1
|
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol 2025; 15:1487641. [PMID: 39834364 PMCID: PMC11743475 DOI: 10.3389/fmicb.2024.1487641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics. It not only improves the viability and stability of probiotic cells, but also inhibits the growth of pathogenic strains. Lactobacillus and Bifidobacterium spp. are most commonly used as probiotics. The other microbial spp. that can be used as probiotics are Bacillus, Streptococcus, Enterococcus, and Saccharomyces. Probiotics can be used for the treatment of diabetes, obesity, inflammatory, cardiovascular, respiratory, Central nervous system disease (CNS) and digestive disorders. It is also essential to encapsulate live microorganisms that promote intestinal health. Encapsulation of probiotics safeguards them against risks during production, storage, and gastrointestinal transit. Heat, pressure, and oxidation eradicate probiotics and their protective qualities. Encapsulation of probiotics prolongs their viability, facilitates regulated release, reduces processing losses, and enables application in functional food products. Probiotics as microspheres produced through spray drying or coacervation. This technique regulates the release of gut probiotics and provides stress resistance. Natural encapsulating materials including sodium alginate, calcium chloride, gel beads and polysaccharide promoting safeguards in probiotics during the digestive process. However, several methods including, spray drying where liquid is atomized within a heated air chamber to evaporate moisture and produce dry particles that improves the efficacy and stability of probiotics. Additionally, encapsulating probiotics with prebiotics or vitamins enhance their efficacy. Probiotics enhance immune system efficacy by augmenting the generation of antibodies and immunological cells. It combats illnesses and enhances immunity. Recent studies indicate that probiotics may assist in the regulation of weight and blood glucose levels and influence metabolism and insulin sensitivity. Emerging research indicates that the "gut-brain axis" connects mental and gastrointestinal health. Probiotics may alleviate anxiety and depression via influencing neurotransmitter synthesis and inflammation. Investigations are underway about the dermatological advantages of probiotics that forecasting the onsite delivery of probiotics, encapsulation is an effective technique and requires more consideration from researchers. This review focuses on the applications of probiotics, prebiotics and synbiotics in the prevention and treatment of human health.
Collapse
Affiliation(s)
- Bhutada Sarita
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Dahikar Samadhan
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Md Zakir Hassan
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Elena G. Kovaleva
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
2
|
Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide-based gels as food-grade delivery systems for probiotics: A review. Compr Rev Food Sci Food Saf 2025; 24:e70111. [PMID: 39865632 DOI: 10.1111/1541-4337.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025]
Abstract
Probiotics are highly regarded for their multiple functions, such as regulating gut health, enhancing the immune system, and preventing chronic diseases. However, their stability in harsh environments and targeted release remain significant challenges. Therefore, exploring effective protection and delivery strategies to ensure targeted release of probiotics is critically important. Polysaccharides, known for their non-toxicity, excellent biocompatibility, and superior biodegradability, show broad prospects in probiotic delivery by forming physical barriers to protect the probiotics. Particularly, polysaccharide-based gels (PBGs), with their unique "spider-web" like structure, capture and ensure the targeted release of probiotics, significantly enhancing their efficacy. This review discusses common polysaccharides used in PBG preparation, their classification and synthesis in food applications, and the advantages of PBGs as probiotic delivery systems. Despite their potential, challenges such as inconsistent gel properties and the need for improved stability remain. Future research should focus on developing novel PBG materials with higher biodegradability and mechanical strength, optimizing the physicochemical properties and cross-linking methods, as well as designing multilayered structures for more precise release control. Additionally, exploring the co-delivery of probiotics with prebiotics, active ingredients, or multi-strain systems could further enhance the efficacy of probiotic delivery.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zelin Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huidan Ouyang
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
- Vocational Teachers College, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
5
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
6
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
7
|
Caille C, Boukraâ M, Rannou C, Villière A, Catanéo C, Lethuaut L, Lagadec-Marquez A, Bechaux J, Prost C. Analysis of Volatile Compounds in Processed Cream Cheese Models for the Prediction of "Fresh Cream" Aroma Perception. Molecules 2023; 28:7224. [PMID: 37894701 PMCID: PMC10609086 DOI: 10.3390/molecules28207224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict "fresh cream" aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict "fresh cream" aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a "milk" odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a "granular" and "brittle" texture and a "salty" and "sour" taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for "cooked" and "chemical" aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the "fresh cream" aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics.
