C18 oxylipins using a lepidopteran insect pest, Spodoptera exigua. Immune challenge of S. exigua rapidly upregulated the expression of the phospholipase A2 gene to trigger C20 oxylipin biosynthesis, followed by the upregulation of genes encoding EpOME synthase (SE51385) and a soluble epoxide hydrolase (Se-sEH). The sequential gene expression resulted in the upregulations of the corresponding gene products such as PGE2, EpOMEs, and DiHOMEs. Interestingly, only PGE2 injection without the immune challenge significantly upregulated the gene expression of SE51825 and Se-sEH. The elevated levels of EpOMEs acted as immunosuppressants by inhibiting cellular and humoral immune responses induced by the bacterial challenge, in which 12,13-EpOME was more potent than 9,10-EpOME. However, DiHOMEs did not inhibit the cellular immune responses but upregulated the expression of antimicrobial peptides selectively suppressed by EpOMEs. The negative regulation of insect immunity by EpOMEs and their inactive DiHOMEs were further validated by synthetic analogs of the linoleate epoxide and corresponding diol. Furthermore, inhibitors specific to Se-sEH used to prevent EpOME degradation significantly suppressed the immune responses. The data suggest a physiological role of C18 oxylipins in resolving insect immune response. Any immune dysregulation induced by EpOME analogs or sEH inhibitors significantly enhanced insect susceptibility to the entomopathogen, Bacillus thuringiensis.
Collapse
Affiliation(s)
| | - Dong-Hee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Korea
| | - Nalin Singh
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
- UCD Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
- UCD Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
16
|
Fothergill DM, Borras E, McCartney MM, Schelegle E, Davis CE. Exhaled breath condensate profiles of U.S. Navy divers following prolonged hyperbaric oxygen (HBO) and nitrogen-oxygen (Nitrox) chamber exposures. J Breath Res 2023; 17:10.1088/1752-7163/acd715. [PMID: 37207635 PMCID: PMC11057948 DOI: 10.1088/1752-7163/acd715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Prolonged exposure to hyperbaric hyperoxia can lead to pulmonary oxygen toxicity (PO2tox). PO2tox is a mission limiting factor for special operations forces divers using closed-circuit rebreathing apparatus and a potential side effect for patients undergoing hyperbaric oxygen (HBO) treatment. In this study, we aim to determine if there is a specific breath profile of compounds in exhaled breath condensate (EBC) that is indicative of the early stages of pulmonary hyperoxic stress/PO2tox. Using a double-blind, randomized 'sham' controlled, cross-over design 14 U.S. Navy trained diver volunteers breathed two different gas mixtures at an ambient pressure of 2 ATA (33 fsw, 10 msw) for 6.5 h. One test gas consisted of 100% O2(HBO) and the other was a gas mixture containing 30.6% O2with the balance N2(Nitrox). The high O2stress dive (HBO) and low O2stress dive (Nitrox) were separated by at least seven days and were conducted dry and at rest inside a hyperbaric chamber. EBC samples were taken immediately before and after each dive and subsequently underwent a targeted and untargeted metabolomics analysis using liquid chromatography coupled to mass spectrometry (LC-MS). Following the HBO dive, 10 out of 14 subjects reported symptoms of the early stages of PO2tox and one subject terminated the dive early due to severe symptoms of PO2tox. No symptoms of PO2tox were reported following the nitrox dive. A partial least-squares discriminant analysis of the normalized (relative to pre-dive) untargeted data gave good classification abilities between the HBO and nitrox EBC with an AUC of 0.99 (±2%) and sensitivity and specificity of 0.93 (±10%) and 0.94 (±10%), respectively. The resulting classifications identified specific biomarkers that included human metabolites and lipids and their derivatives from different metabolic pathways that may explain metabolomic changes resulting from prolonged HBO exposure.
Collapse
Affiliation(s)
| | - Eva Borras
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
| | - Mitchell M. McCartney
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Edward Schelegle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
17
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
18
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Potential Biomarkers for Alleviation of Streptococcus pneumoniae Pneumonia by QingFei Yin. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
21
|
Shen Q, Otoki Y, Sobel RA, Nagra RM, Taha AY. Evidence of increased sequestration of pro-resolving lipid mediators within brain esterified lipid pools of multiple sclerosis patients. Mult Scler Relat Disord 2022; 68:104236. [PMID: 36308971 DOI: 10.1016/j.msard.2022.104236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Unresolved inflammation in multiple sclerosis (MS) is associated with progressive demyelination and symptom worsening. In the brain, both inflammation and resolution pathways are mediated by free lipid mediators (i.e., oxylipins) that can be derived from the enzymatic hydrolysis of esterified oxylipins . It is not known whether disturbances in the turnover of free lipid mediators from esterified pools exist in postmortem brain of MS patients. We hypothesized that resolution pathways are impaired in MS patients because of disturbances in the turnover of free pro-resolving lipid mediators from esterified lipids. The objective was to characterize free and esterified oxylipins in postmortem prefrontal cortex of MS and unaffected control participants. METHODS Oxylipins in free, neutral lipid and phospholipid pools were extracted from prefrontal cortex of 10 MS participants and 5 unaffected controls, separated by solid phase extraction columns, and quantified by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Significant