1
|
Paiva LS, Dias AP, Motta MH, Baptista JAB. Phytochemicals and Biological Properties of Azorean Camellia sinensis Black Tea Samples from Different Zones of Tea Plantation. PLANTS (BASEL, SWITZERLAND) 2025; 14:103. [PMID: 39795363 PMCID: PMC11723068 DOI: 10.3390/plants14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Camellia sinensis tea has received considerable attention due to its beneficial effects on health, particularly due to its antioxidant properties that are affected by several factors, which have a high influence on the final quality of black tea. The objective of this study was to investigate the biological properties of Azorean C. sinensis black tea from five different zones of tea plantation in order to select specific areas to cultivate tea rich in targeted compounds beneficial to human health. The free radical scavenging activity (FRSA), ferric reducing antioxidant power (FRAP), ferrous ion chelating (FIC) activities, total phenolic content (TPC), total flavonoid content (TFC), and tannins were determined by colorimetric methods, and catechin and theaflavin contents were analyzed by high-pressure liquid chromatography. The results indicated that samples from Zone E (341 m above the sea level) presented higher values of FRSA (EC50 = 7.22 µg/mL), FRAP (EC50 = 9.06 µg/mL), and FIC activities (79.83%) and higher values of total phenolics (264.76 mg GAE/g DE) and almost all catechins. For TFC, the values were very similar between zones, and for theaflavins content, Zone A showed the best levels, followed by Zone E. In general, these results clearly highlight that altitude plays a significant role in enhancing certain compounds of tea, thereby influencing its quality.
Collapse
Affiliation(s)
- Lisete Sousa Paiva
- Department of Science of Physics, Chemistry and Engineering of Faculty of Science and Technology and Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana Paula Dias
- Gorreana Tea Plantation, Gorreana, 9625-304 Maia, Portugal; (A.P.D.); (M.H.M.)
| | | | - José António Bettencourt Baptista
- Department of Science of Physics, Chemistry and Engineering of Faculty of Science and Technology and Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, Portugal;
| |
Collapse
|
2
|
Kwon RH, Na H, Kim JH, Kim SA, Kim SY, Jung HA, Lee SH, Wee CD, Lee KS, Kim HW. Comprehensive profiling of phenolic compounds and triterpenoid saponins from Acanthopanax senticosus and their antioxidant, α-glucosidase inhibitory activities. Sci Rep 2024; 14:26330. [PMID: 39487169 PMCID: PMC11530669 DOI: 10.1038/s41598-024-77574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Acanthopanax senticosus belongs to Araliaceae family and is traditionally used as a tonic. The roots and stems are mainly used as treatments for hypodynamia, rheumatism, and hypertension, but their frequent use may lead to extinction. However, comprehensive and simultaneous analysis of the remaining parts were still limited. There is a need to reorganize them for standardization of functional foods. In this study, 50 phenolic compounds and 82 triterpenoid saponins from the shoots, leaves, fruits, and stems of were characterized using UPLC-QTOF-MS and UPLC-QTRAP-MS/MS. Among them, 52 compounds were newly determined as the cis and malonyl-bound phenolic acids and were found to be structural isomers of Acanthopanax flavonoids and saponins. All compounds were absolutely/relatively quantified, and shoots had the highest content. Peroxynitrite and α-glucosidase inhibitory activities were performed, followed by evaluation of structure-activity relationships. Particularly, hederasaponin B and ciwujianoside B showed remarkable efficacy, which were affected by the C-23 hydroxylation, the C-20(29) double bond, and the presence of rhamnose. These detailed profiling can be used as fundamental data for increasing the utilization of A. senticosus and developing them into functional foods.
Collapse
Affiliation(s)
- Ryeong Ha Kwon
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, 54896, Korea
| | - Hyemin Na
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ju Hyung Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - So Ah Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Se Yeon Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, 54896, Korea
| | - Hyun-Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, 54896, Korea
| | - Sang Hoon Lee
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Chi-Do Wee
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Kwang-Sik Lee
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Heon-Woong Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
3
|
Tuo Y, Lu X, Tao F, Tukhvatshin M, Xiang F, Wang X, Shi Y, Lin J, Hu Y. The Potential Mechanisms of Catechins in Tea for Anti-Hypertension: An Integration of Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Foods 2024; 13:2685. [PMID: 39272451 PMCID: PMC11394219 DOI: 10.3390/foods13172685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Catechins, a class of polyphenolic compounds found in tea, have attracted significant attention due to their numerous health benefits, particularly for the treatment and protection of hypertension. However, the potential targets and mechanisms of action of catechins in combating hypertension remain unclear. This study systematically investigates the anti-hypertensive mechanisms of tea catechins using network pharmacology, molecular docking, and molecular dynamics simulation techniques. The results indicate that 23 potential anti-hypertensive targets for eight catechin components were predicted through public databases. The analysis of protein-protein interaction (PPI) identified three key targets (MMP9, BCL2, and HIF1A). KEGG pathway and GO enrichment analyses revealed that these key targets play significant roles in regulating vascular smooth muscle contraction, promoting angiogenesis, and mediating vascular endothelial growth factor receptor signaling. The molecular docking results demonstrate that the key targets (MMP9, BCL2, and HIF1A) effectively bind with catechin components (CG, GCG, ECG, and EGCG) through hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations further confirmed the stability of the binding between catechins and the targets. This study systematically elucidates the potential mechanisms by which tea catechins treat anti-hypertension and provides a theoretical basis for the development and application of tea catechins as functional additives for the prevention of hypertension.
Collapse
Affiliation(s)
- Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marat Tukhvatshin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fumin Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Tea and Food Sciences, Wuyi University, Wuyishan 354300, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Hu
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Abrahams D, Baker PGL. 3-Methyl Thiophene-Modified Boron-Doped Diamond (BDD) Electrodes as Efficient Catalysts for Phenol Detection-A Case Study for the Detection of Gallic Acid in Three Specific Tea Types. Foods 2024; 13:2447. [PMID: 39123638 PMCID: PMC11311794 DOI: 10.3390/foods13152447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer modification has been established as a cost-effective, simple, in situ method for overcoming some of the inherent disadvantages of boron-doped diamond (BDD) electrodes, and its application has been extended to reliable, low-cost environmental monitoring solutions. The present review focuses on modifying BDD electrodes with semi-conductive polymers acting as redox mediators. This article reports on the development of a 3-methyl thiophene-modified boron-doped diamond (BDD/P3MT) sensor for the electrochemical determination of total phenolic compounds (TPCs) in tea samples, using gallic acid (GA) as a marker. GA is a significant polyphenol with various biological activities, making its quantification crucial. Thus, a simple, fast, and sensitive GA sensor was fabricated using the electroanalytical square wave voltammetry (SWV) technique. The sensor utilizes a semi-conductive polymer, 3-methyl thiophene, as a redox mediator to enhance BDD's sensitivity and selectivity. Electrochemical synthesis was used for polymer deposition, allowing for greater purity and avoiding solubility problems. The BDD/P3MT sensor exhibits good electrochemical properties, including rapid charge transfer and a large electrochemical area, enabling GA detection with a limit of detection of 11 mg/L. The sensor's response was correlated with TPCs measured by the Folin-Ciocalteu method. Square wave voltammetry (SWV) showed a good linear relationship between peak currents and GA concentrations in a wide linear range of 3-71 mg/L under optimal conditions. The BDD/P3MT sensor accurately measured TPCs in green tea, rooibos tea, and black tea samples, with green tea exhibiting the highest TPC levels. The results demonstrate the potential of the modified BDD electrode for the rapid and accurate detection of phenolic compounds in tea, with implications for quality control and antioxidant activity assessments. The prolific publications of the past decade have established BDD electrodes as robust BDD sensors for quantifying polyphenols. Fruits, vegetables, nuts, plant-derived beverages such as tea and wine, traditional Eastern remedies and various herbal nutritional supplements contain phenolic chemicals. The safety concerns of contaminated food intake are significant health concerns worldwide, as there exists a critical nexus between food safety, nutrition, and food security. It has been well established that green tea polyphenol consumption promotes positive health effects. Despite their potential benefits, consuming high amounts of these polyphenols has sparked debate due to concerns over potential negative consequences.