Collapse
Affiliation(s)
- Coline Caille
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
- Bel Group—Bio-Engineering Team, 41100 Vendôme, France
| | - Mariem Boukraâ
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| | - Cécile Rannou
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| | - Angélique Villière
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| | - Clément Catanéo
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| | - Laurent Lethuaut
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| | | | - Julia Bechaux
- Bel Group—Bio-Engineering Team, 41100 Vendôme, France
| | - Carole Prost
- Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France; (M.B.); (C.R.); (C.C.); (L.L.)
| |
Collapse
|
8
|
Russell S, Bruns N. Encapsulation of Fragrances in Micro- and Nano-Capsules, Polymeric Micelles, and Polymersomes. Macromol Rapid Commun 2023; 44:e2300120. [PMID: 37150605 DOI: 10.1002/marc.202300120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Fragrances are ubiquitously and extensively used in everyday life and several industrial applications, including perfumes, textiles, laundry formulations, hygiene household products, and food products. However, the intrinsic volatility of these small organic molecules leaves them particularly susceptible to fast depletion from a product or from the surface they have been applied to. Encapsulation is a very effective method to limit the loss of fragrance during their use and to sustain their release. This review gives an overview of the different materials and techniques used for the encapsulation of fragrances, scents, and aromas, as well as the methods used to characterize the resulting encapsulation systems, with a particular focus on cyclodextrins, polymer microcapsules, inorganic microcapsules, block copolymer micelles, and polymersomes for fragrance encapsulation, sustained release, and controlled release.
Collapse
Affiliation(s)
- Sam Russell
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| | - Nico Bruns
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| |
Collapse
|
9
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
English M, Okagu OD, Stephens K, Goertzen A, Udenigwe CC. Flavour encapsulation: A comparative analysis of relevant techniques, physiochemical characterisation, stability, and food applications. Front Nutr 2023; 10:1019211. [PMID: 36937359 PMCID: PMC10017510 DOI: 10.3389/fnut.2023.1019211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Flavour is an important component that impacts the quality and acceptability of new functional foods. However, most flavour substances are low molecular mass volatile compounds, and direct handling and control during processing and storage are made difficult due to susceptibility to evaporation, and poor stability in the presence of air, light, moisture and heat. Encapsulation in the form of micro and nano technology has been used to address this challenge, thereby promoting easier handling during processing and storage. Improved stability is achieved by trapping the active or core flavour substances in matrices that are referred to as wall or carrier materials. The latter serve as physical barriers that protect the flavour substances, and the interactions between carrier materials and flavour substances has been the focus of many studies. Moreover, recent evidence also suggests that enhanced bioavailability of flavour substances and their targeted delivery can be achieved by nanoencapsulation compared to microencapsulation due to smaller particle or droplet sizes. The objective of this paper is to review several relevant aspects of physical-mechanical and physicochemical techniques employed to stabilize flavour substances by encapsulation. A comparative analysis of the physiochemical characterization of encapsulates (particle size, surface morphology and rheology) and the main factors that impact the stability of encapsulated flavour substances will also be presented. Food applications as well as opportunities for future research are also highlighted.