differences between the control and MS groups were determined by an unpaired t-test with Benjamini and Hochberg False Discovery Rate correction (10%) applied to oxylipins within each lipid pool. RESULTS The concentration of 7 esterified pro-resolving fatty acid epoxides within neutral lipids were significantly higher by 126%-285% in postmortem prefrontal cortex of MS compared to control participants. The concentration of esterified linoleic acid-derived 9(10)-epoxy-octadecenoic acid, a pro-inflammatory epoxide, was higher by 206% in MS compared to controls. No significant changes were observed in free or phospholipid-bound oxylipins. CONCLUSION In MS, several pro-resolving lipid mediators are trapped within prefrontal cortex neutral lipids, potentially limiting their supply and availability in the free bioactive form. This may explain why inflammation resolution is impaired in MS patients.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Raymond A Sobel
- Veterans Affairs Health Care System, Palo Alto, CA 94304, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
22
|
Nummela A, Laaksonen L, Scheinin A, Kaisti K, Vahlberg T, Neuvonen M, Valli K, Revonsuo A, Perola M, Niemi M, Scheinin H, Laitio T. Circulating oxylipin and bile acid profiles of dexmedetomidine, propofol, sevoflurane, and S-ketamine: a randomised controlled trial using tandem mass spectrometry. BJA OPEN 2022; 4:100114. [PMID: 37588789 PMCID: PMC10430865 DOI: 10.1016/j.bjao.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/11/2022] [Indexed: 08/18/2023]
Abstract
Background This exploratory study aimed to investigate whether dexmedetomidine, propofol, sevoflurane, and S-ketamine affect oxylipins and bile acids, which are functionally diverse molecules with possible connections to cellular bioenergetics, immune modulation, and organ protection. Methods In this randomised, open-label, controlled, parallel group, Phase IV clinical drug trial, healthy male subjects (n=160) received equipotent doses (EC50 for verbal command) of dexmedetomidine (1.5 ng ml-1; n=40), propofol (1.7 μg ml-1; n=40), sevoflurane (0.9% end-tidal; n=40), S-ketamine (0.75 μg ml-1; n=20), or placebo (n=20). Blood samples for tandem mass spectrometry were obtained at baseline, after study drug administration at 60 and 130 min from baseline; 40 metabolites were analysed. Results Statistically significant changes vs placebo were observed in 62.5%, 12.5%, 5.0%, and 2.5% of analytes in dexmedetomidine, propofol, sevoflurane, and S-ketamine groups, respectively. Data are presented as standard deviation score, 95% confidence interval, and P-value. Dexmedetomidine induced wide-ranging decreases in oxylipins and bile acids. Amongst others, 9,10-dihydroxyoctadecenoic acid (DiHOME) -1.19 (-1.6; -0.78), P<0.001 and 12,13-DiHOME -1.22 (-1.66; -0.77), P<0.001 were affected. Propofol elevated 9,10-DiHOME 2.29 (1.62; 2.96), P<0.001 and 12,13-DiHOME 2.13 (1.42; 2.84), P<0.001. Analytes were mostly unaffected by S-ketamine. Sevoflurane decreased tauroursodeoxycholic acid (TUDCA) -2.7 (-3.84; -1.55), P=0.015. Conclusions Dexmedetomidine-induced oxylipin alterations may be connected to pathways associated with organ protection. In contrast to dexmedetomidine, propofol emulsion elevated DiHOMEs, oxylipins associated with acute respiratory distress syndrome, and mitochondrial dysfunction in high concentrations. Further research is needed to establish the behaviour of DIHOMEs during prolonged propofol/dexmedetomidine infusions and to verify the sevoflurane-induced reduction in TUDCA, a suggested neuroprotective agent. Clinical trial registration NCT02624401.
Collapse
Affiliation(s)
- Aleksi Nummela
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Internal Medicine, Turku University Hospital, Turku, Finland
| | - Lauri Laaksonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
| | - Annalotta Scheinin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
| | - Kaike Kaisti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, Intensive Care and Pain Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Valli
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Markus Perola
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Harry Scheinin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Timo Laitio
- Department of Peri-operative Services, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
24
|
Exploration of the Mechanism of Linoleic Acid Metabolism Dysregulation in Metabolic Syndrome. Genet Res (Camb) 2022; 2022:6793346. [PMID: 36518097 PMCID: PMC9722286 DOI: 10.1155/2022/6793346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to explore the mechanism of the linoleic acid metabolism in metabolic syndrome (MetS). RNA-seq data for 16 samples with or without MetS from the GSE145412 dataset were collected. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and gene differential expression analysis were performed. Expression data of differentially expressed genes (DEGs) involved in the linoleic acid metabolism pathway were mapped to the pathway by using Pathview for visualization. There were 19 and 10 differentially expressed biological processes in the disease group and healthy group, respectively. 9 KEGG pathways were differentially expressed in the disease group. Linoleic acid metabolism was the only differentially expressed pathway in the healthy group. The GSVA enrichment score of the linoleic acid metabolism pathway in the disease group was markedly lower than that in the healthy group. The GSEA result showed that the linoleic acid metabolism pathway was significantly downregulated in the disease group. JMJD7-PLA2G4B, PLA2G1B, PLA2G2D, CYP2C8, and CYP2J2 involved in the pathway were significantly downregulated in the disease group. This study may provide novel insight into MetS from the point of linoleic acid metabolism dysregulation.
