1
|
Majumder TR, Inoue M, Aono R, Ochi A, Mihara H. Comparative studies on substrate specificity of succinic semialdehyde reductase from Gluconobacter oxydans and glyoxylate reductase from Acetobacter aceti. Biosci Biotechnol Biochem 2024; 88:1069-1072. [PMID: 38871868 DOI: 10.1093/bbb/zbae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Gluconobacter oxydans succinic semialdehyde reductase (GoxSSAR) and Acetobacter aceti glyoxylate reductase (AacGR) represent a novel class in the β-hydroxyacid dehydrogenases superfamily. Kinetic analyses revealed GoxSSAR's activity with both glyoxylate and succinic semialdehyde, while AacGR is glyoxylate specific. GoxSSAR K167A lost activity with succinic semialdehyde but retained some with glyoxylate, whereas AacGR K175A lost activity. These findings elucidate differences between these homologous enzymes.
Collapse
Affiliation(s)
| | - Masao Inoue
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Riku Aono
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Anna Ochi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hisaaki Mihara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
2
|
Han D, Yang Y, Guo Z, Dai S, Jiang M, Zhu Y, Wang Y, Yu Z, Wang K, Rong C, Yu Y. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024; 13:2534. [PMID: 39200461 PMCID: PMC11353490 DOI: 10.3390/foods13162534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Mingchao Jiang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
3
|
Lisowski D, Bielecki S, Cichosz S, Masek A. Ecologically Modified Leather of Bacterial Origin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2783. [PMID: 38894045 PMCID: PMC11174029 DOI: 10.3390/ma17112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The research presented here is an attempt to develop an innovative and environmentally friendly material based on bacterial nanocellulose (BNC), which will be able to replace both animal skins and synthetic polymer products. Bacterial nanocellulose becomes stiff and brittle when dried, so attempts have been made to plasticise this material so that BNC can be used in industry. The research presented here focuses on the ecological modification of bacterial nanocellulose with vegetable oils such as rapeseed oil, linseed oil, and grape seed oil. The effect of compatibilisers of a natural origin on the plasticisation process of BNC, such as chlorophyll, curcumin, and L-glutamine, was also evaluated. BNC samples were modified with rapeseed, linseed, and grapeseed oils, as well as mixtures of each of these oils with the previously mentioned additives. The modification was carried out by passing the oil, or oil mixture, through the BNC using vacuum filtration, where the BNC acted as a filter. The following tests were performed to determine the effect of the modification on the BNC: FTIR spectroscopic analysis, contact angle measurements, and static mechanical analysis. As a result of the modification, the BNC was plasticised. Rapeseed oil proved to be the best for this purpose, with the help of which a material with good strength and elasticity was obtained.
Collapse
Affiliation(s)
- Dawid Lisowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Stanisław Bielecki
- International Center for Research on Innovative Biobased Materials, Lodz University of Technology, 2/22 Stefanowskiego Str., 90-537 Lodz, Poland;
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| |
Collapse
|
4
|
Sun Y, Liu T, Nie J, Yan J, Tang J, Jin K, Li C, Li H, Liu Y, Bai Z. Continuous catalytic production of 1,3-dihydroxyacetone: Sustainable approach combining perfusion cultures and immobilized cells. BIORESOURCE TECHNOLOGY 2024; 401:130734. [PMID: 38670288 DOI: 10.1016/j.biortech.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Tang Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jie Yan
- School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jiacheng Tang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Kuiqi Jin
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Chunyang Li
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
6
|
Xu Y, Ji L, Xu S, Bilal M, Ehrenreich A, Deng Z, Cheng H. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans. Biochim Biophys Acta Gen Subj 2023; 1867:130289. [PMID: 36503080 DOI: 10.1016/j.bbagen.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction. METHODS Enzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes. RESULTS AND CONCLUSIONS In this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3'-OH and 5'-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855-0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein. GENERAL SIGNIFICANCE In this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Strasse, Freising, Germany.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Hua X, Han J, Zhou X, Xu Y. Gas pressure intensifying oxygen transfer to significantly improving the bio‐oxidation productivity of whole‐cell catalysis. AIChE J 2022. [DOI: 10.1002/aic.18005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| |
Collapse
|
8
|
Battling S, Engel T, Herweg E, Niehoff PJ, Pesch M, Scholand T, Schöpping M, Sonntag N, Büchs J. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales. Microb Cell Fact 2022; 21:255. [PMID: 36496372 PMCID: PMC9741787 DOI: 10.1186/s12934-022-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The global market for sweeteners is increasing, and the food industry is constantly looking for new low-caloric sweeteners. The natural sweetener 5-keto-D-fructose is one such candidate. 5-Keto-D-fructose has a similar sweet taste quality as fructose. Developing a highly efficient 5-keto-D-fructose production process is key to being competitive with established sweeteners. Hence, the 5-keto-D-fructose production process was optimised regarding titre, yield, and productivity. RESULTS For production of 5-keto-D-fructose with G. oxydans 621H ΔhsdR pBBR1-p264-fdhSCL-ST an extended-batch fermentation was conducted. During fructose feeding, a decreasing respiratory activity occurred, despite sufficient carbon supply. Oxygen and second substrate limitation could be excluded as reasons for the decreasing respiration. It was demonstrated that a short period of oxygen limitation has no significant influence on 5-keto-D-fructose production, showing the robustness of this process. Increasing the medium concentration increased initial biomass formation. Applying a fructose feeding solution with a concentration of approx. 1200 g/L, a titre of 545 g/L 5-keto-D-fructose was reached. The yield was with 0.98 g5-keto-d-fructose/gfructose close to the theoretical maximum. A 1200 g/L fructose solution has a viscosity of 450 mPa∙s at a temperature of 55 °C. Hence, the solution itself and the whole peripheral feeding system need to be heated, to apply such a highly concentrated feeding solution. Thermal treatment of highly concentrated fructose solutions led to the formation of 5-hydroxymethylfurfural, which inhibited the 5-keto-D-fructose production. Therefore, fructose solutions were only heated to about 100 °C for approx. 10 min. An alternative feeding strategy was investigated using solid fructose cubes, reaching the highest productivities above 10 g5-keto-d-fructose/L/h during feeding. Moreover, the scale-up of the 5-keto-D-fructose production to a 150 L pressurised fermenter was successfully demonstrated using liquid fructose solutions (745 g/L). CONCLUSION We optimised the 5-keto-D-fructose production process and successfully increased titre, yield and productivity. By using solid fructose, we presented a second feeding strategy, which can be of great interest for further scale-up experiments. A first scale-up of this process was performed, showing the possibility for an industrial production of 5-keto-D-fructose.