Collapse
Affiliation(s)
- Marcia English
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
- *Correspondence: Marcia English,
| | - Ogadimma Desmond Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Kristen Stephens
- Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alex Goertzen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chibuike C. Udenigwe
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Chibuike C. Udenigwe,
| |
Collapse
|
11
|
Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, Nunes N, Gouveia CSS, Alves S, Borges JP, Pinheiro de Carvalho MÂA. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010055. [PMID: 36616183 PMCID: PMC9823467 DOI: 10.3390/plants12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.
Collapse
Affiliation(s)
- David Jíménez-Arias
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, Avenida, Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Spain
| | - Patrícia Silva
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Henrique Carrêlo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Gonçalves
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - José Filipe Teixeira Ganança
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nuno Nunes
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carla S. S. Gouveia
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sónia Alves
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - João Paulo Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Miguel Â. A. Pinheiro de Carvalho
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
12
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
13
|
Tarasov SE, Plekhanova YV, Kitova AE, Bykov AG, Machulin AV, Kolesov VV, Klenova NA, Revin VV, Ponamoreva ON, Reshetilov AN. Bacterial Cellulose as a Matrix for Microorganisms in Bioelectrocatalytic Systems. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Formulation and characterisation of kappa-carrageenan gels with non-ionic surfactant for melting-triggered controlled release. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Dual stimuli-sensitive carrageenan-based formulation for additive manufacturing. Int J Biol Macromol 2021; 189:370-379. [PMID: 34450141 DOI: 10.1016/j.ijbiomac.2021.08.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
The design and development of controlled release systems of molecules of interest (nutrients, flavors, and drugs) have attracted significant attention over several years. Herein, we report a formulation of dual temperature and electro responsive κ- and ι-carrageenan based hydrogel for efficient food material and drug delivery. The microstructure and the thermal behavior of the hydrogel were characterized. The in-vitro drug release from the hydrogel was also studied. Using this carrageenan-based formulation and folic acid as the drug model, a high drug loading, and a sustained release because of either electric field or temperature were observed. In principle, the proposed formulation does not rely on 3D printing to perform its function; however, it adds to the feedstocks for 3D printing in the food and pharmaceutical industries. For the future, this could allow potentially more complex smart structures to be created from this material, further tuning release behavior.
Collapse
|
17
|
Abstract
Fragrance is a commonly used substance in a number of commercial products, and fine control over the release behavior of the fragrance is essential for its successful application. Understanding the release behavior of the fragrance is the key to realizing the control of its release. Herein, we use tobacco leaf as the model substrate and investigate the mechanism of eugenol release from tobacco leaf. Our results show that interaction between eugenol and tobacco leaf is weak physical adsorption, and the eugenol release from tobacco leaf substrate is a temperature-dependent process. Further analysis on the release behavior reveals that eugenol release is closely associated with the morphology change of tobacco leaves under heating conditions. Our results provide insight into the release mechanism of fragrance from polymer substrate and may be useful for the future design of fragrance release systems.
Collapse
|
18
|
Enhancement of the Antioxidant and Antimicrobial Activities of Porphyran through Chemical Modification with Tyrosine Derivatives. Molecules 2021; 26:molecules26102916. [PMID: 34068969 PMCID: PMC8156949 DOI: 10.3390/molecules26102916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.
Collapse
|
19
|
Chudasama NA, Sequeira RA, Moradiya K, Prasad K. Seaweed Polysaccharide Based Products and Materials: An Assessment on Their Production from a Sustainability Point of View. Molecules 2021; 26:2608. [PMID: 33947023 PMCID: PMC8124237 DOI: 10.3390/molecules26092608] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the Earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc., have several applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications. This review covers published literature on the seaweed polysaccharides, their origin, and extraction from seaweeds, application, and chemical modification. Derivatization of the polysaccharides to impart new functionalities by chemical modification such as esterification, amidation, amination, C-N bond formation, sulphation, acetylation, phosphorylation, and graft copolymerization is discussed. The suitability of extraction of seaweed polysaccharides such as agar, carrageenan, and alginate using ionic solvent systems from a sustainability point of view and future prospects for efficient extraction and functionalization of seaweed polysaccharides is also included in this review article.