Collapse
|
25
|
Liu B, Li Y, Suo L, Zhang W, Cao H, Wang R, Luan J, Yu X, Dong L, Wang W, Xu S, Lu S, Shi M. Characterizing microbiota and metabolomics analysis to identify candidate biomarkers in lung cancer. Front Oncol 2022; 12:1058436. [PMID: 36457513 PMCID: PMC9705781 DOI: 10.3389/fonc.2022.1058436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 09/21/2023] Open
Abstract
Background Lung cancer is the leading malignant disease and cause of cancer-related death worldwide. Most patients with lung cancer had insignificant early symptoms so that most of them were diagnosed at an advanced stage. In addition to factors such as smoking, pollution, lung microbiome and its metabolites play vital roles in the development of lung cancer. However, the interaction between lung microbiota and carcinogenesis is lack of systematically characterized and controversial. Therefore, the purpose of this study was to excavate the features of the lung microbiota and metabolites in patients and verify potential biomarkers for lung cancer diagnosis. Methods Lung tissue flushing solutions and bronchoalveolar lavage fluid samples came from patients with lung cancer and non-lung cancer. The composition and variations of the microbiota and metabolites in samples were explored using muti-omics technologies including 16S rRNA amplicon sequencing, metagenomics and metabolomics. Results The metabolomics analysis indicated that 40 different metabolites, such as 9,10-DHOME, sphingosine, and cysteinyl-valine, were statistically significant between two groups (VIP > 1 and P < 0.05). These metabolites were significantly enriched into 11 signal pathways including sphingolipid, autophagy and apoptosis signaling pathway (P < 0.05). The analysis of lung microbiota showed that significant changes reflected the decrease of microbial diversity, changes of distribution of microbial taxa, and variability of the correlation networks of lung microbiota in lung cancer patients. In particular, we found that oral commensal microbiota and multiple probiotics might be connected with the occurrence and progression of lung cancer. Moreover, our study found 3 metabolites and 9 species with significantly differences, which might be regarded as the potential clinical diagnostic markers associated with lung cancer. Conclusions Lung microbiota and metabolites might play important roles in the pathogenesis of lung cancer, and the altered metabolites and microbiota might have the potential to be clinical diagnostic markers and therapeutic targets associated with lung cancer.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yige Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Wei Zhang
- Department of Thoracic Surgery, Zibo Municipal Hospital, Zibo, China
| | - Hongyun Cao
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Ruicai Wang
- Department of Pathology, Zibo Municipal Hospital, Zibo, China
| | - Jiahui Luan
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Xiaofeng Yu
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shiyang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Shiyong Lu
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| |
Collapse
|
26
|
Zhang C, Li W, Li X, Wan D, Mack S, Zhang J, Wagner K, Wang C, Tan B, Chen J, Wu CW, Tsuji K, Takeuchi M, Chen Z, Hammock BD, Pinkerton KE, Yang J. Novel aerosol treatment of airway hyper-reactivity and inflammation in a murine model of asthma with a soluble epoxide hydrolase inhibitor. PLoS One 2022; 17:e0266608. [PMID: 35443010 PMCID: PMC9020733 DOI: 10.1371/journal.pone.0266608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Asthma currently affects more than 339 million people worldwide. In the present preliminary study, we examined the efficacy of a new, inhalable soluble epoxide hydrolase inhibitor (sEHI), 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), to attenuate airway inflammation, mucin secretion, and hyper-responsiveness (AHR) in an ovalbumin (OVA)-sensitized murine model. Male BALB/c mice were divided into phosphate-buffered saline (PBS), OVA, and OVA+TPPU (2- or 6-h) exposure groups. On days 0 and 14, the mice were administered PBS or sensitized to OVA in PBS. From days 26-38, seven challenge exposures were performed with 30 min inhalation of filtered air or OVA alone. In the OVA+TPPU groups, a 2- or 6-h TPPU inhalation preceded each 30-min OVA exposure. On day 39, pulmonary function tests (PFTs) were performed, and biological samples were collected. Lung tissues were used to semi-quantitatively evaluate the severity of inflammation and airway constriction and the volume of stored intracellular mucosubstances. Bronchoalveolar lavage (BAL) and blood samples were used to analyze regulatory lipid mediator profiles. Significantly (p < 0.05) attenuated alveolar, bronchiolar, and pleural inflammation; airway resistance and constriction; mucosubstance volume; and inflammatory lipid mediator levels were observed with OVA+TPPU relative to OVA alone. Cumulative findings indicated TPPU inhalation effectively inhibited inflammation, suppressed AHR, and prevented mucosubstance accumulation in the murine asthmatic model. Future studies should determine the pharmacokinetics (i.e., absorption, distribution, metabolism, and excretion) and pharmacodynamics (i.e., concentration/dose responses) of inhaled TPPU to explore its potential as an asthma-preventative or -rescue treatment.
Collapse
Affiliation(s)
- Chuanzhen Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Wei Li
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Xiyuan Li
- Center for Health and the Environment, University of California, Davis, California, United States of America
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Debin Wan
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Savannah Mack
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Jingjing Zhang
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Karen Wagner
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Chang Wang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Bowen Tan
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Jason Chen
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Kaori Tsuji
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Ziping Chen
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| |
Collapse
|
27
|
Al-Shabrawey M, Elmarakby A, Samra Y, Moustafa M, Looney SW, Maddipati KR, Tawfik A. Hyperhomocysteinemia dysregulates plasma levels of polyunsaturated fatty acids-derived eicosanoids. LIFE RESEARCH 2022; 5:14. [PMID: 36341141 PMCID: PMC9632953 DOI: 10.53388/2022-0106-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-β-synthase heterozygous mice (cβs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cβs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cβs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cβs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cβs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cβs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cβs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Departments of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yara Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed Moustafa
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Stephen W. Looney
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, Michigan, USA
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
28
|
Untargeted Metabolomics Analysis of the Serum Metabolic Signature of Childhood Obesity. Nutrients 2022; 14:nu14010214. [PMID: 35011090 PMCID: PMC8747180 DOI: 10.3390/nu14010214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity rates among children are growing rapidly worldwide, placing massive pressure on healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obesity in children have not been thoroughly investigated. Herein, we explored metabolites associated with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight children. Three metabolomic assays were combined and yielded 726 unique identified metabolites: gas chromatography–mass spectrometry (GC–MS), hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC LC–MS/MS), and lipidomics. Univariate and multivariate analyses showed clear discrimination between the untargeted metabolomes of obese and normal-weight children, with 162 significantly differentially expressed metabolites between groups. Children with obesity had higher concentrations of branch-chained amino acids and various lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential biomarkers and used to study obesity pathomechanisms.
