1
|
Cao XX, Yuan JJ, Bai ZY, Zhang M, Yun YF, Wang XY, Mi CL, Sun QL, Geng SL, Wang TY. Effect of CHO cell line constructed with CMAH gene-directed integration on the recombinant protein expression. Int J Biol Macromol 2024; 292:139274. [PMID: 39736287 DOI: 10.1016/j.ijbiomac.2024.139274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response. However, the effects of transgene integration at the CMAH site on RTP expression in CHO cells remain unclear. In this study, we selected CMAH gene, which is lacking in humans, as the target site to construct recombinant CHO cell line using the CRISPR/Cas9 technique. Erythropoietin (EPO) and EGFP integration at the CMAH site resulted in more stable expression levels and lower heterogeneity than random integration. In addition, the proportion of N-glycosylation levels in the EPO glycoside of CMAH integration site also changed. In conclusion, CMAH site integration improved the stability of RTP expression in CHO cells.
Collapse
Affiliation(s)
- Xiang-Xiang Cao
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; Sanquan College of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jing-Jia Yuan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zhi-Yuan Bai
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Min Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yi-Fei Yun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
2
|
Chamberlain P, Hemmer B, Höfler J, Wessels H, von Richter O, Hornuss C, Poetzl J, Roth K. Comparative immunogenicity assessment of biosimilar natalizumab to its reference medicine: a matching immunogenicity profile. Front Immunol 2024; 15:1414304. [PMID: 39749348 PMCID: PMC11693714 DOI: 10.3389/fimmu.2024.1414304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Background Biosimilar natalizumab (biosim-NTZ) is the first biosimilar monoclonal antibody of reference natalizumab (ref-NTZ) for treatment of relapsing forms of multiple sclerosis (MS). Within the totality of evidence for demonstration of biosimilarity, immunogenicity assessments were performed in healthy subjects and patients with relapsing-remitting MS (RRMS) to confirm a matching immunogenicity profile between biosim-NTZ and ref-NTZ. Methods Immunogenicity of biosim-NTZ versus ref-NTZ was evaluated in two pivotal clinical studies. In a comparative efficacy and safety study, patients with RRMS (n=264) received monthly infusions of biosim-NTZ/EU-ref-NTZ over 48 weeks. The primary endpoint period was Week 0 to Week 24. In a separate, comparative pharmacokinetic/pharmacodynamic (PK/PD) study, healthy subjects (n=450) received a single dose of biosim-NTZ, US-ref-NTZ or EU-ref-NTZ prior to an 85-day follow-up. In both studies, state-of-the-art, highly sensitive and drug tolerant bioanalytical assays were used to identify the proportion of participants with anti-drug antibodies (ADA) and neutralizing antibodies (NAb) against natalizumab over time. Results In the comparative efficacy and safety study, biosim-NTZ and EU-ref-NTZ demonstrated similar incidences of overall ADA (79.4% vs 73.7%, respectively) and NAb (68.7% vs 66.2%, respectively) at Week 24. ADA titers over time were also concordant throughout the study period. Switching treatment from EU-ref-NTZ to biosim-NTZ had no impact on treatment-related ADA/NAb or clinical responses. Likewise, the single-dose PK/PD study reported matching overall incidence of ADA between treatment groups and matching ADA titer profiles over time. Conclusion The immunogenicity profile of biosim-NTZ was confirmed to match that of ref-NTZ in healthy subjects and patients with RRMS by applying highly sensitive methods.
Collapse
Affiliation(s)
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Munich and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Yun HS, Kim EJ, Kim BG, Jeong HJ. Convenient production of a novel recombinant antibody against periodontitis biomarker S100A8. Prep Biochem Biotechnol 2024:1-6. [PMID: 39564736 DOI: 10.1080/10826068.2024.2430615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
S100A8 serves as a biomarker for periodontitis and is involved in inflammatory processes, making its detection highly important. In this study, we produced recombinant 5A11 (r5A11) through mammalian cell culture. By employing a three-step process of transfection, suspension cell culture, and purification, we conveniently produced r5A11 with high yield and purity. The limit of detection for the r5A11-based immunoassay was 1.7 ± 0.2 × 10-1 ng/mL, which was higher than that of the commercially available anti-S100A8 antibody. These findings suggest the potential use of this novel antibody in various research applications and practical approaches for simple and sensitive S100A8 detection.