Collapse
Affiliation(s)
- Nishith A. Chudasama
- P. D. Patel Institute of Applied Sciences, CHARUSAT Campus, Charotar University of Sciences and Technology, Changa 388421, India;
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
| | - Rosy Alphons Sequeira
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinjal Moradiya
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
| | - Kamalesh Prasad
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
21
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
22
|
Zhang T, Lu Z, Wang X, Shen J, Wang J, Niu Y, Xiao Z, Zhang X. Zwitterionic comb-like lipid polymers encapsulating linalool for increasing the fragrance retention time. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Perinelli DR, Palmieri GF, Cespi M, Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 2020; 25:E5878. [PMID: 33322621 PMCID: PMC7763935 DOI: 10.3390/molecules25245878] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (G.F.P.); (M.C.); (G.B.)
| | | | | | | |
Collapse
|
24
|
Silva Batalha L, Pardini Gontijo MT, Vianna Novaes de Carvalho Teixeira A, Meireles Gouvêa Boggione D, Soto Lopez ME, Renon Eller M, Santos Mendonça RC. Encapsulation in alginate-polymers improves stability and allows controlled release of the UFV-AREG1 bacteriophage. Food Res Int 2020; 139:109947. [PMID: 33509500 DOI: 10.1016/j.foodres.2020.109947] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
The bacteriophage UFV-AREG1 was used as a model organism to evaluate the encapsulation via extrusion using different hydrocolloids. Pure alginate [0.75%, 1.0%, 1.5% and 2.0% (m/v)] and mixtures of alginate [0.75% or 1.0% (m/v)] with carrageenan [1.25% (m/v)], chitosan [0.5% (m/v)], or whey protein [1.5% (m/v)] were used to produce bacteriophage-loaded beads. The encapsulating solutions presented flow behavior of non-Newtonian pseudoplastic fluids and the concentration of hydrocolloid did not influence (p > 0.05) the morphology of the beads, except for alginate-chitosan solutions, which presented the higher flow consistency index (K) and the lower flow behavior index (n). The encapsulation efficiency was about 99% and the confocal photomicrography of the encapsulated bacteriophages labeled with fluorescein isothiocyanate showed homogenous distribution of the viral particles within the beads. The phages remained viable in the beads of alginate-whey protein even when submitted to pH 2.5 for 2 h. Beads incubated directly in simulated intestinal fluid (pH 6.8) resulted in a minimal of 50% release of the UFV-AREG1 phages after 5 min, even when previously submitted to the simulated gastric fluid (pH 2.5). Encapsulation enabled phages to remain viable under refrigeration for five months. Encapsulated UFV-AREG1 phages were sensitive to dehydration, suggesting the need for protective agents. In this study, for the first-time bacteriophages were encapsulated in alginate-carrageenan beads, as well as alginate-chitosan as a bead-forming hydrocolloid. In addition, a novel procedure for encapsulating bacteriophages in alginate-whey protein was proposed. The assembled system showed efficiency in the encapsulation of UFV-AREG1 bacteriophages using different hydrocolloids and has potential to be used for the entrapment of a variety of bioactive compounds.
Collapse
Affiliation(s)
- Laís Silva Batalha
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil; Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, São Paulo, Brazil
| | | | | | - Maryoris Elisa Soto Lopez
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil; Department of Food Engineering, Universidad de Córdoba (UNICORDOBA), Montería 230002, Colombia
| | - Monique Renon Eller
- Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900 Minas Gerais, Brazil.