Collapse
Affiliation(s)
- Svenja Battling
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Tobias Engel
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Elena Herweg
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Paul-Joachim Niehoff
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Matthias Pesch
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Theresa Scholand
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Marie Schöpping
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Nina Sonntag
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jochen Büchs
- grid.1957.a0000 0001 0728 696XAVT-Chair for Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
9
|
Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production. Appl Microbiol Biotechnol 2022; 107:153-162. [DOI: 10.1007/s00253-022-12310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
|
10
|
Battling S, Pastoors J, Deitert A, Götzen T, Hartmann L, Schröder E, Yordanov S, Büchs J. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands. J Biol Eng 2022; 16:31. [DOI: 10.1186/s13036-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
Historically, complex media are used for the cultivation of Gluconobacter oxydans in industry and research. Using complex media has different drawbacks like higher costs for downstream processing and significant variations in fermentation performances. Synthetic media can overcome those drawbacks, lead to reproducible fermentation performances. However, the development of a synthetic medium is time and labour consuming. Detailed knowledge about auxotrophies and metabolic requirements of G. oxydans is necessary. In this work, we use a systematic approach applying the in-house developed μRAMOS technology to identify auxotrophies and develop a defined minimal medium for cultivation of G. oxydans fdh, improving the production process of the natural sweetener 5-ketofructose.
Results
A rich, defined synthetic medium, consisting of 48 components, including vitamins, amino acids and trace elements, was used as a basis for medium development. In a comprehensive series of experiments, component groups and single media components were individually omitted from or supplemented to the medium and analysed regarding their performance. Main components like salts and trace elements were necessary for the growth of G. oxydans fdh, whereas nucleotides were shown to be non-essential. Moreover, results indicated that the amino acids isoleucine, glutamate and glycine and the vitamins nicotinic acid, pantothenic acid and p-aminobenzoic acid are necessary for the growth of G. oxydans fdh. The glutamate concentration was increased three-fold, functioning as a precursor for amino acid synthesis. Finally, a defined minimal medium called ‘Gluconobacter minimal medium’ was developed. The performance of this medium was tested in comparison with commonly used media for Gluconobacter. Similar/competitive results regarding cultivation time, yield and productivity were obtained. Moreover, the application of the medium in a fed-batch fermentation process was successfully demonstrated.
Conclusion
The systematic investigation of a wide range of media components allowed the successful development of the Gluconobacter minimal medium. This chemically defined medium contains only 14 ingredients, customised for the cultivation of G. oxydans fdh and 5-ketofructose production. This enables a more straightforward process development regarding upstream and downstream processing. Moreover, metabolic demands of G. oxydans were identified, which further can be used in media or strain development for different processes.
Collapse
|
11
|
Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells. Bioprocess Biosyst Eng 2022; 45:1849-1855. [PMID: 36149483 DOI: 10.1007/s00449-022-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
Abstract
Gluconic acid is a widely used food and beverage additive, but its production suffers from low efficiency and high cost. In this study, a preferable gluconic acid biosynthesis method without repeated seed culture was proposed and developed using the superior performance of Gluconobacter oxydans. A high oxygen atmosphere satisfying the demand of bio-oxidation increased the productivity of gluconic acid up to ~ 32 g/L/h and the accumulation up to ~ 420 g/L within 24 h of fed-batch fermentation. However, the productivity remarkably decreased when the gluconic acid content was over 350 g/L. Therefore, a continuous fermentation was designed, which in combination with 5 runs of fed-batch fermentation resulted in the final production of 1700 g gluconic acid from 1750 g glucose within 60 h in a 3 L bioreactor. The results suggest that the validity of this model and can enable cost-competitive gluconic acid production in the industry.
Collapse
|
12
|
Es-sbata I, Castro R, Durán-Guerrero E, Zouhair R, Astola A. Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Tarasov S, Plekhanova Y, Kashin V, Gotovtsev P, Signore MA, Francioso L, Kolesov V, Reshetilov A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. BIOSENSORS 2022; 12:bios12090699. [PMID: 36140084 PMCID: PMC9496339 DOI: 10.3390/bios12090699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.
Collapse
Affiliation(s)
- Sergei Tarasov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
- Correspondence:
| | - Yulia Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| | - Vadim Kashin
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Pavel Gotovtsev
- Biotechnology and Bioenergy Department, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region, 141701 Dolgoprudny, Russia
| | - Maria Assunta Signore
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Francioso
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| |
Collapse
|
14
|
Ma Y, Li B, Zhang X, Wang C, Chen W. Production of Gluconic Acid and Its Derivatives by Microbial Fermentation: Process Improvement Based on Integrated Routes. Front Bioeng Biotechnol 2022; 10:864787. [PMID: 35651548 PMCID: PMC9149244 DOI: 10.3389/fbioe.2022.864787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconic acid (GA) and its derivatives, as multifunctional biological chassis compounds, have been widely used in the food, medicine, textile, beverage and construction industries. For the past few decades, the favored production means of GA and its derivatives are microbial fermentation using various carbon sources containing glucose hydrolysates due to high-yield GA production and mature fermentation processes. Advancements in improving fermentation process are thriving which enable more efficient and economical industrial fermentation to produce GA and its derivatives, such as the replacement of carbon sources with agro-industrial byproducts and integrated routes involving genetically modified strains, cascade hydrolysis or micro- and nanofiltration in a membrane unit. These efforts pave the way for cheaper industrial fermentation process of GA and its derivatives, which would expand the application and widen the market of them. This review summarizes the recent advances, points out the existing challenges and provides an outlook on future development regarding the production of GA and its derivatives by microbial fermentation, aiming to promote the combination of innovative production of GA and its derivatives with industrial fermentation in practice.