Collapse
|
29
|
Xiong CF, Zhu QF, Chen YY, He DX, Feng YQ. Screening and Identification of Epoxy/Dihydroxy-Oxylipins by Chemical Labeling-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Anal Chem 2021; 93:9904-9911. [PMID: 34227808 DOI: 10.1021/acs.analchem.1c02058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epoxy/dihydroxy-oxylipins are important biologically active compounds that are mainly formed from polyunsaturated fatty acids (PUFAs) in the reactions catalyzed by the cytochrome P450 (CYP 450) enzyme. The analysis of epoxy/dihydroxy-oxylipins would be helpful to gain insights into their landscape in living organisms and provide a reference for the biological studies of these compounds. In this work, we employed chemical labeling-assisted liquid chromatography (LC) coupled with high-resolution mass spectrometry (CL-LC-HRMS) to establish a highly sensitive and specific method for screening and annotating epoxy/dihydroxy-oxylipins in biological samples. The isotope reagents 2-dimethylaminoethylamine (DMED) and DMED-d4 were employed to label epoxy/dihydroxy-oxylipins containing carboxyl groups so as to improve the analysis selectivity and MS detection sensitivity of epoxy/dihydroxy-oxylipins. Based on a pair of diagnostic ions with a mass-to-charge ratio (m/z) difference of 15.995 originating from the fragmentation of derivatives via high-energy collision dissociation (HCD), the potential epoxy/dihydroxy-oxylipins were rapidly screened from the complex matrix. Furthermore, the epoxy/dihydroxy groups could be readily localized by the diagnostic ion pairs, which enabled us to accurately annotate the epoxy/dihydroxy-oxylipins detected in biological samples. The applicability of our method was demonstrated by profiling epoxy/dihydroxy-oxylipins in human serum and heart samples from mice with high-fat diet (HFD). By the proposed method, a total of 32 and 62 potential epoxy/dihydroxy-oxylipins including 42 unreported ones were detected from human serum and the mice heart sample, respectively. Moreover, the relative quantitative results showed that most of the potential epoxy/dihydroxy-oxylipins, especially the oxidation products of linoleic acid (LA) or α-linolenic acid (ALA), were significantly decreased in the heart of mice with HFD. Our developed method is of high specificity and sensitivity and thus is a promising tool for the identification of novel epoxy/dihydroxy-oxylipins in biological samples.
Collapse
Affiliation(s)
- Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Dong-Xiao He
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
30
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|
31
|
Gao H, Yang B, Stanton C, Ross RP, Zhang H, Chen H, Chen W. Linoleic acid induces different metabolic modes in two Bifidobacterium breve strains with different conjugated linoleic acid-producing abilities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Hildreth K, Kodani SD, Hammock BD, Zhao L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J Nutr Biochem 2020; 86:108484. [PMID: 32827665 PMCID: PMC7606796 DOI: 10.1016/j.jnutbio.2020.108484] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid found in the Western diet. Cytochrome P450-derived LA metabolites 9,10-epoxyoctadecenoic acid (9,10-EpOME), 12,13-epoxyoctadecenoic acid (12,13-EpOME), 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME) have been studied for their association with various disease states and biological functions. Previous studies of the EpOMEs and DiHOMEs have focused on their roles in cytotoxic processes, primarily in the inhibition of the neutrophil respiratory burst. More recent research has suggested the DiHOMEs may be important lipid mediators in pain perception, altered immune response and brown adipose tissue activation by cold and exercise. The purpose of this review is to summarize the current understanding of the physiological and pathophysiological roles and modes of action of the EpOMEs and DiHOMEs in health and disease.
Collapse
Affiliation(s)
- Kelsey Hildreth
- Department of Nutrition, University of Tennessee, Knoxville, TN
| | - Sean D Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN.
| |
Collapse
|
33
|
Dietary n-6 and n-3 PUFA alter the free oxylipin profile differently in male and female rat hearts. Br J Nutr 2020; 122:252-261. [PMID: 31405389 DOI: 10.1017/s0007114519001211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxylipins are bioactive lipid mediators synthesised from PUFA. The most well-known oxylipins are the eicosanoids derived from arachidonic acid (ARA), and many of them influence cardiac physiology in health and disease. Oxylipins are also formed from other n-3 and n-6 PUFA such as α-linolenic acid (ALA), EPA, DHA and linoleic acid (LA), but fundamental data on the heart oxylipin profile, and the effect of diet and sex on this profile, are lacking. Therefore, weanling female and male Sprague-Dawley rats were given American Institute of Nutrition (AIN)-93G-based diets modified in oil composition to provide higher levels of ALA, EPA, DHA, LA and LA + ALA, compared with control diets. After 6 weeks, free oxylipins in rat hearts were increased primarily by their precursor PUFA, except for EPA oxylipins, which were increased not only by dietary EPA but also by dietary ALA or DHA. Dietary DHA had a greater effect than ALA or EPA on reducing ARA oxylipins. An exception to the dietary n-3 PUFA-lowering effects on ARA oxylipins was observed for several ARA-derived PG metabolites that were higher in rats given EPA diets. Higher dietary LA increased LA oxylipins, but it had no effect on ARA oxylipins. Overall, heart oxylipins were higher in female rats, but this depended on dietary treatment: the female oxylipin:male oxylipin ratio was higher in rats provided the ALA compared with the DHA diet, with other diet groups having ratios in between. In conclusion, individual PUFA and sex have unique and interactive effects on the rat heart free oxylipin profile.