Collapse
Affiliation(s)
- Dhielnawaaz Abrahams
- SensorLab Research Group, Chemistry Department, University of The Western Cape, P.O. Box X17, Cape Town 7535, South Africa;
| | | |
Collapse
|
5
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
6
|
Duan Y, Wang G, Liang L, Wang M, Jiang J, Ma Y, Zhu X, Wu J, Fang W. Intercropping fruit trees in tea plantation improves soil properties and the formation of tea quality components. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108574. [PMID: 38564979 DOI: 10.1016/j.plaphy.2024.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Intercropping has been recommended as a beneficial cropping practice for improving soil characteristic and tea quality. However, there is limited research on the effects of intercropping fruit trees on soil chemical properties, soil aggregate structure, and tea quality components. In this study, intercropping fruit trees, specifically loquats and citrus, had a significant impact on the total available nutrients, AMN, and AP in soil. During spring and autumn seasons, the soil large-macroaggregates (>2 mm) proportion increased by 5.93% and 19.03%, as well as 29.23% and 19.14%, respectively, when intercropping loquats and citrus. Similarly, intercropping waxberry resulted in a highest small-macroaggregates (0.25 mm-2 mm) proportion at 54.89% and 77.32%. Soil aggregate stability parameters of the R0.25, MWD, and GMD were generally considered better soil aggregate stability indicators, and significantly improved in intercropping systems. Intercropping waxberry with higher values for those aggregate stability parameters and lower D values, showed a better soil aggregate distribution, while intercropping loquats and citrus at higher levels of AMN and AP in different soil aggregate sizes. As the soil aggregate sizes increased, the AMN and AP contents gradually decreased. Furthermore, the enhanced levels of amino acids were observed under loquat, waxberry, and citrus intercropping in spring, which increased by 27.98%, 27.35%, and 26.21%, respectively. The contents of tea polyphenol and caffeine were lower under loquat and citrus intercropping in spring. These findings indicated that intercropping fruit trees, specifically loquat and citrus, have immense potential in promoting the green and sustainable development of tea plantations.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Wang
- Horticultural Station, Suzhou, 215000, China
| | - Luyao Liang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menghe Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Wu
- Jiangsu vocational college of agriculture and forestry, Zhenjiang, 212400, China.
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Wang N, Wang Y, Zhang X, Wu Y, Zhang L, Liu G, Fu J, Li X, Mu D, Li Z. Elevated Ozone Reduces the Quality of Tea Leaves but May Improve the Resistance of Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1108. [PMID: 38674517 PMCID: PMC11054534 DOI: 10.3390/plants13081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 (ambient air, Am; ambient air +80 ppb of O3, EO3) on the quality compounds and chemical defenses of a widely cultivated tea variety in China (Camellia sinensis cv. 'Baiye 1 Hao') using open-top chamber (OTC). We found that elevated O3 increased the ratio of total polyphenols to free amino acids while decreasing the value of the catechin quality index, indicating a reduction in leaf quality for green tea. Specifically, elevated O3 reduced concentrations of amino acids and caffeine but shows no impact on the concentrations of total polyphenols in tea leaves. Within individual catechins, elevated O3 increased the concentrations of ester catechins but not non-ester catechins, resulting in a slight increase in total catechins. Moreover, elevated O3 increased the emission of biogenic volatile organic compounds involved in plant defense against herbivores and parasites, including green leaf volatiles, aromatics, and terpenes. Additionally, concentrations of main chemical defenses, represented as condensed tannins and lignin, in tea leaves also increased in response to elevated O3. In conclusion, our results suggest that elevated ground-level O3 may reduce the quality of tea leaves but could potentially enhance the resistance of tea plants to biotic stresses.
Collapse
Affiliation(s)
- Nuo Wang
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuxi Wang
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyang Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiqi Wu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Guanhua Liu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dan Mu
- Anhui Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zhengzhen Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
8
|
Xu X, Guo Y, Chen M, Li N, Sun Y, Ren S, Xiao J, Wang D, Liu X, Pan Y. Hypoglycemic activities of flowers of Xanthoceras sorbifolia and identification of anti-oxidant components by off-line UPLC-QTOF-MS/MS-free radical scavenging detection. CHINESE HERBAL MEDICINES 2024; 16:151-161. [PMID: 38375044 PMCID: PMC10874760 DOI: 10.1016/j.chmed.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 02/21/2024] Open
Abstract
Objective To identify phytochemical constituents present in the extract of flowers of Xanthoceras sorbifolia and evaluate their anti-oxidant and anti-hyperglycemic capacities. Methods The AlCl3 colorimetric method and Prussian Blue assay were used to determine the contents of total flavonoids and total phenolic acids in extraction layers, and the bioactive layers was screened through anti - oxidative activity in vitro. The Waters ACQUITY UPLC system and a Waters ACQUITY UPLC BEH C18 column (2.0 mm × 150 mm, 5 μm) were used to identify the ingredients. And anti-oxidative ingredients were screened by off-line UPLC-QTOF-MS/MS-free radical scavenging. The ameliorative role of it was further evaluated in a high-fat, streptozotocin-induced type 2 diabetic rat model and the study was carried out on NADPH oxidase (PDB ID: 2CDU) by molecular docking. Results Combined with the results of activity screening in vitro, the anti - oxidative part was identified as the ethyl acetate layer. A total of 24 chemical constituents were identified by liquid chromatography-mass spectrometry in the ethyl acetate layer and 13 main anti-oxidative active constituents were preliminarily screened out through off-line UPLC-QTOF-MS/MS-free radical scavenging. In vivo experiments showed that flowers of X. sorbifolia could significantly reduce the blood glucose level of diabetic mice and alleviate liver cell damage. Based on the results of docking analysis related to the identified phytocompounds and oxidase which involved in type 2 diabetes, quercetin 3-O-rutinoside, kaempferol-3-O-rhamnoside, isorhamnetin-3-O-glucoside, and isoquercitrin showed a better inhibitory profile. Conclusion The ethyl acetate layer was rich in flavonoids and phenolic acids and had significant anti-oxidant activity, which could prevent hyperglycemia. This observed activity profile suggested X. sorbifolia flowers as a promising new source of tea to develop alternative natural anti-diabetic products with a high safety margin.
Collapse
Affiliation(s)
- Xiajing Xu
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongli Guo
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Menglin Chen
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shumeng Ren
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Xiao
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoqiu Liu
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingni Pan
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
9
|
Pan Y, Lv H, Zhang F, Chen S, Cheng Y, Ma S, Hu H, Liu X, Cai X, Fan F, Gong S, Chen P, Chu Q. Green tea extracts alleviate acetic acid-induced oral inflammation and reconstruct oral microbial balance in mice. J Food Sci 2023; 88:5291-5308. [PMID: 37889079 DOI: 10.1111/1750-3841.16818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Oral cavity contains the second largest microbial community in the human body. Due to the highly vascularized feature of mouth, oral microbes could directly access the bloodstream and affect the host healthy systemically. The imbalance of oral microbiota is closely related to various oral and systemic diseases. Green tea extracts (GTE) mainly contain tea polyphenols, alkaloids, amino acid, flavones, and so on, which equipped with excellent anti-inflammatory activities. Previous studies have demonstrated the beneficial effects of GTE on oral health. However, most researches used in vitro models or focused on limited microorganisms. In this study, the regulatory effect of GTE on oral microbiome and the alleviative effect on oral inflammation in vivo were evaluated. The results showed that GTE could efficiently alleviate the inflammations of the tongue, cheek pouch, as well as throat. GTE effectively inhibited the activation of NF-κB through the upregulation of the anti-inflammatory cytokine interleukin (IL)-10, consequently leading to reduced expression of pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. The indexes of spleen and thymus were also elevated by GTE in stomatitis mice. Moreover, GTE promoted the growth of probiotics Lactobacillus and Bacillus, inhibited the reproduction of pathogens Achromobacter, reversing the microbiota disorders in oral cavity. This study not only presents a novel approach for enhancing oral microecology but also facilitates the wider adoption of tea consumption.