Collapse
Affiliation(s)
- Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xinyue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Wang
- Dongcheng District Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Chao Wang, ; Wei Chen,
| | - Wei Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Chao Wang, ; Wei Chen,
| |
Collapse
|
15
|
Hua X, Liu X, Han J, Xu Y. Reinforcing sorbitol bio-oxidative conversion with Gluconobacter oxydans whole-cell catalysis by acetate-assistance. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yang H, Chen T, Wang M, Zhou J, Liebl W, Barja F, Chen F. Molecular biology: Fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol Adv 2022; 58:107911. [PMID: 35033586 DOI: 10.1016/j.biotechadv.2022.107911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative, obligate aerobic bacteria within the Acetobacteraceae family of the alphaproteobacteria class, which are distributed in a wide variety of different natural sources that are rich in sugar and alcohols, as well as in several traditionally fermented foods. Their capabilities are not limited to the production of acetic acid and the brewing of vinegar, as their names suggest. They can also fix nitrogen and produce various kinds of aldehydes, ketones and other organic acids by incomplete oxidation (also referred to as oxidative fermentation) of the corresponding alcohols and/or sugars, as well as pigments and exopolysaccharides (EPS). In order to gain more insight into these organisms, molecular biology techniques have been extensively applied in almost all aspects of AAB research, including their identification and classification, acid resistance mechanisms, oxidative fermentation, EPS production, thermotolerance and so on. In this review, we mainly focus on the application of molecular biological technologies in the advancement of research into AAB while presenting the progress of the latest studies using these techniques.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | | | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements. Nat Commun 2021; 12:6693. [PMID: 34795278 PMCID: PMC8602642 DOI: 10.1038/s41467-021-27047-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.
Collapse
|
18
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Wohlers K, Wirtz A, Reiter A, Oldiges M, Baumgart M, Bott M. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase. Microb Biotechnol 2021; 14:2592-2604. [PMID: 34437751 PMCID: PMC8601194 DOI: 10.1111/1751-7915.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l-1 5-KF were formed from 150 g l-1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l-1 h-1 . Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.
Collapse
Affiliation(s)
- Karen Wohlers
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Astrid Wirtz
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Alexander Reiter
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Marco Oldiges
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Meike Baumgart
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Michael Bott
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- The Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülichD‐52425Germany
| |
Collapse
|
20
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Simultaneous transformation of five vectors in Gluconobacter oxydans. Plasmid 2021; 117:102588. [PMID: 34256060 DOI: 10.1016/j.plasmid.2021.102588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Gluconobacter oxydans is an obligate Gram-negative bacterium that belongs to the family Acetobacteraceae. It is one of the most frequently used microorganisms in industrial biotechnology to produce chemicals related to incomplete oxidation. However, the fine-tuning of G. oxydans is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. Thus, a series of shuttle vectors for G. oxydans inspired by a series of wild-type plasmids in different G. oxydans strains were constructed. Fifteen shuttle vectors were employed to express mCherry in G. oxydans WSH-003 using the replication origin of these wild-type plasmids. Among them, the intensity of fluorescent proteins expressed by p15-K-mCherry was about 10 times that of fluorescent proteins expressed by p5-K-mCherry. Quantitative real-time polymerase chain reaction showed that the relative copy number of p15-K-mCherry reached 19 and had high stability. In contrast, some of the plasmids had a relative copy number of less than 10. The co-expression of multiple shuttle vectors revealed five shuttle vectors that could be transformed into G. oxydans WSH-003 and could express five different fluorescent proteins. The shuttle vectors will facilitate genetic operations for Gluconobacter strains to produce useful compounds more efficiently.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
21
|
Identification of Plant Growth Promoting Rhizobacteria That Improve the Performance of Greenhouse-Grown Petunias under Low Fertility Conditions. PLANTS 2021; 10:plants10071410. [PMID: 34371613 PMCID: PMC8309264 DOI: 10.3390/plants10071410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
The production of greenhouse ornamentals relies on high fertilizer inputs to meet scheduling deadlines and quality standards, but overfertilization has negative environmental impacts. The goals of this study were to identify plant-growth-promoting rhizobacteria (PGPR) that can improve greenhouse ornamental crop performance with reduced fertilizer inputs, and to identify the best measurements of plant performance for assessing the beneficial impact of PGPR on ornamentals. A high-throughput greenhouse trial was used to identify 14 PGPR isolates that improved the flower/bud number and shoot dry weight of Petunia × hybrida ‘Picobella Blue’ grown under low fertility conditions in peat-based media. These 14 PGPR were then applied to petunias grown under low fertility conditions (25 mg L−1 N). PGPR-treated plants were compared to negative (untreated at 25 mg L−1 N) and positive (untreated at 50, 75, 100, and 150 mg L−1 N) controls. Multiple parameters were measured in the categories of flowering, vegetative growth, and vegetative quality to determine the best measurements to assess improvements in ornamental plant performance. Caballeronia zhejiangensis C7B12-treated plants performed better in almost all parameters and were comparable to untreated plants fertilized with 50 mg L−1 N. Genomic analysis identified genes that were potentially involved in plant growth promotion. Our study identified potential PGPR that can be used as biostimulants to produce high-quality greenhouse ornamentals with lower fertilizer inputs.
Collapse
|
22
|
Qin Z, Yu S, Liu L, Wang L, Chen J, Zhou J. A SacB-based system for diverse and multiple genome editing in Gluconobacter oxydans. J Biotechnol 2021; 338:31-39. [PMID: 34246659 DOI: 10.1016/j.jbiotec.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Gluconobacter oxydans is an important industrial bacterial strain widely used to produce a lot of useful products. However, very few gene editing tools are available for G. oxydans. This study aimed to develop an efficient genome editing method for G. oxydans using SacB as a counter-selectable marker. A plasmid that could express the kanamycin resistance gene in both E. coli and G. oxydans was constructed using the screened shuttle promoter P116. After optimizing the genome editing conditions, the derivative plasmids could be effectively utilized for diverse genome editing, such as gene deletion, insertion, replacement, and in situ modification in G. oxydans WSH-003. In addition, the SacB-based system also achieved multiple gene editing in G. oxydans. Moreover, the genome of the industrial strain G. oxydans WSH-003 was modified and the growth rate and substrate conversion rate of the strain successfully increased using this system. The system could also have potential to be applied in different G. oxydans strains. The process established in this study also provides a reference for constructing genetic tools for many other genetically recalcitrant bacteria.