Collapse
|
34
|
Bannehr M, Löhr L, Gelep J, Haverkamp W, Schunck WH, Gollasch M, Wutzler A. Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts. Cardiovasc Toxicol 2020; 19:365-371. [PMID: 30725262 DOI: 10.1007/s12012-019-09508-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac ischemia/reperfusion injury is associated with the formation and action of lipid mediators derived from polyunsaturated fatty acids. Among them, linoleic acid (LA) is metabolized to epoxyoctadecanoic acids (EpOMEs) by cytochrome P450 (CYP) epoxygenases and further to dihydroxyoctadecanoic acids (DiHOMEs) by soluble epoxide hydrolase (sEH). We hypothesized that EpOMEs and/or DiHOMEs may affect cardiac post-ischemic recovery and addressed this question using isolated murine hearts in a Langendorff system. Hearts from C57Bl6 mice were exposed to 12,13-EpOME, 12,13-DiHOME, or vehicle (phosphate buffered sodium; PBS). Effects on basal cardiac function and functional recovery during reperfusion following 20 min of ischemia were investigated. Electrocardiogram (ECG), left ventricular (LV) pressure and coronary flow (CF) were continuously measured. Ischemia reperfusion experiments were repeated after administration of the sEH-inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). At a concentration of 100 nM, both EpOME and DiHOME decreased post-ischemic functional recovery in murine hearts. There was no effect on basal cardiac parameters. The detrimental effects seen with EpOME, but not DiHOME, were averted by sEH inhibition (AUDA). Our results indicate that LA-derived mediators EpOME/DiHOME may play an important role in cardiac ischemic events. Inhibition of sEH could provide a novel treatment option to prevent detrimental DiHOME effects in acute cardiac ischemia.
Collapse
Affiliation(s)
- Marwin Bannehr
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Lena Löhr
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia Gelep
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wilhelm Haverkamp
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Maik Gollasch
- Experimental and Clinical Research Center, 16341, Berlin, Germany
- Department of Nephrology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexander Wutzler
- Experimental and Clinical Research Center, 16341, Berlin, Germany
- Department of Electrophysiology and Cardiac Rhythm Management, St. Joseph Hospital, Ruhr-University Bochum, 44791, Bochum, Germany
| |
Collapse
|
35
|
Abstract
Oxygen deficiency in the plateau environment weakens aerobic metabolism and reduces the energy supply, leading to high-altitude diseases including decreased circulatory function, decreased nutrient and energy supply to tissues and organs, and decreased waste discharge. The involvement of many metabolic pathways is reflected in dramatic changes in levels of endogenous small molecule metabolites. Metabolomics represents a promising technique for mechanistic studies and drug screening, and metabonomics, or quantitative metabolomics, has been increasingly applied to the study of hypoxic diseases and their pathogenesis, as well as to pharmacodynamics at high altitudes. In this article, we review the recent literature on the pathogenesis of altitude hypoxia and the clinical and preclinical metabonomics of drug interventions. Endogenous metabolites and metabolic pathways change significantly under high-altitude hypoxia. Some drug interventions have also been shown to regulate pathway metabolism, and the problems of applying metabonomics to hypoxic diseases at high altitude and the prospects for its future application are summarized.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Wen Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China.,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
| |
Collapse
|
36
|
Natarajan G, Perriotte-Olson C, Casey CA, Donohue TM, Talmon GA, Harris EN, Kabanov AV, Saraswathi V. Effect of nanoformulated copper/zinc superoxide dismutase on chronic ethanol-induced alterations in liver and adipose tissue. Alcohol 2019; 79:71-79. [PMID: 30611703 DOI: 10.1016/j.alcohol.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously reported that nanoformulated copper/zinc superoxide dismutase (Nano) attenuates non-alcoholic fatty liver disease and adipose tissue (AT) inflammation in obese animals. Here, we sought to determine whether Nano treatment attenuates alcohol-associated liver disease (AALD) and AT inflammation in alcohol-fed mice. METHODS We pre-treated E-47 cells (HepG2 cells that over-express CYP2E1) with native- or nano-superoxide dismutase (SOD) for 6 h, followed by treatment with ethanol and/or linoleic acid (LA), a free fatty acid. For in vivo studies, male C57BL/6 mice were fed the Lieber-DeCarli control or ethanol liquid diet for 4 weeks. The mice received Nano once every 2 days during the last 2 weeks of ethanol feeding. RESULTS Our in vitro studies revealed that Nano pretreatment reduced LA + ethanol-induced oxidative stress in E-47 cells. Our in vivo experiments showed that ethanol-fed Nano-treated mice had 22% lower hepatic triglyceride levels than mice fed ethanol alone. Nano-treated ethanol-fed mice also had 2-fold lower levels of Cd68 and similarly reduced levels of Ccl2 and Mmp12 mRNAs, than in untreated ethanol-fed mice. We also noted that ethanol feeding caused a remarkable increase in hepatic and/or plasma MCP-1 and CCR2 protein, which was blunted in ethanol + Nano-treated animals. The hepatic content of SREBP-1c, a transcription factor that promotes lipogenesis, was higher in ethanol-fed mice than controls but was attenuated in ethanol + Nano-treated animals. Further, livers of ethanol + Nano-treated mice had significantly higher levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) than both control and ethanol-fed mice. In AT, the levels of Il6 mRNA, a hepatoprotective cytokine, and that of Arg1, a marker of anti-inflammatory macrophages, were significantly increased in ethanol + Nano-treated mice compared with control mice. CONCLUSION Our data indicate that Nano treatment attenuates ethanol-induced steatohepatitis and that this effect is associated with an apparent activation of AMPK signaling. Our data also suggest that Nano induces Arg1 and Il6 expression in AT, suggesting anti-inflammatory effects in this tissue.