Collapse
Affiliation(s)
- Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fuyuan Zhang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuxi Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yan Cheng
- Hangzhou Real Taste Tea Culture Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Hao Hu
- College of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiyu Liu
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Xiaoyong Cai
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wu W, Shi J, Jin J, Liu Z, Yuan Y, Chen Z, Zhang S, Dai W, Lin Z. Comprehensive metabolic analyses provide new insights into primary and secondary metabolites in different tissues of Jianghua Kucha tea ( Camellia sinensis var. assamica cv. Jianghua). Front Nutr 2023; 10:1181135. [PMID: 37275632 PMCID: PMC10235520 DOI: 10.3389/fnut.2023.1181135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Background Jianghua Kucha (JHKC) is a special tea germplasm with enriched specialized secondary metabolites, including theacrine, non-epimeric flavanols and methylated flavanols. Moreover, primary metabolites provide precursors and energy for the production of secondary metabolites. However, the accumulation patterns of primary and secondary metabolites in different tissues of JHKC are unclear. Methods The changes of primary and secondary metabolites and related metabolic pathways (primary and secondary metabolism) in different JHKC tissues (the bud, 1st-4th leaves, and new stem) were investigated via metabolomics analysis with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Results Significant differences were observed in 68 primary and 51 secondary metabolites mainly related with the pathways of starch and sucrose, amino acids, caffeine, and flavanols metabolism and TCA cycle. The bud exhibited higher levels of glucose-6-phosphate, citric acid, most amino acids, theobromine, catechin-gallate, epicatechin-gallate, procyanidins, and theasinensins; the 1st leaf showed higher levels of caffeine and epigallocatechin-3-gallate; and the 4th leaf contained higher levels of most monosaccharides, theacrine, and epigallocatechin-3-O-(3"-O-methyl)-gallate. In addition, primary metabolites and important secondary metabolites had certain correlations. Conclusion This study provides comprehensive insight into primary and secondary metabolites in JHKC and offers guidelines for efficiently utilizing specialized metabolites of JHKC in the future.
Collapse
Affiliation(s)
- Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiqiang Jin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd., Changsha, Hunan, China
| | - Zhida Chen
- Chenzhou Guyanxiang Tea Co., Ltd., Chenzhou, Hunan, China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages. Mol Biotechnol 2023; 65:52-60. [PMID: 35780278 DOI: 10.1007/s12033-022-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the molecular mechanisms underlying the differential quality of tea made from leaves at different development stages. Fresh Camellia sinensis (L.) O. Kuntze "Sichuan Colonial" leaves of various development stages, from buds to old leaves, were subjected to transcriptome sequencing and metabolome analysis, and the DESeq package was used for differential expression analysis, followed by functional enrichment analyses and protein interaction analysis. Target metabolome analysis indicated that the contents of most compounds, including theobromine and epicatechin gallate, were lowest in old leaves, and transcriptome analysis revealed that DEGs were significantly involved in extracellular regions and phenylpropanoid biosynthesis, photosynthesis-related pathways, and the oleuropein steroid biosynthesis pathway. Protein-protein interaction analysis identified LOC114256852 as a hub gene. Caffeine, theobromine, L-theanine, and catechins were the main metabolites of the tea leaves, and the contents of all four main metabolites were the lowest in old leaves. Phenylpropanoid biosynthesis, photosynthesis, and brassinosteroid biosynthesis may be important targets for breeding efforts to improve tea quality.
Collapse
|
12
|
Gong Q, Zeng Z, Jiang T, Bai X, Pu C, Hao Y, Guo Y. Anti-fibrotic effect of extracellular vesicles derived from tea leaves in hepatic stellate cells and liver fibrosis mice. Front Nutr 2022; 9:1009139. [PMID: 36276815 PMCID: PMC9582986 DOI: 10.3389/fnut.2022.1009139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023] Open
Abstract
Background Activation of hepatic stellate cells (HSCs) is essential for the pathogenesis of liver fibrosis, there is no effective drug used to prevent or reverse the fibrotic process. Methods With human hepatic stellate cell line LX-2 and mouse model of CCl4-induced liver fibrosis, we investigated the anti-fibrotic effect to liver fibrosis of extracellular vesicles (EVs) extracted from tea leaves through cytological tests such as cell proliferation, cell migration, and cell fibrotic marker. Results It was found that tea-derived EVs (TEVs) inhibited HSCs activation. In CCl4-induced liver fibrosis model, TEVs treatment can significantly improve the pathological changes of liver tissue, inhibit collagen deposition, reduce the number of lipid droplets in liver tissue, and reduce serum AST and ALT levels. In addition, TEVs inhibited TGF-β1 signaling and miR-44 in TEVs had the potential inhibitory effect on liver fibrosis. Conclusions Taken together, our work suggesting that TEVs are novel therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Zhaoyu Zeng
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tao Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Bai
- Department of Cardiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yaying Hao
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Yuanbiao Guo
| |
Collapse
|
13
|
Wang J, Li X, Wu Y, Qu F, Liu L, Wang B, Wang P, Zhang X. HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region. Foods 2022; 11:foods11193016. [PMID: 36230092 PMCID: PMC9563017 DOI: 10.3390/foods11193016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
This study investigates the volatile compounds of green tea produced with different leaves from spring, summer, and autumn in high−latitude region. A total of 95 volatile compounds were identified by gas chromatography–mass spectrometry (GC–MS). Spring, summer and autumn green tea contained 68, 72 and 82 volatile compounds, respectively. Principal component analysis (PCA), partial least squares−discrimination analysis (PLS−DA), and hierarchical cluster analysis (HCA) classified the samples and showed the difference. And 32 key characteristic components were screened out based on variable importance in the projection (VIP) values higher than 1.0. The characteristic volatile compounds of spring green tea including 18 components, such as geranylacetone, phenethyl alcohol, geraniol, β−ionone, jasmone, 1−octen−3−ol and longifolene. 13 components such as 2−methylfuran, indole, 1−octanol, D−limonene and ethanethiol were the key compounds in summer green tea. And 2,4,6−trimethylstyrene was the major differential volatile compounds in autumn green tea. The results increase our knowledge of green tea in different seasons and provide a theoretical basis for production control of green tea.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Wu
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao 266061, China
| | - Baoyi Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: ; Tel.: +86-13969681993
| |
Collapse
|
14
|
Wang F, Zhang B, Wen D, Liu R, Yao X, Chen Z, Mu R, Pei H, Liu M, Song B, Lu L. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004387. [PMID: 36212364 PMCID: PMC9539759 DOI: 10.3389/fpls.2022.1004387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Baohui Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Ren Mu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Integration of Metabolomics and Transcriptomics Reveal the Mechanism Underlying Accumulation of Flavonols in Albino Tea Leaves. Molecules 2022; 27:molecules27185792. [PMID: 36144526 PMCID: PMC9501457 DOI: 10.3390/molecules27185792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Albino tea plants (Camellia sinensis) have been reported to possess highly inhibited metabolism of flavonoids compared to regular green tea leaves, which improves the quality of the tea made from these leaves. However, the mechanisms underlying the metabolism of catechins and flavonols in albino tea leaves have not been well elucidated. In this study, we analyzed a time series of leaf samples in the greening process from albino to green in a thermosensitive leaf-color tea mutant using metabolomics and transcriptomics. The total content of polyphenols dramatically decreased, while flavonols (such as rutin) were highly accumulated in albino leaves compared to in green leaves. After treatment with increasing environment temperature, total polyphenols and catechins were increased in albino mutant tea leaves; however, flavonols (especially ortho-dihydroxylated B-rings such as rutin) were decreased. Meanwhile, weighted gene co-expression network analysis of RNA-seq data suggested that the accumulation of flavonols was highly correlated with genes related to reactive oxygen species scavenging. Histochemical localization further demonstrated that this specific accumulation of flavonols might be related to their biological functions in stress tolerance. These findings suggest that the temperature-stimulated accumulation of total polyphenols and catechins in albino mutant tea leaves was highly induced by enhanced photosynthesis and accumulation of its products, while the initial accumulation and temperature inhibition of flavonols in albino mutant tea leaves were associated with metabolism related to oxidative stress. In conclusion, our results indicate that the biosynthesis of flavonoids could be driven by many different factors, including antioxidation and carbon skeleton storage, under favorable and unfavorable circumstances, respectively. This work provides new insights into the drivers of flavonoid biosynthesis in albino tea leaves, which will further help to increase tea quality by improving cultivation measures.