Collapse
Affiliation(s)
- Zhijie Qin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lingling Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
23
|
Battistelli N, Perpetuini G, Piva A, Pepe A, Sidari R, Wache Y, Tofalo R. Cultivable microbial ecology and aromatic profile of "mothers" for Vino cotto wine production. Food Res Int 2021; 143:110311. [PMID: 33992330 DOI: 10.1016/j.foodres.2021.110311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to assess the cultivable microbiota of "mothers" of Vino cotto collected from production of different years 1890, 1895, 1920, 1975, 2008. A total of 73 yeasts and 81 bacteria were isolated. Starmerella lactis-condensi, Starmerella bacillaris, Hanseniaspora uvarum, Saccharomyces cerevisiae, Hanseniaspora guillermondi and Metschnikowia pulcherrima were identified. Bacteria isolates belonged to lactic acid bacteria (Lactiplantibacillus plantarum and Pediococcus pentosaceus) and acetic acid bacteria (Gluconobacter oxydans). Remarkable biodiversity was observed for Starm. bacillaris, as well as L. plantarum and G. oxydans. Organic acids and volatile compounds were also determined. Malic and succinic acids were the main ones with values ranging from 8.49 g/L to 11.76 g/L and from 4.15 g/L to 7.73 g/L respectively, while citric acid was present at low concentrations (<0.2 g/L) in all samples. Esters and higher alcohols were the main volatile compounds detected followed by alkanes. This study permits to better understand the microbial communities associated to this product and could be considered a starting point for the definition of tailored starter cultures to improve the quality of Vino cotto preserving its typical traits.
Collapse
Affiliation(s)
- Noemi Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Andrea Piva
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Alessia Pepe
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy
| | - Rossana Sidari
- Department of Agraria, Mediterranean University of Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy
| | - Yves Wache
- Tropical Fermentation Network, France; International Joint Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 and School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Dijon, France; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 12120, Thailand
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| |
Collapse
|
24
|
Chen Y, Liu L, Yu S, Li J, Zhou J, Chen J. Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Front Bioeng Biotechnol 2021; 9:673844. [PMID: 33898410 PMCID: PMC8064726 DOI: 10.3389/fbioe.2021.673844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The acetic acid bacterium Gluconobacter oxydans is known for its unique incomplete oxidation and therefore widely applied in the industrial production of many compounds, e.g., 2-keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C. However, few molecular tools are available for metabolically engineering G. oxydans, which greatly limit the strain development. Promoters are one of vital components to control and regulate gene expression at the transcriptional level for boosting production. In this study, the low activity of SDH was found to hamper the high yield of 2-KLG, and enhancing the expression of SDH was achieved by screening the suitable promoters based on RNA sequencing data. We obtained 97 promoters from G. oxydans’s genome, including two strong shuttle promoters and six strongest promoters. Among these promoters, P3022 and P0943 revealed strong activities in both Escherichia coli and G. oxydans, and the activity of the strongest promoter (P2703) was about threefold that of the other reported strong promoters of G. oxydans. These promoters were used to overexpress SDH in G. oxydans WSH-003. The titer of 2-KLG reached 3.7 g/L when SDH was under the control of strong promoters P2057 and P2703. This study obtained a series of gradient promoters, including two strong shuttle promoters, and expanded the toolbox of available promoters for the application in metabolic engineering of G. oxydans for high-value products.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Abstract
Acetic acid bacteria are involved in many food and beverage fermentation processes. They play an important role in cocoa bean fermentation through their acetic acid production. They initiate the development of some of the flavor precursors that are necessary for the organoleptic quality of cocoa, and for the beans’ color. The development of starter cultures with local strains would enable the preservation of the microbial biodiversity of each country in cocoa-producing areas, and would also control the fermentation. This approach could avoid the standardization of cocoa bean fermentation in the producing countries. One hundred and thirty acetic acid bacteria were isolated from three different cocoa-producing countries, and were identified based on their 16S rRNA gene sequence. The predominate strains were grown in a cocoa pulp simulation medium (CPSM-AAB) in order to compare their physiological traits regarding their specific growth rate, ethanol and lactic acid consumption, acetic acid production, and relative preferences of carbon sources. Finally, the intraspecific diversity of the strains was then assessed through the analysis of their genomic polymorphism by (GTG)5-PCR fingerprinting. Our results showed that Acetobacter pasteurianus was the most recovered species in all of the origins, with 86 isolates out of 130 cultures. A great similarity was observed between the strains according to their physiological characterization and genomic polymorphisms. However, the multi-parametric clustering results in the different groups highlighted some differences in their basic metabolism, such as their efficiency in converting carbon substrates to acetate, and their relative affinity to lactic acid and ethanol. The A. pasteurianus strains showed different behaviors regarding their ability to oxidize ethanol and lactic acid into acetic acid, and in their relative preference for each substrate. The impact of these behaviors on the cocoa quality should be investigated, and should be considered as a criterion for the selection of acetic acid bacteria starters.