Collapse
Affiliation(s)
- Gopalakrishnan Natarajan
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, United States
| | - Curtis Perriotte-Olson
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, United States
| | - Carol A Casey
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, United States; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Terrence M Donohue
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, United States; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Alexander V Kabanov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, United States; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States.
| |
Collapse
|
37
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
38
|
Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. Transl Stroke Res 2018; 10:522-533. [DOI: 10.1007/s12975-018-0672-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
|
39
|
Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1142-1154. [PMID: 29877318 DOI: 10.1038/aps.2018.24] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the number one cause of mortality. Approximately 18 million people died from CVDs in 2015, representing more than 30% of all global deaths. New diagnostic tools and therapies are eagerly required to decrease the prevalence of CVDs related to mortality and/or risk factors leading to CVDs. Oxylipins are a group of metabolites, generated via oxygenation of polyunsaturated fatty acids that are involved in inflammation, immunity, and vascular functions, etc. Thus far, over 100 oxylipins have been identified, and have overlapping and interconnected roles. Important CVD pathologies such as hyperlipidemia, hypertension, thrombosis, hemostasis and diabetes have been linked to abnormal oxylipin signaling. Oxylipins represent a new era of risk markers and/or therapeutic targets in several diseases including CVDs. The role of many oxylipins in the progression or regression in CVD, however, is still not fully understood. An increased knowledge of the role of these oxygenated polyunsaturated fatty acids in cardiovascular dysfunctions or CVDs including hypertension could possibly lead to the development of biomarkers for the detection and their treatment in the future.
Collapse
|
40
|
Contreras GA, Strieder-Barboza C, de Souza J, Gandy J, Mavangira V, Lock AL, Sordillo LM. Periparturient lipolysis and oxylipid biosynthesis in bovine adipose tissues. PLoS One 2017; 12:e0188621. [PMID: 29206843 PMCID: PMC5716552 DOI: 10.1371/journal.pone.0188621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
The periparturient period of dairy cows is characterized by intense lipolysis in adipose tissues (AT), which induces the release of free fatty acids (FFA) into circulation. Among FFA, polyunsaturated fatty acids are susceptible to oxidation and can modulate inflammatory responses during lipolysis within AT. Linoleic and arachidonic acid oxidized products (oxylipids) such as hydroxy-octadecadienoic acids (HODE) and hydroxy-eicosatetraenoic acids (HETE), were recently identified as products of lipolysis that could modulate AT inflammation during lipolysis. However, the effect of lipolysis intensity during the transition from gestation to lactation on fatty acid substrate availability and subsequent AT oxylipid biosynthesis is currently unknown. We hypothesized that in periparturient dairy cows, alterations in AT and plasma fatty acids and oxylipid profiles coincide with changes in lipolysis intensity and stage of lactation. Blood and subcutaneous AT samples were collected from periparturient cows at -27±7 (G1) and -10±5 (G2) d prepartum and at 8±3 d postpartum (PP). Targeted lipidomic analysis was performed on plasma and AT using HPLC-MS/MS. We report that FFA concentrations increased as parturition approached and were highest at PP. Cows exhibiting high lipolysis rate at PP (FFA>1.0 mEq/L) had higher body condition scores at G1 compared to cows with low lipolysis rate (FFA<1.0 mEq/L). Concentrations of plasma linoleic and arachidonic acids were increased at PP. In AT, 13-HODE, and 5-, 11- and 15-HETE were increased at PP compared to G1 and G2. Concentrations of beta hydroxybutyrate were positively correlated with those of 13-HODE and 15-HETE in AT. Plasma concentrations of 5- and 20-HETE were increased at PP. These data demonstrate that prepartum adiposity predisposes cows to intense lipolysis post-partum and may exacerbate AT inflammation because of increased production of pro-inflammatory oxylipids including 5- and 15-HETE and 13-HODE. These results support a role for certain linoleic and arachidonic acid-derived oxylipids as positive and negative modulators of AT inflammation during periparturient lipolysis.
Collapse
Affiliation(s)
- G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Clarissa Strieder-Barboza
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Jonas de Souza
- Department of Animal Science, Michigan State University, East Lansing, MI, United States of America
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, United States of America
| | - Lorraine M. Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
41
|
Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice. Sci Rep 2017; 7:12488. [PMID: 28970503 PMCID: PMC5624939 DOI: 10.1038/s41598-017-12624-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity–C18 epoxide and diol oxylipins.