Collapse
|
16
|
Ahammed GJ, Li X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:390-400. [PMID: 35785551 DOI: 10.1016/j.plaphy.2022.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
17
|
Gomes JS, de Sousa RMF, Petruci JFDS. Paper-based colorimetric sensor array for the rapid and on-site discrimination of green tea samples based on the flavonoid composition. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2471-2478. [PMID: 35687068 DOI: 10.1039/d2ay00590e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green tea is a worldwide appreciated food product with Chinese production estimated to reach over 3m tons in 2027 and with many valuable health effects. The development of analytical methods to discriminate among green tea samples is induced by economic benefits and to avoid deliberate origin mislabeling and adulteration. In this study, we present a paper-based colorimetric sensor array comprised of six ordinary reagents tailored for the discrimination of green tea extracts of different brands according to differences in the composition of flavonoids. The colorimetric array was rationally designed based on indicators that differentially react with a variety of flavonoids via specific functional groups. 4 μL of each reagent was impregnated onto the paper surface followed by the addition of the green tea extract. After 1 minute, digital images were acquired using a smartphone and the color changes were employed to build differential maps with a unique fingerprint for each green tea sample. Moreover, principal component analysis (PCA) and hierarchical component analysis (HCA) were employed to successfully discriminate among the samples, enabling the origin and adulteration identification of the samples. Therefore, this study provides a simple, effective, low-cost, and portable method for quick discrimination and quality control of green tea samples.
Collapse
Affiliation(s)
- Jéssica Santos Gomes
- Institute of Chemistry, Federal University of Uberlândia, 38408-902, Uberlandia, MG, Brazil.
| | | | | |
Collapse
|
18
|
Paiva L, Lima E, Motta M, Marcone M, Baptista J. Investigation of the Azorean Camellia sinensis Processing Conditions to Maximize the Theaflavin 3,3'-di- O-Gallate Content as a Potential Antiviral Compound. Antioxidants (Basel) 2022; 11:1066. [PMID: 35739963 PMCID: PMC9220188 DOI: 10.3390/antiox11061066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
The molecular constituents of Camellia sinensis, in particular epigallocatechin-3-O-gallate (EGCG) and, more remarkably, the galloylated theaflavins, mainly theaflavin-3,3'-di-O-gallate (TF-3,3'-DG), have been reported to inhibit SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), an enzyme required for the cleavage of its polyproteins, to produce vital individual functional proteins for viral cell replication. Our results for total catechin content revealed the values of 174.72, 200.90, and 211.75 mg/g dry weight (DW) in spring, and the values of 183.59, 191.36, and 215.09 mg/g DW in summer, for tea plantation zones 1, 2, and 3, respectively. For the TF-3,3'-DG content, the values of 2.68, 1.13, and 3.72 mg/g DW were observed in spring, and the values of 3.78, 2.06, and 8.91 mg/g DW in summer for zones 1, 2, and 3, respectively. In the same zone, different contents of TF-3,3'-DG were observed across plucking months of April, June, and August, with values of 1.13, 2.77, and 4.18 mg/g DW, respectively, showing higher values in summer. Different values of TF-3,3'-DG contents were also observed in the same tea plantation zone but from different plant parts, revealing higher values in the bud and the first and second leaves (3.62 mg/g DW) and lower values in the third and fourth leaves (1.14 mg/g DW). The TF-3,3'-DG content increased from 3.31 to 4.98 mg/g DW with increased fermentation time from 1 to 3 h, respectively, and increased for lower temperature and longer fermentation time. The aim of this study was to investigate the processing conditions that lead to maximum TF-3,3'-DG content and, given its potential impact as an inhibitor of the 3CLpro enzyme, to create a novel antiviral Azorean black tea.
Collapse
Affiliation(s)
- Lisete Paiva
- Gorreana Tea Plantation, Gorreana, 9625-304 Maia, Portugal; (L.P.); (M.M.)
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Elisabete Lima
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Madalena Motta
- Gorreana Tea Plantation, Gorreana, 9625-304 Maia, Portugal; (L.P.); (M.M.)
| | - Massimo Marcone
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - José Baptista
- Department of Physics, Chemistry and Engineering (DCFQE), Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| |
Collapse
|
19
|
Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Pan SY, Nie Q, Tai HC, Song XL, Tong YF, Zhang LJF, Wu XW, Lin ZH, Zhang YY, Ye DY, Zhang Y, Wang XY, Zhu PL, Chu ZS, Yu ZL, Liang C. Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 2022; 17:27. [PMID: 35193642 PMCID: PMC8861626 DOI: 10.1186/s13020-022-00571-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. Methods We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word “tea”, and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea’s history, culture, customs, experimental studies, and markets. Results China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people’s health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world’s top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. Conclusions Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Hai-Chuan Tai
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yu-Fan Tong
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Long-Jian-Feng Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Wei Wu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Zhao-Heng Lin
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yong-Yu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Du-Yun Ye
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pei-Li Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhu-Sheng Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China. .,EnKang Pharmaceuticals (Guangzhou) Ltd, Guangzhou, China.
| |
Collapse
|
21
|
Abudureheman B, Yu X, Fang D, Zhang H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022; 27:942. [PMID: 35164208 PMCID: PMC8840101 DOI: 10.3390/molecules27030942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world. The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major components in tea. Other minor oligomers have also been found in tea. Different kinds of ring fission and formation elucidate the major transformed pathways of tea catechins to their dimers and polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins, their dimers, and thearubigins in tea.