Collapse
|
26
|
Rani R, Singh G, Batra K, Minakshi P. Bioengineered Polymer/Composites as Advanced Biological Detection of Sorbitol: An Application in Healthcare Sector. Curr Top Med Chem 2021; 20:963-981. [PMID: 32141419 DOI: 10.2174/1568026620666200306131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Bioengineered polymers and nanomaterials have emerged as promising and advanced materials for the fabrication and development of novel biosensors. Nanotechnology-enabled biosensor methods have high sensitivity, selectivity and more rapid detection of an analyte. Biosensor based methods are more rapid and simple with higher sensitivity and selectivity and can be developed for point-of-care diagnostic testing. Development of a simple, sensitive and rapid method for sorbitol detection is of considerable significance to efficient monitoring of diabetes-associated disorders like cataract, neuropathy, and nephropathy at initial stages. This issue encourages us to write a review that highlights recent advancements in the field of sorbitol detection as no such reports have been published till the date. The first section of this review will be dedicated to the conventional approaches or methods that had been playing a role in detection. The second part focused on the emerging field i.e. biosensors with optical, electrochemical, piezoelectric, etc. approaches for sorbitol detection and the importance of its detection in healthcare application. It is expected that this review will be very helpful for readers to know the different conventional and recent detection techniques for sorbitol at a glance.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar-125001, India
| | - Geeta Singh
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131027, Sonipat, India
| | - Kanisht Batra
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| |
Collapse
|
27
|
Qin Z, Yang Y, Yu S, Liu L, Chen Y, Chen J, Zhou J. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in Gluconobacter oxydans WSH-003. ACS Synth Biol 2021; 10:84-93. [PMID: 33399467 DOI: 10.1021/acssynbio.0c00456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gluconobacter oxydans is well-known for its incomplete oxidizing capacity and has been widely applied in industrial production. However, genetic tools in G. oxydans are still scarce compared with model microorganisms, limiting its metabolic engineering. This study aimed to develop a clustered regularly interspaced short palindromic repeats interference (CRISPRi) system based on the typical type I-E endogenous CRISPR/CRISPR-associated proteins (Cas) system in G. oxydans WSH-003. The nuclease Cas3 in this system was inactivated naturally and hence did not need to be knocked out. Subsequently, the CRISPRi effect was verified by repressing the expression of fluorescent proteins, revealing effective multiplex gene repression. Finally, the endogenous CRISPRi system was used to study the role of the central carbon metabolism pathway, including the pentose phosphate pathway (PPP) and Entner-Doudoroff pathway (EDP), in G. oxydans WSH-003. This was done to demonstrate a metabolic engineering application. The PPP was found to be important for cell growth and the substrate conversion rate. The development of the CRISPRi system enriched the gene regulation tools in G. oxydans and promoted the metabolic engineering modification of G. oxydans to improve its performance. In addition, it might have implications for metabolic engineering modification of other genetically recalcitrant strains.
Collapse
Affiliation(s)
- Zhijie Qin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yutong Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
A novel strain of acetic acid bacteria Gluconobacter oxydans FBFS97 involved in riboflavin production. Sci Rep 2020; 10:13527. [PMID: 32782276 PMCID: PMC7419552 DOI: 10.1038/s41598-020-70404-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett–Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.
Collapse
|
29
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Battling S, Wohlers K, Igwe C, Kranz A, Pesch M, Wirtz A, Baumgart M, Büchs J, Bott M. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose. Microb Cell Fact 2020; 19:54. [PMID: 32131833 PMCID: PMC7055074 DOI: 10.1186/s12934-020-01310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background 5-Ketofructose (5-KF) has recently been identified as a promising non-nutritive natural sweetener. Gluconobacter oxydans strains have been developed that allow efficient production of 5-KF from fructose by plasmid-based expression of the fructose dehydrogenase genes fdhSCL of Gluconobacter japonicus. As plasmid-free strains are preferred for industrial production of food additives, we aimed at the construction of efficient 5-KF production strains with the fdhSCL genes chromosomally integrated. Results For plasmid-free 5-KF production, we selected four sites in the genome of G. oxydans IK003.1 and inserted the fdhSCL genes under control of the strong P264 promoter into each of these sites. All four recombinant strains expressed fdhSCL and oxidized fructose to 5-KF, but site-specific differences were observed suggesting that the genomic vicinity influenced gene expression. For further improvement, a second copy of the fdhSCL genes under control of P264 was inserted into the second-best insertion site to obtain strain IK003.1::fdhSCL2. The 5-KF production rate and the 5-KF yield obtained with this double-integration strain were considerably higher than for the single integration strains and approached the values of IK003.1 with plasmid-based fdhSCL expression. Conclusion We identified four sites in the genome of G. oxydans suitable for expression of heterologous genes and constructed a strain with two genomic copies of the fdhSCL genes enabling efficient plasmid-free 5-KF production. This strain will serve as basis for further metabolic engineering strategies aiming at the use of alternative carbon sources for 5-KF production and for bioprocess optimization.