| | | |
Collapse
|
25
|
Qi X, Simsek S, Chen B, Rao J. Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. Int J Biol Macromol 2020; 165:1675-1685. [DOI: 10.1016/j.ijbiomac.2020.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022]
|
26
|
Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, Li B, Huang Q. Effect of linear charge density of polysaccharides on interactions with α-amylase: Self-Assembling behavior and application in enzyme immobilization. Food Chem 2020; 331:127320. [PMID: 32562981 DOI: 10.1016/j.foodchem.2020.127320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 01/29/2023]
Abstract
The co-existence of polysaccharides and enzymes in the food matrix could form complexes that directly influence the catalytic efficacy of enzymes. This work investigated the self-assembly behaviors of α-amylase and charged polysaccharides and fabricated the α-amylase/polysaccharides complex coacervates. The results showed that the linear charge density of polysaccharides had a critical impact on the complex formation, structure, and enzyme protection under acidic conditions. At low pH, α-amylase formed compact and tight coacervates with the λ-carrageenan. However, α-amylase/pectin coacervates dissociated when the pH was lower than 3.0. The optimized binding ratio of α-amylase/λ-carrageenan was 12:1, and α-amylase/pectin was 4:1. Finally, the α-amylase/λ-carrageenan complex coacervates effectively immobilized the enzyme and almost 70% of enzyme activity remained in coacervates after exposure to pH3.0 for 1 h. This study demonstrates that the change in the linear charge density of polysaccharides could regulate the enzyme-catalyzed process in food processing by a simple and fine-controlled method.
Collapse
Affiliation(s)
- Weiping Jin
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhifeng Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengfeng Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyang Shen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenzhou Zhu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingrong Huang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
27
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
28
|
Pei X, Li Y, Du C, Yuan T, Fan C, Hong H, Yuan W. Production of L-alanyl-L-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase. Appl Microbiol Biotechnol 2020; 104:6967-6976. [PMID: 32594215 DOI: 10.1007/s00253-020-10752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Production of Ala-Gln by the E. coli expressing α-amino acid ester acyltransferase was a promising technical route due to its high enzyme activity, but the continuous production ability still needs to improve. Therefore, the immobilized E. coli expressing α-amino acid ester acyltransferase was applied for the continuous production of Ala-Gln. Four materials were selected as embedding medium for the whole cell entrapment of recombinant bacteria. Calcium alginate beads were found to be the most proper entrapment carrier for production of Ala-Gln. The temperature, pH, and repeatability of the immobilized cell were compared with free cells. Results showed that immobilization cell could maintain a wider range of temperature/pH and better stability than free cell (20-35 °C/pH 8.0-9.0, and 25 °C/pH 8.5, respectively). On this basis, continuous production strategy was put forward by filling the immobilized cell in the tubular reactor with multiple control conditions. The Ala-Gln by immobilization cell achieved the productivity of 2.79 mg/(min*mL-CV) without intermittent time. Consequently, these findings suggest that the immobilization technique has potential applications in the production of Ala-Gln by biotechnological method. KEY POINTS: • Immobilization helps to achieve high efficiency production of Ala-Gln. • Immobilized cells have better stability than free cells. • Sodium alginate is the most suitable immobilized material.
Collapse
Affiliation(s)
- Xuze Pei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Fan
- Innobio Corporation Limited, Dalian, 116600, China
| | - Hao Hong
- Innobio Corporation Limited, Dalian, 116600, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
29
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
31
|
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Curr Pharm Des 2020; 25:1172-1186. [PMID: 31465278 DOI: 10.2174/1381612825666190425190754] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient's body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. METHODS Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. RESULTS Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. CONCLUSION In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Suraj Kumar Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Samarendra Maji
- SRM Research Institute, SRM Institute of Science and Technology, Kanchipuram, India
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Gwangwon, Korea
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
32
|
Yassin MA, Gad AAM, Ghanem AF, Abdel Rehim MH. Green synthesis of cellulose nanofibers using immobilized cellulase. Carbohydr Polym 2019; 205:255-260. [DOI: 10.1016/j.carbpol.2018.10.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/02/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
|
33
|
Radulova GM, Slavova TG, Kralchevsky PA, Basheva ES, Marinova KG, Danov KD. Encapsulation of oils and fragrances by core-in-shell structures from silica particles, polymers and surfactants: The brick-and-mortar concept. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Sardari RRR, Nordberg Karlsson E. Marine Poly- and Oligosaccharides as Prebiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11544-11549. [PMID: 30350987 DOI: 10.1021/acs.jafc.8b04418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The marine environment can increase the global production of biomass. Interest in marine macroalgae and microorganisms has increased tremendously as a result of international agendas and market trends promoting sustainability as well as healthy food. Macroalgae and marine microorganisms contain unique poly- and oligosaccharides with different substitutions, e.g., sulfation or carboxylation. There is great potential to find prebiotic compounds from these marine-derived saccharides. However, the exact composition and substituent distribution needed for the activity is to a large extent unexplored. In depth investigations of these compounds will provide us with novel insights on the specific structures required for the observed functions.