Collapse
Affiliation(s)
- Buhailiqiemu Abudureheman
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Xiaochun Yu
- College of Food Science and Engineering, Tonghua Normal University, Tonghua 134002, China;
| | - Dandan Fang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Henghui Zhang
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| |
Collapse
|
22
|
He G, Hou X, Han M, Qiu S, Li Y, Qin S, Chen X. Discrimination and polyphenol compositions of green teas with seasonal variations based on UPLC-QTOF/MS combined with chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC–MS and GC–O analysis. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03911-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Magnetically separable tea leaf mediated nickel oxide nanoparticles for excellent photocatalytic activity. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Duan Y, Shang X, Liu G, Zou Z, Zhu X, Ma Y, Li F, Fang W. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC PLANT BIOLOGY 2021; 21:482. [PMID: 34686144 PMCID: PMC8532361 DOI: 10.1186/s12870-021-03258-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intercropping, especially with legumes, as a productive and sustainable system, can promote plants growth and improves the soil quality than the sole crop, is an essential cultivation pattern in modern agricultural systems. However, the metabolic changes of secondary metabolites and the growth in tea plants during the processing of intercropping with soybean have not been fully analyzed. RESULTS The secondary metabolomic of the tea plants were significant influence with intercropping soybean during the different growth stages. Especially in the profuse flowering stage of intercropping soybean, the biosynthesis of amino acids was significantly impacted, and the flavonoid biosynthesis, the flavone and flavonol biosynthesis also were changed. And the expression of metabolites associated with amino acids metabolism, particularly glutamate, glutamine, lysine and arginine were up-regulated, while the expression of the sucrose and D-Glucose-6P were down-regulated. Furthermore, the chlorophyll photosynthetic parameters and the photosynthetic activity of tea plants were higher in the tea plants-soybean intercropping system. CONCLUSIONS These results strengthen our understanding of the metabolic mechanisms in tea plant's secondary metabolites under the tea plants-soybean intercropping system and demonstrate that the intercropping system of leguminous crops is greatly potential to improve tea quality. These may provide the basis for reducing the application of nitrogen fertilizer and improve the ecosystem in tea plantations.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guodong Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plants Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Influence of Seasonal and Yearly Variation on Phenolic Profiles, Caffeine, and Antioxidant Activities of Green Tea (Camellia sinensis (L.) Kuntze) from Azores. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study compares the antioxidant properties (RSADPPH–DPPH radical scavenging activity, FRAP–ferric reducing activity power, and FIC–ferrous ion-chelating activity), the total phenolics (TP), total flavonoids (TF), and catechin profiles, as well as the caffeine content of Azorean Camellia sinensis green tea collected in seasons of two different years. The RSADPPH showed some variation between 2019 and 2020, and presented, in general, better results in 2020 as well as during the summer seasons. The FRAP was also noted to be at its highest in July and August of the two investigated years (6.64 and 6.40 µg/mL in 2019 and 5.85 and 5.46 µg/mL in 2020). According to FIC activity, the August 2019 sample exhibited the highest value (76.18%). The TP varied between 291.14 and 326.93 mg gallic acid equivalents (GAE)/g of dried extract (DE) in 2019 and between 300.25 and 320.58 mg GAE/g DE in 2020. Concerning the TF, the values varied between 51.85 and 67.93 mg rutin equivalents (RE)/g DE in 2019 and between 50.27 and 69.57 mg RE/g DE in 2020. Epicatechins derivatives, determined by HPLC, presented higher values in all samples from 2020 compared to 2019, and the same was observed for esterified catechins. The epigallocatechin-3-gallate content was also higher in all samples from 2020 (214.52–240.16 mg/g DE) compared to 2019 (140.91–210.83 mg/g DE). Regarding caffeine content (12.86–20.45 mg/g DE in 2019 and 13.19–29.35 mg/g DE in 2020), the samples from April and June exhibited similar values in both years. In general, green tea samples exhibited better results in 2020 than in 2019, with the exception of FIC activity, while the varied TP and TF contents in certain months reflect the impact of climatic variation on tea quality.
Collapse
|
27
|
Kowalska J, Marzec A, Domian E, Galus S, Ciurzyńska A, Brzezińska R, Kowalska H. Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia sinensis. Molecules 2021; 26:4773. [PMID: 34443362 PMCID: PMC8400668 DOI: 10.3390/molecules26164773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
The polyphenol content of tea depends on the growing region, harvest date, the production process used, and the brewing parameters. In this study, research was undertaken that included an analysis of the influence of the brewing process parameters on the content of total polyphenols (Folin-Ciocalteu), epigallocatechin gallate (HPLC), and antioxidant activity (against DPPH radicals) of fresh tea shrub leaves grown from Taiwan and of teas obtained from them (oolong, green in bags, and green loose from the spring and autumn harvest). The antioxidant potential was determined in the methanol and aqueous extracts, as well as in infusions that were obtained by using water at 65 or 100 °C and infusing the tea for 5 or 10 min. The highest content of total polyphenols and epigallocatechin gallate was found in green tea extracts from the spring harvest. However, in the case of infusions, the highest content of these compounds was found in green tea in bags. Steaming at 100 °C for 10 min, turned out to be the most favourable condition for the extraction. Oolong tea, brewed at 100 °C for 5 min was characterised by the highest antioxidant activity against stable DPPH radicals.
Collapse
Affiliation(s)
- Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (A.M.); (E.D.); (A.C.)
| |
Collapse
|
28
|
Bayesian Modeling Coherenced Green Synthesis of NiO Nanoparticles Using Camellia sinensis for Efficient Antimicrobial Activity. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00882-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Pokharel SS, Shen F, Parajulee MN, Wang Y, Chen F. Effects of elevated atmospheric CO2 concentration on tea quality and insect pests’ occurrences: A review. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Green Synthesis of Ag-Au Bimetallic Nanocomposites Using Waste Tea Leaves Extract for Degradation Congo Red and 4-Nitrophenol. SUSTAINABILITY 2021. [DOI: 10.3390/su13063318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sustainable supply of pure water is a great challenge in most developing and third-world countries. Nanomaterial-based technology offers technological development for wastewater purification. Nanocatalysis hydrogenation of nitroarene and dye molecules is a hot model in many research fields. Herein, we report eco-friendly and facile technology to synthesize Ag-Au bimetallic nanocomposites. The synthesized nanocomposites are characterized by ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The synthesized nanocomposite can efficiently degrade Congo red and 4-nitrophenol in water and in the presence of sodium borohydride. The results show that it degrades Congo red and 4-nitrophenol entirely within 6 and 7 min, respectively. These results could be useful for the green synthesis of Ag-Au bimetallic nanocomposites and help to remove organic dye molecules and nitroaromatics from wastewater.
Collapse
|
31
|
Paiva L, Rego C, Lima E, Marcone M, Baptista J. Comparative Analysis of the Polyphenols, Caffeine, and Antioxidant Activities of Green Tea, White Tea, and Flowers from Azorean Camellia sinensis Varieties Affected by Different Harvested and Processing Conditions. Antioxidants (Basel) 2021; 10:antiox10020183. [PMID: 33514043 PMCID: PMC7912137 DOI: 10.3390/antiox10020183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the polyphenol profiles as well as caffeine (dry weight basis), and antioxidant activities of green tea (GTs), white tea (WTs), and flowers (Fl) samples from Azorean Camellia sinensis varieties affected by different harvested and processing conditions. Epicatechins derivatives, determined by RP-HPLC/PDAD, presented higher values in GTs with respect to WTs, decreasing as follows: epigallocatechin-3-gallate > epicatechin-3-gallate ≫ epicatechin ≫ epigallocatechin, and higher values in summer and early autumn than in spring. This was also accompanied by an in consistent withering time pattern. Esterified catechins were higher in all samples (100.8-312.3 mg/g) with respect to non-esterified catechins (15.1-37.7 mg/g). Caffeine (6.2-27.7 mg/g) decreased as follows: WTs > GTs ≫ Fl, and inconsistent seasonal and withering patterns were observed among the WTs. Total phenolics (125.9-295.4 mg gallic acid equivalents/g dried extract) and total flavonoids (35.2-69.7 mg rutin equivalents/g dried extract), determined by Folin-Ciocalteu and colorimetric methodologies, were higher in GTs than in WTs and Fl. Concerning the antioxidant patterns, the free radical scavenging activity (FRSA) and ferric reducing antioxidant power (FRAP) presented EC50 values ranges from 3.6 to 17.3 µg/mL and 4.8 to 16.5 µg/mL, respectively, and ferrous ion-chelating (FIC) activity ranged from 47.1 to 82.8%, highlighting that FRSA was better than butylated hydroxytoluene (BHT). Tea leaves exhibited, in general, higher activities with respect to tea Fl, and the WT sample plucked in summer and withered for 23 h showed the highest FRAP and FIC activity. In conclusion, this study shows the characteristic variation of GTs, WTs, and Fl of two tea varieties and may support crop quality improvement and promote the valorization of tea Fl.
Collapse
Affiliation(s)
- Lisete Paiva
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Clara Rego
- São Miguel Agrarian Development Service (SDASM), 9500-340 Ponta Delgada, São Miguel, Azores, Portugal;
| | - Elisabete Lima
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
- Correspondence:
| | - Massimo Marcone
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - José Baptista
- Chemistry and Engineering (DPCE) and Biotechology Centre of Azores (CBA), Department of Physics, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; (L.P.); (J.B.)