Collapse
Affiliation(s)
- Svenja Battling
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Karen Wohlers
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Chika Igwe
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Matthias Pesch
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
31
|
Liu L, Zeng W, Du G, Chen J, Zhou J. Identification of NAD-Dependent Xylitol Dehydrogenase from Gluconobacter oxydans WSH-003. ACS OMEGA 2019; 4:15074-15080. [PMID: 31552350 PMCID: PMC6751703 DOI: 10.1021/acsomega.9b01867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
Gluconobacter oxydans plays an important role in the conversion of d-sorbitol to l-sorbose, which is an essential intermediate for the industrial-scale production of vitamin C. In the fermentation process, some d-sorbitol could be converted to d-fructose and other byproducts by uncertain dehydrogenases. Genome sequencing has revealed the presence of diverse genes encoding dehydrogenases in G. oxydans. However, the characteristics of most of these dehydrogenases remain unclear. Therefore, the analyses of these unknown dehydrogenases could be useful for identifying those related to the production of d-fructose and other byproducts. Accordingly, dehydrogenases in G. oxydans WSH-003, an industrial strain used for vitamin C production, were examined. A nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, which was annotated as xylitol dehydrogenase 2, was identified, codon-optimized, and expressed in Escherichia coli BL21 (DE3) cells. The enzyme exhibited a high preference for NAD+ as the cofactor, while no activity with nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, or pyrroloquinoline quinone was noted. Although this enzyme presented high similarity with NAD-dependent xylitol dehydrogenase, it showed high activity to catalyze d-sorbitol to d-fructose. Unlike the optimum temperature and pH for most of the known NAD-dependent xylitol dehydrogenases (30-40 °C and about 6-8, respectively), those for the identified enzyme were 57 °C and 12, respectively. The values of K m and V max of the identified dehydrogenase toward l-sorbitol were 4.92 μM and 196.08 μM/min, respectively. Thus, xylitol dehydrogenase 2 can be useful for the cofactor-reduced nicotinamide adenine dinucleotide regeneration under alkaline conditions, or its knockout can improve the conversion ratio of d-sorbitol to l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Guocheng Du
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jian Chen
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- E-mail: . Tel/Fax: +86-510-85914317
| |
Collapse
|
32
|
Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus. Synth Syst Biotechnol 2019; 4:134-141. [PMID: 31384676 PMCID: PMC6661466 DOI: 10.1016/j.synbio.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
2-keto-d-gluconic acid (2-KGA) is a key precursor for synthesising vitamin C and isovitamin C. However, phage contamination is as constant problem in industrial production of 2-KGA using Pseudomonas fluorescens. Gluconobacter holds promise for producing 2-KGA due to impressive resistance to hypertonicity and acids, and high utilisation of glucose. In this study, the 2-KGA synthesis pathway was regulated to enhance production of 2-KGA and reduce accumulation of the by-products 5-keto-d-gluconic acid (5-KGA) and d-gluconic acid (D-GA) in the 2-KGA producer Gluconobacter japonicus CGMCC 1.49. Knocking out the ga5dh-1 gene from a competitive pathway and overexpressing the ga2dh-A gene from the 2-KGA synthesis pathway via homologous recombination increased the titre of 2-KGA by 63.81% in shake flasks. Additionally, accumulation of 5-KGA was decreased by 63.52% with the resulting G. japonicas-Δga5dh-1-ga2dh-A strain. Using an intermittent fed-batch mode in a 3 L fermenter, 2-KGA reached 235.3 g L−1 with a 91.1% glucose conversion rate. Scaling up in a 15 L fermenter led to stable 2-KGA titre with productivity of 2.99 g L−1 h−1, 11.99% higher than in the 3 L fermenter, and D-GA and 5-KGA by-products were completely converted to 2-KGA.
Collapse
|
33
|
2-Phenylethanol biooxidation by Gluconobacter oxydans: influence of cultivation conditions on biomass production and biocatalytic activity of cells. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
de la Morena S, Santos VE, García-Ochoa F. Influence of oxygen transfer and uptake rates on dihydroxyacetone production from glycerol by Gluconobacter oxydans in resting cells operation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Cells-on-nanofibers: Effect of polyethyleneimine on hydrophobicity of poly-Ɛ-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme Microb Technol 2019; 126:24-31. [DOI: 10.1016/j.enzmictec.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
36
|
Kiryu T, Kiso T, Koma D, Tanaka S, Murakami H. Identifying membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria that produce lactobionic and cellobionic acids. Biosci Biotechnol Biochem 2019; 83:1171-1179. [DOI: 10.1080/09168451.2019.1580136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Acetic acid bacteria are used in the commercial production of lactobionic acid (LacA). However, the lactose-oxidizing enzyme of these bacteria remains unidentified. Lactose-oxidizing activity has been detected in bacterial membrane fractions and is strongly inhibited by d-glucose, suggesting that the enzyme was a membrane-bound quinoprotein glucose dehydrogenase, but these dehydrogenases have been reported to be incapable of oxidizing lactose. Thus, we generated m-GDH-overexpressing and -deficient strains of Komagataeibacter medellinensis NBRC3288 and investigated their lactose-oxidizing activities. Whereas the overexpressing variants produced ~2–5-fold higher amounts of LacA than the wild-type strains, the deficient variant produced no LacA or d-gluconic acid. Our results indicate that the lactose-oxidizing enzyme from acetic acid bacteria is membrane-bound quinoprotein glucose dehydrogenase.
Abbreviations: LacA: lactobionic acid; AAB: acetic acid bacterium; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection
Collapse
Affiliation(s)
- Takaaki Kiryu
- Biomaterials and Commodity Chemicals Research Division, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Taro Kiso
- Biomaterials and Commodity Chemicals Research Division, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Daisuke Koma
- Biomaterials and Commodity Chemicals Research Division, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Shigemitsu Tanaka
- Biomaterials and Commodity Chemicals Research Division, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Hiromi Murakami
- Biomaterials and Commodity Chemicals Research Division, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| |
Collapse
|
37
|
L-Erythrulose production with a multideletion strain of Gluconobacter oxydans. Appl Microbiol Biotechnol 2019; 103:4393-4404. [DOI: 10.1007/s00253-019-09824-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
38
|
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr Rev Food Sci Food Saf 2019; 18:587-625. [DOI: 10.1111/1541-4337.12440] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Emanuele Zannini
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Luk Daenen
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
- APC Microbiome IrelandUniv. College Cork Cork T12 K8AF Ireland
| |
Collapse
|
39
|
Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Waste glycerol is the main by-product generated during biodiesel production, in an amount reaching up to 10% of the produced biofuel. Is there any method which allows changing this waste into industrial valuable compounds? This manuscript describes a method for valorization of crude glycerol via microbial bioconversion. It has been shown that the use of free and immobilized biocatalysts obtained from Gluconobacter oxydans can enable beneficial valorization of crude glycerol to industrially valuable dihydroxyacetone. The highest concentration of this compound, reaching over 20 g·L−1, was obtained after 72 h of biotransformation with free G. oxydans cells, in a medium containing 30 or 50 g·L−1 of waste glycerol. Using a free cell extract resulted in higher concentrations of dihydroxyacetone and a higher valorization efficiency (up to 98%) compared to the reaction with an immobilized cell extract. Increasing waste glycerol concentration to 50 g·L−1 causes neither a faster nor higher increase in product yield and reaction efficiency compared to its initial concentration of 30 g·L−1. The proposed method could be an alternative for utilization of a petrochemical waste into industry applicated chemicals.