Collapse
|
42
|
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 2017; 313:H903-H918. [PMID: 28801523 DOI: 10.1152/ajpheart.00201.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 01/21/2023]
Abstract
Oxylipins are a group of fatty acid metabolites generated via oxygenation of polyunsaturated fatty acids and are involved in processes such as inflammation, immunity, pain, vascular tone, and coagulation. As a result, oxylipins have been implicated in many conditions characterized by these processes, including cardiovascular disease and aging. The best characterized oxylipins in relation to cardiovascular disease are derived from the ω-6 fatty acid arachidonic acid. These oxylipins generally increase inflammation, hypertension, and platelet aggregation, although not universally. Similarly, oxylipins derived from the ω-6 fatty acid linoleic acid generally have more adverse than beneficial cardiovascular effects. Alternatively, most oxylipins derived from 20- and 22-carbon ω-3 fatty acids have anti-inflammatory, antiaggregatory, and vasodilatory effects that help explain the cardioprotective effects of these fatty acids. Much less is known regarding the oxylipins derived from the 18-carbon ω-3 fatty acid α-linolenic acid, but clinical trials with flaxseed supplementation have indicated that these oxylipins can have positive effects on blood pressure. Normal aging also is associated with changes in oxylipin levels in the brain, vasculature, and other tissues, indicating that oxylipin changes with aging may be involved in age-related changes in these tissues. A small number of trials in humans and animals with interventions that contain either 18-carbon or 20- and 22-carbon ω-3 fatty acids have indicated that dietary-induced changes in oxylipins may be beneficial in slowing the changes associated with normal aging. In summary, oxylipins are an important group of molecules amenable to dietary manipulation to target cardiovascular disease and age-related degeneration.NEW & NOTEWORTHY Oxylipins are an important group of fatty acid metabolites amenable to dietary manipulation. Because of the role they play in cardiovascular disease and in age-related degeneration, oxylipins are gaining recognition as viable targets for specific dietary interventions focused on manipulating oxylipin composition to control these biological processes.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and .,Canadian Centre for Agri-food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| |
Collapse
|
43
|
Mavangira V, Sordillo LM. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res Vet Sci 2017; 116:4-14. [PMID: 28807478 DOI: 10.1016/j.rvsc.2017.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Periparturient dairy cows experience an increased incidence and severity of several inflammatory-based diseases such as mastitis and metritis. Factors associated with the physiological adaptation to the onset of lactation can impact the efficiency of the inflammatory response at a time when it is most needed to eliminate infectious pathogens that cause these economically important diseases. Oxidative stress, for example, occurs when there is an imbalance between the production of oxygen radicals during periods of high metabolic demand and the reduced capabilities of the host's antioxidant defenses. The progressive development of oxidative stress in early lactation cows is thought to be a significant underlying factor leading to dysfunctional inflammatory responses. Reactive oxygen species (ROS) are also produced by leukocytes during inflammation resulting in positive feedback loops that can further escalate oxidative stress during the periparturient period. During oxidative stress, ROS can modify polyunsaturated fatty acids (PUFA) associated with cellular membranes, resulting in the biosynthesis of oxidized products called oxylipids. Depending on the PUFA substrate and oxidation pathway, oxylipids have the capacity of either enhancing or resolving inflammation. In mediating their effects, oxylipids can directly or indirectly target sites of ROS production and thus control the degree of oxidative stress. This review discusses the evidence supporting the roles of oxylipids in the regulation of oxidative stress and the subsequent development of uncontrolled inflammatory responses. Further, the utility of some of the oxylipids as oxidative stress markers that can be exploited in developing and monitoring therapies for inflammatory-based diseases in dairy cattle is discussed. Understanding of the link between some oxylipids and the development or resolution of oxidative stress could provide novel therapeutic targets to limit immunopathology, reduce antibiotic usage, and optimize the resolution of inflammatory-based diseases in periparturient dairy cows.
Collapse
Affiliation(s)
- Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, United States.
| |
Collapse
|
44
|
Trindade-da-Silva CA, Bettaieb A, Napimoga MH, Lee KSS, Inceoglu B, Ueira-Vieira C, Bruun D, Goswami SK, Haj FG, Hammock BD. Soluble Epoxide Hydrolase Pharmacological Inhibition Decreases Alveolar Bone Loss by Modulating Host Inflammatory Response, RANK-Related Signaling, Endoplasmic Reticulum Stress, and Apoptosis. J Pharmacol Exp Ther 2017; 361:408-416. [PMID: 28356494 DOI: 10.1124/jpet.116.238113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Aggregatibacter actinomycetemcomitans Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by A. actinomycetemcomitans This was associated with decreased expression of key osteoclastogenic molecules, receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts. In addition, downstream kinases p38 and c-Jun N-terminal kinase known to be activated in response to inflammatory signals were abrogated after TPPU treatment or in sEH KO mice. Moreover, endoplasmic reticulum stress was elevated in periodontal disease but was abrogated after TPPU treatment and in sEH knockout mice. Together, these results demonstrated that sEH pharmacological inhibition may be of therapeutic value in periodontitis.