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| |
Collapse
|
32
|
Fu YQ, Wang JQ, Chen JX, Wang F, Yin JF, Zeng L, Shi J, Xu YQ. Effect of baking on the flavor stability of green tea beverages. Food Chem 2020; 331:127258. [DOI: 10.1016/j.foodchem.2020.127258] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/12/2023]
|
33
|
Wang F, Chen Z, Pei H, Guo Z, Wen D, Liu R, Song B. Transcriptome profiling analysis of tea plant (Camellia sinensis) using Oxford Nanopore long-read RNA-Seq technology. Gene 2020; 769:145247. [PMID: 33096183 DOI: 10.1016/j.gene.2020.145247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/16/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Transcriptome profiles have been widely captured using short-read sequencing technology, but there are still limitations partially due to the read length. Here, we generated long reads using Oxford Nanopore PromethION™ technology and short reads using the Illumina sequencing platform to study the transcriptome of root, stem, and leaf of Camellia sinensis cv. Fudingdabai. We mapped the Nanopore reads to the Shuchazao of C. sinensis genome sequence, and the mapping rates ranged from 82.63% to 90.59% (average 86.44%); this is lower than that of the Illumina reads which was 87.83% to 91.14% (average 90.12%). Gene expression level was quantified using the Nanopore and Illumina data and we observed a good agreement. The same tea leaf flavor synthesis pathways were highlighted using both sequencing technologies when analyzing the differentially expressed genes between leaf and root. Alternative splicing was then analyzed, and the intron-retention was observed as the most common alternative splicing. Moreover Nanopore long reads could correct transcript isoform annotation for differential expression investigation purposes. Nanopore sequencing techniques can provide a novel reference basis for molecular analysis of tea plants.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Zhiyou Guo
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
34
|
Paiva L, Lima E, Motta M, Marcone M, Baptista J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr Res Food Sci 2020; 3:227-234. [PMID: 33426532 PMCID: PMC7782930 DOI: 10.1016/j.crfs.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During Camellia sinensis tea processing, manufacturers usually remove the internodes, which are classified as waste. This study presents the first determination of plant part contribution, particularly internodes, to green tea quality, in order to find the best blend to maximize impact on human health. Catechins, caffeine and free amino acid (FAA) profiles were determined by RP-HPLC/DAD, total phenolics (TPC) and total flavonoids (TFC) by Folin-Ciocalteu and colorimetric methodologies, respectively, and antioxidant activities by free radical-scavenging activity (FRSA), ferric-reducing antioxidant power (FRAP) and ferrous ion-chelating (FIC) methods. Individual esterified catechins content decreased as follows: epicatechin-3-gallate > epigallocatechin-3-gallate ≫ gallocatecin-3-gallate, and epicatechin derivatives content ranged from 63.91 to 91.22% of total catechins. Caffeine content was higher in internodes. L-theanine, histidine, asparagine, phenylalanine, glutamic acid and methionine were the major FAAs, and internodes contained the highest amounts of L-theanine and histidine (17 and 13.73 mg/g of sample, respectively). TPC ranged from 201.51 to 265.48 mg gallic acid equivalents/g dry extract (DE) and TFC ranged from 23.84 to 72.02 mg rutin equivalents/g DE. Internodes presented the lowest FRSA (EC50 = 6.10–13.50 μg/mL), FRAP (EC50 = 5.70–11.40 μg/mL) and FIC activity (36.96–79.21%). Bud presented the highest FRSA and FRAP, and bud+1st+2ndleaves + internodes the highest FIC activity. The results revealed the potential contribution of the internodes to green tea quality and, consequently, to human health. Metabolites variability is observed in different parts of Azorean Camellia sinensis. Camellia sinensis plant parts are good sources of polyphenols (catechins). Internodes are not useless tea plant waste but a valuable tea quality component. Theanine is the major amino acid in Camellia sinensis particularly in internodes. Addition of internodes to the tea leaves have significative impact on human health.
Collapse
Affiliation(s)
- Lisete Paiva
- Gorreana Tea Plantation, Gorreana, 9625-304 Maia, São Miguel, Azores, Portugal.,Department of Physics, Chemistry and Engineering (DCFQE) and Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal
| | - Elisabete Lima
- Department of Physics, Chemistry and Engineering (DCFQE) and Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal.,Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Madalena Motta
- Gorreana Tea Plantation, Gorreana, 9625-304 Maia, São Miguel, Azores, Portugal
| | - Massimo Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - José Baptista
- Department of Physics, Chemistry and Engineering (DCFQE) and Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal.,Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| |
Collapse
|
35
|
Lu X, Saeed MEM, Hegazy MEF, Kampf CJ, Efferth T. Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells. Biomolecules 2020; 10:E1000. [PMID: 32635587 PMCID: PMC7407630 DOI: 10.3390/biom10071000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
The popular beverage green tea possesses chemopreventive activity against various types of tumors. However, the effects of its chemopreventive effect on hematological malignancies have not been defined. In the present study, we evaluated antitumor efficacies of a specific green tea, sencha tea, on sensitive and multidrug-resistant leukemia and a panel of nine multiple myelomas (MM) cell lines. We found that sencha extracts induced cytotoxicity in leukemic cells and MM cells to different extents, yet its effect on normal cells was limited. Furthermore, sencha extracts caused G2/M and G0/G1 phase arrest during cell cycle progression in CCRF/CEM and KMS-12-BM cells, respectively. Specifically, sencha-MeOH/H2O extracts induced apoptosis, ROS, and MMP collapse on both CCRF/CEM and KMS-12-BM cells. The analysis with microarray and COMPARE in 53 cell lines of the NCI panel revealed diverse functional groups, including cell morphology, cellular growth and proliferation, cell cycle, cell death, and survival, which were closely associated with anti-tumor effects of sencha tea. It is important to note that PI3K/Akt and NF-κB pathways were the top two dominant networks by ingenuity pathway analysis. We demonstrate here the multifactorial modes of action of sencha tea leading to chemopreventive effects of sencha tea against cancer.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed E. M. Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Christopher J. Kampf
- Department for Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| |
Collapse
|
36
|
Chandra A, Bhattarai A, Yadav AK, Adhikari J, Singh M, Giri B. Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations. ChemistrySelect 2020. [DOI: 10.1002/slct.201904826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abhishek Chandra
- School of Chemical SciencesCentral University of Gujarat, Gandhinagar India
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Ashok K. Yadav
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Janak Adhikari
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Man Singh
- School of Chemical SciencesCentral University of Gujarat, Gandhinagar India
| | - Basant Giri
- Center for Analytical SciencesKathmandu Institute of Applied Sciences Kathmandu PO Box 23002 Nepal
| |
Collapse
|
37
|
Effects of geographic locations and topographical factors on secondary metabolites distribution in green tea at a regional scale. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2172-2185. [PMID: 31900491 PMCID: PMC7242085 DOI: 10.1093/jxb/erz570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/31/2019] [Indexed: 05/02/2023]
Abstract
Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation. Here, the effect of dual stresses (wounding and low temperature) on volatile compounds in tea (Camellia sinensis) plants and the underlying signalling mechanisms were investigated. Indole, an insect resistance volatile, was maintained at a higher content and for a longer time under dual stresses compared with wounding alone. CsMYC2a, a jasmonate (JA)-responsive transcription factor, was the major regulator of CsTSB2, a gene encoding a tryptophan synthase β-subunit essential for indole synthesis. During the recovery phase after tea wounding, low temperature helped to maintain a higher JA level. Further study showed that CsICE2 interacted directly with CsJAZ2 to relieve inhibition of CsMYC2a, thereby promoting JA biosynthesis and downstream expression of the responsive gene CsTSB2 ultimately enhancing indole biosynthesis. These findings shed light on the role of low temperature in promoting plant damage responses and advance knowledge of the molecular mechanisms by which multiple stresses coordinately regulate plant responses to the biotic and abiotic environment.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Tianhe District, Guangzhou, China
- Correspondence:
| |
Collapse
|
39
|