Collapse
|
40
|
Yan J, Xu J, Cao M, Li Z, Xu C, Wang X, Yang C, Xu P, Gao C, Ma C. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Microb Cell Fact 2018; 17:158. [PMID: 30296949 PMCID: PMC6174558 DOI: 10.1186/s12934-018-1001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background Whole cells of Gluconobacter oxydans are widely used in various biocatalytic processes. Sorbitol at high concentrations is commonly used in complex media to prepare biocatalysts. Exploiting an alternative process for preparation of biocatalysts with low cost substrates is of importance for industrial applications. Results G. oxydans 621H was confirmed to have the ability to grow in mineral salts medium with glycerol, an inevitable waste generated from industry of biofuels, as the sole carbon source. Based on the glycerol utilization mechanism elucidated in this study, the major polyol dehydrogenase (GOX0854) and the membrane-bound alcohol dehydrogenase (GOX1068) can competitively utilize glycerol but play no obvious roles in the biocatalyst preparation. Thus, the genes related to these two enzymes were deleted. Whole cells of G. oxydans ∆GOX1068∆GOX0854 can be prepared from glycerol with a 2.4-fold higher biomass yield than that of G. oxydans 621H. Using whole cells of G. oxydans ∆GOX1068∆GOX0854 as the biocatalyst, 61.6 g L−1 xylonate was produced from 58.4 g L−1 xylose at a yield of 1.05 g g−1. Conclusion This process is an example of efficient preparation of whole cells of G. oxydans with reduced cost. Besides xylonate production from xylose, other biocatalytic processes might also be developed using whole cells of metabolic engineered G. oxydans prepared from glycerol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1001-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinxin Yan
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.,Dong Ying Oceanic and Fishery Bureau, 206 Yellow River Road, Dongying, 257091, People's Republic of China
| | - Menghao Cao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Zhong Li
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chengpeng Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.
| |
Collapse
|
41
|
Zhu J, Xie J, Wei L, Lin J, Zhao L, Wei D. Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. BIORESOURCE TECHNOLOGY 2018; 265:328-333. [PMID: 29913287 DOI: 10.1016/j.biortech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
Gluconobacter oxydans can be efficiently used to produce 3-hydroxypropionic acid (3-HP) from 1,3-propanediol (1,3-PDO). However, the enzymes involved remain unclear. In this study, transcription analysis of two mutants of strain DSM 2003, obtained by UV-mutagenesis, revealed that membrane-bound alcohol dehydrogenase (mADH) and membrane-bound aldehyde dehydrogenase (mALDH) might be the main enzymes involved. Through deletion and complementation of the genes adhA and aldh, mADH and mALDH were verified as the main enzymes responsible for 3-HP production. Then mALDH was verified as the rate-limiting enzyme in 3-HP production. Since that overexpression of mADH had no effect on 3-HP production, whereas overexpression of mALDH increased 23.6% 3-HP production. Finally, the 3-HP titer of 45.8 g/L and the highest productivity 1.86 g/L/h were achieved when the two mutants DSM 2003/adhAB and DSM 2003/aldh were mixed at a ratio of 1:2 (cell density) and used as whole cell catalysts for 3-HP production.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
42
|
Herweg E, Schöpping M, Rohr K, Siemen A, Frank O, Hofmann T, Deppenmeier U, Büchs J. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2018; 259:164-172. [PMID: 29550669 DOI: 10.1016/j.biortech.2018.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g5-KF/gfructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process.
Collapse
Affiliation(s)
- Elena Herweg
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Marie Schöpping
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Katja Rohr
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Anna Siemen
- Bioeconomy Science Center (BioSC), Germany; Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Uwe Deppenmeier
- Bioeconomy Science Center (BioSC), Germany; Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany.
| |
Collapse
|
43
|
Blank M, Schweiger P. Surface display for metabolic engineering of industrially important acetic acid bacteria. PeerJ 2018; 6:e4626. [PMID: 29637028 PMCID: PMC5890722 DOI: 10.7717/peerj.4626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF) was used to deliver alkaline phosphatase (PhoA) to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK)1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.
Collapse
Affiliation(s)
- Marshal Blank
- Biology Department, Missouri State University, Springfield, MO, USA
| | - Paul Schweiger
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI, USA
| |
Collapse
|
44
|
Gomes RJ, Borges MDF, Rosa MDF, Castro-Gómez RJH, Spinosa WA. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol Biotechnol 2018; 56:139-151. [PMID: 30228790 DOI: 10.17113/ftb.56.02.18.5593] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The group of Gram-negative bacteria capable of oxidising ethanol to acetic acid is called acetic acid bacteria (AAB). They are widespread in nature and play an important role in the production of food and beverages, such as vinegar and kombucha. The ability to oxidise ethanol to acetic acid also allows the unwanted growth of AAB in other fermented beverages, such as wine, cider, beer and functional and soft beverages, causing an undesirable sour taste. These bacteria are also used in the production of other metabolic products, for example, gluconic acid, l-sorbose and bacterial cellulose, with potential applications in the food and biomedical industries. The classification of AAB into distinct genera has undergone several modifications over the last years, based on morphological, physiological and genetic characteristics. Therefore, this review focuses on the history of taxonomy, biochemical aspects and methods of isolation, identification and quantification of AAB, mainly related to those with important biotechnological applications.
Collapse
Affiliation(s)
- Rodrigo José Gomes
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima Borges
- Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 Fortaleza, CE, Brazil
| | | | - Raúl Jorge Hernan Castro-Gómez
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
45
|
Aslan S, Ó Conghaile P, Leech D, Gorton L, Timur S, Anik U. Development of a Bioanode for Microbial Fuel Cells Based on the Combination of a MWCNT-Au-Pt Hybrid Nanomaterial, an Osmium Redox Polymer andGluconobacter oxydansDSM 2343 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sema Aslan
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| | - Peter Ó Conghaile
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Dónal Leech
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; PO Box 124 SE-22100 Lund Sweden
| | - Suna Timur
- Ege University; Faculty of Science, Biochemistry Department; 35100-Bornova Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; 35100-Bornova Izmir/ Turkey
| | - Ulku Anik
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| |
Collapse
|
46
|
Zou X, Wu G, Stagge S, Chen L, Jönsson LJ, Hong FF. Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors. Microb Cell Fact 2017; 16:229. [PMID: 29268745 PMCID: PMC5738851 DOI: 10.1186/s12934-017-0846-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Background Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to that of Komagataeibacter xylinus ATCC 23770. Inhibitors studied included furan aldehydes (furfural and 5-hydroxymethylfurfural) and phenolic compounds (coniferyl aldehyde and vanillin). The performance of the four strains in the presence and absence of the inhibitors was assessed using static cultures, and their capability to convert inhibitors by oxidation and reduction was analyzed. Results Although two of the new strains were more sensitive than ATCC 23770 to furan aldehydes, one of the new strains showed superior resistance to both furan aldehydes and phenols, and also displayed high volumetric BNC yield (up to 14.78 ± 0.43 g/L) and high BNC yield on consumed sugar (0.59 ± 0.02 g/g). The inhibitors were oxidized and/or reduced by the strains to be less toxic. The four strains exhibited strong similarities with regard to predominant bioconversion products from the inhibitors, but displayed different capacity to convert the inhibitors, which may be related to the differences in inhibitor tolerance. Conclusions This investigation provides information on different performance of four BNC-producing strains in the presence of lignocellulose-derived inhibitors. The results will be of benefit to the selection of more suitable strains for utilization of lignocellulosics in the process of BNC-production.