Collapse
Affiliation(s)
- Carlos Antonio Trindade-da-Silva
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Ahmed Bettaieb
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Marcelo Henrique Napimoga
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Bora Inceoglu
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Carlos Ueira-Vieira
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Donald Bruun
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Sumanta Kumar Goswami
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Fawaz G Haj
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| |
Collapse
|
45
|
Shayakhmetova GM, Bondarenko LB, Voronina AK, Kovalenko VM. Comparative investigation of methionine and novel formulation Metovitan protective effects in Wistar rats with testicular and epididymal toxicity induced by anti-tuberculosis drugs co-administration. Food Chem Toxicol 2017; 99:222-230. [DOI: 10.1016/j.fct.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
|
46
|
Xu J, Morisseau C, Yang J, Lee KSS, Kamita SG, Hammock BD. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:62-69. [PMID: 27369469 PMCID: PMC5010450 DOI: 10.1016/j.ibmb.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Shizuo G Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
47
|
Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ. PLoS One 2016; 11:e0162147. [PMID: 27583776 PMCID: PMC5008628 DOI: 10.1371/journal.pone.0162147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
Coronary reactive hyperemia (CRH) is a physiological response to ischemic insult that prevents the potential harm associated with an interruption of blood supply. The relationship between the pharmacologic inhibition of soluble epoxide hydrolase (sEH) and CRH response to a brief ischemia is not known. sEH is involved in the main catabolic pathway of epoxyeicosatrienoic acids (EETs), which are converted into dihydroxyeicosatrienoic acids (DHETs). EETs protect against ischemia/reperfusion injury and have numerous beneficial physiological effects. We hypothesized that inhibition of sEH by t-AUCB enhances CRH in isolated mouse hearts through changing the oxylipin profiles, including an increase in EETs/DHETs ratio. Compared to controls, t-AUCB-treated mice had increased CRH, including repayment volume (RV), repayment duration, and repayment/debt ratio (p < 0.05). Treatment with t-AUCB significantly changed oxylipin profiles, including an increase in EET/DHET ratio, increase in EpOME/DiHOME ratio, increase in the levels of HODEs, decrease in the levels of mid-chain HETEs, and decrease in prostanoids (p < 0.05). Treatment with MS-PPOH (CYP epoxygenase inhibitor) reduced CRH, including RV (p < 0.05). Involvement of PPARγ in the modulation of CRH was demonstrated using a PPARγ-antagonist (T0070907) and a PPARγ-agonist (rosiglitazone). T0070907 reduced CRH (p < 0.05), whereas rosiglitazone enhanced CRH (p < 0.05) in isolated mouse hearts compared to the non-treated. These data demonstrate that sEH inhibition enhances, whereas CYP epoxygenases-inhibition attenuates CRH, PPARγ mediate CRH downstream of the CYP epoxygenases-EET pathway, and the changes in oxylipin profiles associated with sEH-inhibition collectively contributed to the enhanced CRH.
Collapse
|
48
|
Nieman DC, Meaney MP, John CS, Knagge KJ, Chen H. 9- and 13-Hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2h running. Brain Behav Immun 2016; 56:246-52. [PMID: 27018002 DOI: 10.1016/j.bbi.2016.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
This study utilized a pro-inflammatory exercise mode to explore potential linkages between increases in 9- and 13-hydroxy-octadecadienoic acid (9+13 HODE) and biomarkers for inflammation, oxidative stress, and muscle damage. Male (N=10) and female (N=10) runners ran at ∼70% VO2max for 1.5h followed by 30min of downhill running (-10%). Blood samples were taken pre-run and immediately-, 1-h-, and 24-h post-run, and analyzed for 9+13 HODE, F2-isoprostanes, six cytokines, C-reactive protein (CRP), creatine kinase (CK), and myoglobin (MYO). Gender groups performed at comparable relative heart rate and oxygen consumption levels during the 2-h run. All outcome measures increased post-run (time effects, P⩽0.001), with levels near pre-run levels by 24h except for CRP, CK, MYO, and delayed onset of muscle soreness (DOMS). Plasma 9+13 HODE increased 314±38.4% post-run (P<0.001), 77.3±15.8% 1-h post-run (P<0.001), and 40.6±16.4% 24-h post-exercise (P=0.024), and F2-isoprostanes increased 50.8±8.9% post-run (P<0.001) and 19.0±5.3% 1-h post-run (P=0.006). Post-run increases were comparable between genders for all outcomes except for 9+13 HODE (interaction effect, P=0.024, post-run tending higher in females), IL-10 (P=0.006, females lower), and DOMS (P=0.029, females lower). The pre-to-post-run increase in 9+13 HODEs was not related to other outcomes except for plasma granulocyte colony stimulating factor (GCSF) (r=-0.710, P<0.001) and IL-6 (r=-0.457, P=0.043). Within the context of this study, exercise-induced increases in 9+13 HODEs tended higher in females, and were not related to increases in F2-isoprostanes, muscle damage, or soreness. The negative relationships to GCSF and IL-6 suggest a linkage between 9+13 HODES and exercise-induced neutrophil chemotaxis, degranulation, and inflammation.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States.
| | - Mary Pat Meaney
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Casey S John
- Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Kevin J Knagge
- Analytical Sciences, David H. Murdock Research Institute, Kannapolis, NC, United States
| | - Huiyuan Chen
- Analytical Sciences, David H. Murdock Research Institute, Kannapolis, NC, United States
| |
Collapse
|
49
|
Abstract
Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24-48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1(+), Ly6c(hi), CCR2(hi), CCL2(hi), and CX3CR1(lo) In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)(-/-) mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6c(hi) monocytes and elevated F4/80(hi) macrophages and B, T, and dendritic cells. Ly6c(hi) and Ly6c(lo) monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity.
Collapse
|
50
|
Song H, Wu H, Geng Z, Sun C, Ren S, Wang D, Zhang M, Liu F, Xu W. Simultaneous Determination of 13-HODE, 9,10-DHODE, and 9,10,13-THODE in Cured Meat Products by LC-MS/MS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|