Collapse
Affiliation(s)
- Roya R R Sardari
- Biotechnology, Department of Chemistry , Lund University , Post Office Box 124, 221 00 Lund , Sweden
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry , Lund University , Post Office Box 124, 221 00 Lund , Sweden
| |
Collapse
|
35
|
Kaur R, Kukkar D, Bhardwaj SK, Kim KH, Deep A. Potential use of polymers and their complexes as media for storage and delivery of fragrances. J Control Release 2018; 285:81-95. [DOI: 10.1016/j.jconrel.2018.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/15/2022]
|
36
|
Núñez C, Arancibia V, Triviño JJ. A new strategy for the modification of a carbon paste electrode with carrageenan hydrogel for a sensitive and selective determination of arsenic in natural waters. Talanta 2018; 187:259-264. [PMID: 29853044 DOI: 10.1016/j.talanta.2018.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
An adsorptive stripping voltammetric method for the determination of As(III) and Astotal in water samples using a carrageenan modified carbon paste electrode is presented for the first time (CAR-CPE). The modified electrode was prepared in different ways: by adding CAR in solid form or as a hydrogel together with graphite and paraffin, as well as adsorbing CAR by applying a potential on an unmodified carbon paste electrode. The best results were obtained when CAR was incorporated as hydrogel (HCAR-CPE). The selection of the ratio amounts for electrode preparation was carried out applying a multivariate experimental design. Variables like amount of graphite (U1), HCAR (U2) and paraffin (U3) were optimized using a (2K+2K+C) model. The results showed that the amount of HCAR was the most significant factor, and the adequate U1:U2:U3 ratio to prepare the electrode was: 493 mg of graphite, 214 μL of paraffin and 134 μL of carrageenan as gel. The optimum parameters for the determination of As(III) were pH = 3.25 (0.01 mol L-1 H3PO4/H2PO4- solution); Eacc = -0.50 V and tacc = 30 s. The electrode presents good linear behavior concentration range from 0.50 to 6.70 μg L-1, with a limit of detection of 0.22 μg L-1. The relative standard deviation was 5.0% at the 1.5 μg L-1 As(III) level (n = 16). The method was validated by quantifying As(III) in spiked tap water from laboratory (RE: 3.0%), and it was applied for the determination of Astotal in water samples from the Loa River (North of Chile) prior reduction of As(V) with Na2S2O3 solution, obtaining 814.00 ± 0.03 μg L-1. The results of the proposed method were compared with those obtained by adsorptive stripping voltammetry with HMDE and by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques.
Collapse
Affiliation(s)
- Claudia Núñez
- Pontificia Universidad Católica de Chile, Chemistry Faculty, Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - Verónica Arancibia
- Pontificia Universidad Católica de Chile, Chemistry Faculty, Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - Juan José Triviño
- Pontificia Universidad Católica de Chile, Biological Sciences Faculty, Avda, Libertador Bernardo OHiggins 340, Santiago 8331150, Chile.
| |
Collapse
|
37
|
Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates. Catalysts 2018. [DOI: 10.3390/catal8040170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|