Xu P, Su H, Jin R, Mao Y, Xu A, Cheng H, Wang Y, Meng Q. Shading Effects on Leaf Color Conversion and Biosynthesis of the Major Secondary Metabolites in the Albino Tea Cultivar "Yujinxiang". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2528-2538. [PMID: 32011878 DOI: 10.1021/acs.jafc.9b08212] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Albino became a novel kind of tea cultivar in China recently. In this study, transcriptome and whole-genome bisulfite sequencing (WGBS) were employed to investigate the shading effects on leaf color conversion and biosynthesis of three major secondary metabolites in the albino tea cultivar "Yujinxiang". The increased leaf chlorophyll level was likely the major cause for shaded leaf greening from young pale or yellow leaf. In comparison with the control, the total catechin level of the shading group was significantly decreased and the abundance of caffeine was markedly increased, while the theanine level was nearly not influenced. Meanwhile, differentially expressed genes (DEGs) enriched in some biological processes and pathways were identified by transcriptome analysis. Furthermore, whole-genome DNA methylation analysis revealed that the global genomic DNA methylation patterns of the shading period were remarkably altered in comparison with the control. In addition, differentially methylated regions (DMRs) and the DMR-related DEG analysis indicated that the DMR-related DEGs were the critical participants in biosynthesis of the major secondary metabolites. These findings suggest that DNA methylation is probably responsible for changes in the contents of the major secondary metabolites in Yujinxiang.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hui Su
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Rong Jin
- Agricultural Experiment Station , Zhejiang University , Zijingang Campus, Hangzhou , People's Republic of China
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences , Hangzhou 310000 , People's Republic of China
| | - Anan Xu
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Haiyan Cheng
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Yuefei Wang
- Department of Tea Science , Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Qing Meng
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| |
Collapse
|
40
|
Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, Chen X, Sun H, Zhang H, Ding Z, Li X. Metabolic Regulation Profiling of Carbon and Nitrogen in Tea Plants [ Camellia sinensis (L.) O. Kuntze] in Response to Shading. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:961-974. [PMID: 31910000 DOI: 10.1021/acs.jafc.9b05858] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating light transmission by shading is the most effective method of improving the nutritional value and sensory qualities of tea. In this study, the metabolic profiling of two tea cultivars ("Yulv" and "Maotouzhong") in response to different shading periods during the summer season was performed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The metabolic pathway analyses showed that the glycolytic pathway and the tricarboxylic acid cycle (TCA cycle) in the leaves and shoots of "Maotouzhong" were significantly inhibited by long-term shading. The nitrogen metabolism in the leaves of the two cultivars was promoted by short-term shading, while it was inhibited by long-term shading. However, the nitrogen metabolism in the shoots of the two cultivars was always inhibited by shading, whether for short or long-term periods. In addition, the intensity of the flavonoid metabolism in both tea cultivars could be reduced by shading. These results revealed that shading could regulate the carbon and nitrogen metabolism and short-term shading could improve the tea quality to some extent.
Collapse
Affiliation(s)
- Yuchen Li
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Anburaj Jeyaraj
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hanpu Yu
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Yu Wang
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Qingping Ma
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Xuan Chen
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Haiwei Sun
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Hong Zhang
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Zhaotang Ding
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Xinghui Li
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| |
Collapse
|
41
|
Scott ER, Li X, Wei JP, Kfoury N, Morimoto J, Guo MM, Agyei A, Robbat A, Ahmed S, Cash SB, Griffin TS, Stepp JR, Han WY, Orians CM. Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage. FRONTIERS IN PLANT SCIENCE 2020; 11:636. [PMID: 32547579 PMCID: PMC7272924 DOI: 10.3389/fpls.2020.00636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/24/2020] [Indexed: 05/12/2023]
Abstract
Insect herbivores have dramatic effects on the chemical composition of plants. Many of these induced metabolites contribute to the quality (e.g., flavor, human health benefits) of specialty crops such as the tea plant (Camellia sinensis). Induced chemical changes are often studied by comparing plants damaged and undamaged by herbivores. However, when herbivory is quantitative, the relationship between herbivore pressure and induction can be linearly or non-linearly density dependent or density independent, and induction may only occur after some threshold of herbivory. The shape of this relationship can vary among metabolites within plants. The tea green leafhopper (Empoasca onukii) can be a widespread pest on tea, but some tea farmers take advantage of leafhopper-induced metabolites in order to produce high-quality "bug-bitten" teas such as Eastern Beauty oolong. To understand the effects of increasing leafhopper density on tea metabolites important for quality, we conducted a manipulative experiment exposing tea plants to feeding by a range of E. onukii densities. After E. onukii feeding, we measured volatile and non-volatile metabolites, and quantified percent damaged leaf area from scanned leaf images. E. onukii density had a highly significant effect on volatile production, while the effect of leaf damage was only marginally significant. The volatiles most responsive to leafhopper density were mainly terpenes that increased in concentration monotonically with density, while the volatiles most responsive to leaf damage were primarily fatty acid derivatives and volatile phenylpropanoids/benzenoids. In contrast, damage (percent leaf area damaged), but not leafhopper density, significantly reduced total polyphenols, epigallocatechin gallate (EGCG), and theobromine concentrations in a dose-dependent manner. The shape of induced responses varied among metabolites with some changing linearly with herbivore pressure and some responding only after a threshold in herbivore pressure with a threshold around 0.6 insects/leaf being common. This study illustrates the importance of measuring a diversity of metabolites over a range of herbivory to fully understand the effects of herbivores on induced metabolites. Our study also shows that any increases in leafhopper density associated with climate warming, could have dramatic effects on secondary metabolites and tea quality.
Collapse
Affiliation(s)
- Eric R. Scott
- Department of Biology, Tufts University, Medford, MA, United States
- *Correspondence: Eric R. Scott, ;
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ji-Peng Wei
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nicole Kfoury
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Joshua Morimoto
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Ming-Ming Guo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Amma Agyei
- Department of Biology, Tufts University, Medford, MA, United States
| | - Albert Robbat
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Selena Ahmed
- Food and Health Lab, Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Sean B. Cash
- Friedman School of Nutrition and Policy, Tufts University, Medford, MA, United States
| | - Timothy S. Griffin
- Friedman School of Nutrition and Policy, Tufts University, Medford, MA, United States
| | - John R. Stepp
- Department of Anthropology, University of Florida, Gainsville, FL, United States
| | - Wen-Yan Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Wen-Yan Han,
| | - Colin M. Orians
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
42
|
From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer. Nutr Res 2019; 74:23-36. [PMID: 31918176 DOI: 10.1016/j.nutres.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023]
Abstract
As the most abundant bioactive polyphenol in green tea, epigallocatechin gallate (EGCG) is a promising natural product that should be used in the discovery and development of potential drug leads. Due to its association with chemoprevention, EGCG may find a role in the development of therapeutics for prostate cancer. Natural products have long been used as a scaffold for drug design, as their already noted bioactivity can help accelerate the development of novel treatments. Green tea and the EGCG contained within have become associated with chemoprevention, and both in vitro and in vivo studies have correlated EGCG to inhibiting cell growth and increasing the metabolic stress of cancer cells, possibly giving merit to its long utilized therapeutic use in traditional therapies. There is accumulating evidence to suggest EGCG's role as an inhibitor of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling cascade, acting upon major axis points within cancer survival pathways. The purpose of this review is to examine the research conducted on tea along with EGCG in the areas of the treatment of and/or prevention of cancer. This review discusses Camellia sinensis as well as the bioactive phytochemical compounds contained within. Clinical uses of tea are explored, and possible pathways for activity are discussed before examining the evidence for EGCG's potential for acting on these processes. EGCG is identified as being a possible lead phytochemical for future drug design investigations.