Collapse
Affiliation(s)
- Xiaozhou Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Guochao Wu
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Stefan Stagge
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Lin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Leif J Jönsson
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Feng F Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China. .,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China. .,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
47
|
Truong VK, Bhadra CM, Christofferson AJ, Yarovsky I, Al Kobaisi M, Garvey CJ, Ponamoreva ON, Alferov SV, Alferov VA, Tharushi Perera PG, Nguyen DHK, Buividas R, Juodkazis S, Crawford RJ, Ivanova EP. Three-Dimensional Organization of Self-Encapsulating Gluconobacter oxydans Bacterial Cells. ACS OMEGA 2017; 2:8099-8107. [PMID: 30023573 PMCID: PMC6045399 DOI: 10.1021/acsomega.7b01282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/02/2017] [Indexed: 05/03/2023]
Abstract
Self-organized bacteria have been the subject of interest for a number of applications, including the construction of microbial fuel cells. In this paper, we describe the formation of a self-organized, three-dimensional network that is constructed using Gluconobacter oxydans B-1280 cells in a hydrogel consisting of poly(vinyl alcohol) (PVA) with N-vinyl pyrrolidone (VP) as a cross-linker, in which the bacterial cells are organized in a particular side-by-side alignment. We demonstrated that nonmotile G. oxydans cells are able to reorganize themselves, transforming and utilizing PVA-VP polymeric networks through the molecular interactions of bacterial extracellular polysaccharide (EPS) components such as acetan, cellulose, dextran, and levan. Molecular dynamics simulations of the G. oxydans EPS components interacting with the hydrogel polymeric network showed that the solvent-exposed loops of PVA-VP extended and engaged in bacterial self-encapsulation.
Collapse
Affiliation(s)
- Vi Khanh Truong
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Chris M. Bhadra
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrew J. Christofferson
- School of Engineering and School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- School of Engineering and School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Mohammad Al Kobaisi
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Christopher J. Garvey
- Australian
Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, New South Wales 2232, Australia
| | - Olga N. Ponamoreva
- Biotechnology
Department and Chemistry Department, Tula State University, 92 Lenin pr., Tula 300012, Russian Federation
| | - Sergey V. Alferov
- Biotechnology
Department and Chemistry Department, Tula State University, 92 Lenin pr., Tula 300012, Russian Federation
| | - Valery A. Alferov
- Biotechnology
Department and Chemistry Department, Tula State University, 92 Lenin pr., Tula 300012, Russian Federation
| | - Palalle G. Tharushi Perera
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Duy H. K. Nguyen
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Ričardas Buividas
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saulius Juodkazis
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Russell J. Crawford
- School of Engineering and School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Elena P. Ivanova
- School
of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
48
|
Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol 2017; 101:3189-3200. [PMID: 28064365 DOI: 10.1007/s00253-016-8069-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Acetic acid bacteria are used in biotechnology due to their ability to incompletely oxidize a great variety of carbohydrates, alcohols, and related compounds in a regio- and stereo-selective manner. These reactions are catalyzed by membrane-bound dehydrogenases (mDHs), often with a broad substrate spectrum. In this study, the promoters of six mDHs of Gluconobacter oxydans 621H were characterized. The constitutive promoter of the alcohol dehydrogenase and the glucose-repressed promoter of the inositol dehydrogenase were used to construct a shuttle vector system for the fully functional expression of mDHs in the multi-deletion strain G. oxydans BP.9 that lacks its mDHs. This system was used to express each mDH of G. oxydans 621H, in order to individually characterize the substrates, they oxidize. From 55 tested compounds, the alcohol dehydrogenase oxidized 30 substrates and the polyol dehydrogenase 25. The substrate spectrum of alcohol dehydrogenase overlapped largely with the aldehyde dehydrogenase and partially with polyol dehydrogenase. Thus, we were able to resolve the overlapping substrate spectra of the main mDHs of G. oxydans 621H. The described approach could also be used for the expression and detailed characterization of substrates used by mDHs from other acetic acid bacteria or a metagenome.
Collapse
Affiliation(s)
- Markus Mientus
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - David Kostner
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Björn Peters
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
49
|
Aslan S, Conghaile PÓ, Leech D, Gorton L, Timur S, Anik U. Development of an Osmium Redox Polymer Mediated Bioanode and Examination of its Performance in Gluconobacter oxydans
Based Microbial Fuel Cell. ELECTROANAL 2017. [DOI: 10.1002/elan.201600727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sema Aslan
- Muğla Sıtkı Koçman University, Faculty of Science; Chemistry Department; 48000 Kötekli/Muğla Turkey
| | - Peter Ó Conghaile
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Dónal Leech
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; PO Box 124 SE-22100 Lund Sweden
| | - Suna Timur
- Ege University; Faculty of Science; Biochemistry Department; 35100-Bornova Izmir Turkey
| | - Ulku Anik
- Muğla Sıtkı Koçman University, Faculty of Science; Chemistry Department; 48000 Kötekli/Muğla Turkey
| |
Collapse
|
50
|
Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|