Collapse
|
43
|
Lou J, Wang W, Zhu L. Occurrence, Formation, and Oxidative Stress of Emerging Disinfection Byproducts, Halobenzoquinones, in Tea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11860-11868. [PMID: 31509700 DOI: 10.1021/acs.est.9b03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in drinking water with high toxicity and relevance to public health. In this study, we characterized the occurrence, formation, and oxidative stress of the HBQs in tea. 2,6-DCBQ and TetraC-1,2-BQ were identified in all prepared teas at total concentrations of 1.3-2.0 ng/L. 2,6-DCBQ originated from drinking water DBPs, while TetraC-1,2-BQ originated from tea leaves or were generated during tea polyphenol chlorination. HBQs in tea induced the formation of reactive oxygen species and semiquinone radicals, and the oxidative stress could be depleted by tea polyphenols, e.g., (-)-epigallocatechin gallate (EGCG). High-resolution mass spectrometry analysis indicated that the HBQs combined with EGCG and formed adducts at a ratio of 1:1 or 2:1 with the binding sites on the A ring and B ring of EGCG. The viability of HepG2 cells exposed to 50 μM 2,6-DCBQ was increased from 20.0% to 65.2% when 50 μM of EGCG was added. These results demonstrated that various HBQs can occur in tea due to the HBQ DBPs in drinking water, the leachate from tea leaves, and the chlorination of tea polyphenols; furthermore, the oxidative stress and cellular toxicity induced by HBQs in tea could be decreased by tea polyphenols. This is the first study to report HBQs in tea, elucidate the sources of HBQs, and assess relevant health risks.
Collapse
Affiliation(s)
- Jinxiu Lou
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Wei Wang
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Lizhong Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| |
Collapse
|
44
|
Koch W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019; 11:nu11051039. [PMID: 31075905 PMCID: PMC6566812 DOI: 10.3390/nu11051039] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
The improvement of the social and economic conditions of society has eliminated the threat of death from the majority of infectious diseases. However, the rapid progress of civilization has created new possibilities for the appearance of factors with adverse effects for the health of society. This has led to increased morbidity from certain diseases, the presence of which had not been observed several centuries ago. Chronic noncommunicable diseases (e.g., cancers, cardio-vascular disorders, diabetes, obesity, neurodegenerative diseases) result from an inappropriate relationship between people and their environment. The common characteristic for all chronic diseases is a “new” form of inflammation, very often called metaflammation, which is considered as a subclinical, permanent inflammation. As a result, metabolic cascade, including cellular oxidative stress, atherosclerotic process, and insulin resistance, occurs, which slowly generates significant deterioration in the organism. Polyphenols are the major group of non-nutrients, considering their diversity, food occurrence, and biological properties. The current review aims to present a wide spectrum of literature data, including the molecular mechanism of their activity and experimental model used, and summarize the recent findings on the multitude of physiological effects of dietary polyphenols towards the prevention of several chronic diseases. However, despite several studies, the estimation of their dietary intake is troublesome and inconclusive, which will be also discussed.
Collapse
Affiliation(s)
- Wojciech Koch
- Chair and Department of Food and Nutrition, Faculty of Pharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland.
| |
Collapse
|
45
|
Li X, Zhang LP, Zhang L, Yan P, Ahammed GJ, Han WY. Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the Phenylpropanoid Pathway. Molecules 2019; 24:E362. [PMID: 30669582 PMCID: PMC6359712 DOI: 10.3390/molecules24020362] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 11/17/2022] Open
Abstract
The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Li-Ping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China.
| | - Wen-Yan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
46
|
Zhao H, Zhao F. The authenticity identification of teas (Camellia sinensis
L.) of different seasons according to their multi-elemental fingerprints. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haiyan Zhao
- College of Food Science and Engineering; Qingdao Agricultural University; No. 700, Changcheng Road Qingdao 266109 China
| | - Fangyuan Zhao
- College of Food Science and Engineering; Qingdao Agricultural University; No. 700, Changcheng Road Qingdao 266109 China
| |
Collapse
|
47
|
Dietz C, Dekker M. Effect of Green Tea Phytochemicals on Mood and Cognition. Curr Pharm Des 2018; 23:2876-2905. [PMID: 28056735 DOI: 10.2174/1381612823666170105151800] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/01/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Green tea is traditionally known to induce mental clarity, cognitive function, physical activation and relaxation. Recently, a special green tea, matcha tea, is rapidly gaining popularity throughout the world and is frequently referred to as a mood- and brain food. Matcha tea consumption leads to much higher intake of green tea phytochemicals compared to regular green tea. Previous research on tea constituents caffeine, L-theanine, and epigallocatechin gallate (EGCG) repeatedly demonstrated benefits on mood and cognitive performance. These effects were observed when these phytochemicals were consumed separately and in combination. METHODS A review was conducted on 49 human intervention studies to summarize the research on acute psychoactive effects of caffeine, L-theanine, and EGCG on different dimensions of mood and cognitive performance. CONCLUSION Caffeine was found to mainly improve performance on demanding long-duration cognitive tasks and self-reported alertness, arousal, and vigor. Significant effects already occurred at low doses of 40 mg. L-theanine alone improved self-reported relaxation, tension, and calmness starting at 200 mg. L-theanine and caffeine combined were found to particularly improve performance in attention-switching tasks and alertness, but to a lesser extent than caffeine alone. No conclusive evidence relating to effects induced by EGCG could be given since the amount of intervention studies was limited. These studies provided reliable evidence showing that L-theanine and caffeine have clear beneficial effects on sustained attention, memory, and suppression of distraction. Moreover, L-theanine was found to lead to relaxation by reducing caffeine induced arousal.
Collapse
Affiliation(s)
- Christina Dietz
- Food Quality and Design Group, Wageningen University, Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
48
|
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis 2018; 59:481-501. [PMID: 28582855 DOI: 10.3233/jad-161200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Collapse
Affiliation(s)
- Warnakulasuriya M A D B Fernando
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Geeshani Somaratne
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kathryn G Goozee
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Shehan Williams
- Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | - Harjinder Singh
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
49
|
Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Li X, Wei JP, Ahammed GJ, Zhang L, Li Y, Yan P, Zhang LP, Han WY. Brassinosteroids Attenuate Moderate High Temperature-Caused Decline in Tea Quality by Enhancing Theanine Biosynthesis in Camellia sinensis L. FRONTIERS IN PLANT SCIENCE 2018; 9:1016. [PMID: 30087682 PMCID: PMC6066615 DOI: 10.3389/fpls.2018.01016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 05/11/2023]
Abstract
Temperature is a major environmental signal that governs plant growth and development. A moderately high ambient temperature alters plant metabolism without significant induction of heat-stress responses. Despite ancillary reports on the negative effect of warmer climate on tea quality, information on specific effect of sub high temperature (SHT) on theanine accumulation is scanty. L-Theanine is the most abundant free amino acid in tea (Camellia sinensis L.) leaves that contributes to the unique umami flavor of green tea infusion. Tea harvested in warmer months lacks distinctive umami taste due to low theanine content. In this study, we showed that SHT (35°C) gradually decreased theanine concentration over time, which was closely associated with the SHT-induced suppression in theanine biosynthetic genes. 24-epibrassinolide (BR), a bioactive brassinosteroids, attenuated the SHT-induced reduction in theanine concentration by upregulating the transcript levels of theanine biosynthetic genes, such as ARGININE DECARBOXYLASE (CsADC), GLUTAMINE SYNTHETASE (CsGS), GLUTAMATE SYNTHASE (CsGOGAT) and THEANINE SYNTHASE (CsTS). Furthermore, time-course analysis of the activity of theanine biosynthetic enzyme reveals that BR-induced regulation of GS and GOGAT activity plays essential role in maintaining theanine content in tea leaves under SHT, which is consistent with the central position of GOGAT in theanine biosynthetic pathway. Therefore, it is convincing to propose that exogenous BR treatment can be advocated to improve summer tea quality by enhancing in vivo accumulation of theanine. However, a future challenge is to use this information on the role of BR in theanine biosynthesis and thermotolerance to further understand how BR may be tuned to benefit plant fitness for enhancing tea quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ji-Peng Wei
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Golam J. Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Li-Ping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wen-Yan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wen-Yan Han,
| |
Collapse
|