Collapse
Affiliation(s)
- Hui-Seon Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Eun-Jung Kim
- R&D Center, EGC Therapeutics, Inc, Seoul, South Korea
| | - Byung-Gee Kim
- R&D Center, EGC Therapeutics, Inc, Seoul, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| |
Collapse
|
4
|
Bernstein ZJ, Gierke TR, Dammen-Brower K, Tzeng SY, Zhu S, Chen SS, Wilson DS, Green JJ, Yarema KJ, Spangler JB. Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. J Biol Chem 2024; 300:108005. [PMID: 39551135 PMCID: PMC11697773 DOI: 10.1016/j.jbc.2024.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without the need for complex or destructive chemistries. Moreover, the introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to three conjugation sites in tandem, and the extent of conjugation can be tuned through the use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and effective yet strikingly simple approach to producing antibody conjugates for research, industrial, and medical applications.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor R Gierke
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Scott Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Jang D, Altern SH, Cramer SM. In silico mediated workflow for rapid development of downstream processing: Orthogonal product-related impurity removal for a Fc-containing therapeutic. J Chromatogr A 2024; 1735:465281. [PMID: 39243589 DOI: 10.1016/j.chroma.2024.465281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.
Collapse
Affiliation(s)
- Dongyoun Jang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
6
|
Lee HM, Kim TH, Park JH, Heo NY, Kim HS, Kim DE, Lee MK, Lee GM, You J, Kim YG. Sialyllactose supplementation enhances sialylation of Fc-fusion glycoprotein in recombinant Chinese hamster ovary cell culture. J Biotechnol 2024; 392:180-189. [PMID: 39038661 DOI: 10.1016/j.jbiotec.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Na-Yeong Heo
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
7
|
Liu P, Liu S, Dalal V, Lane J, Gessaroli E, Forte E, Gallon L, Jin J. Evaluation of Methodologies in Anti-nephrin Autoantibody Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605154. [PMID: 39211159 PMCID: PMC11360973 DOI: 10.1101/2024.07.25.605154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent studies discovered the prominent presence of anti-nephrin autoantibodies in minimal change disease, steroid-sensitive nephrotic syndrome and/or post-transplant recurrent focal segmental glomerulosclerosis (FSGS). However, widely different, and often unconventional autoantibody detection methods were used among these studies, making it challenging to assess the pathogenic role for the antibodies. Here we examined methods of conventional ELISA, magnetic on-beads ELISA, immunoprecipitation-immunoblotting (IP-IB), and cell- and tissue-based antibody assays with 127 plasma samples of kidney and non-kidney diseases. On the antigen side, we compared commercially available recombinant human nephrin extracelluar domain (ECD) produced from human or mouse cell lines, as well as lab-made full length, ECD, and series of ECD truncates for measuring autoantibody reactivity and specificity. Surprisingly, different assay methods and different antigen preparations led to observation of assay-specific false-positive and false-negative results. In general, a set of tests that combines magnetic beads-enhanced ELISA, followed by IP-IB, and epitope mapping showed the most robust results for anti-nephrin autoantibodies, detected in two primary FSGS patients among all cases tested. It is interesting to note that cell/tissue-based results, also supported by antigen truncation studies, clearly suggest steric hindrance of reactive epitopes, as in full length nephrin that forms compact self-associated complexes. In conclusion, anti-nephrin positivity is rare among the tested patients (2/127), including those with FSGS (2/42), and autoantibody results can be affected by the choice of detection methods.
Collapse
|
8
|
Wagner JT, Müller-Schmucker SM, Wang W, Arnold P, Uhlig N, Issmail L, Eberlein V, Damm D, Roshanbinfar K, Ensser A, Oltmanns F, Peter AS, Temchura V, Schrödel S, Engel FB, Thirion C, Grunwald T, Wuhrer M, Grimm D, Überla K. Influence of AAV vector tropism on long-term expression and Fc-γ receptor binding of an antibody targeting SARS-CoV-2. Commun Biol 2024; 7:865. [PMID: 39009807 PMCID: PMC11250830 DOI: 10.1038/s42003-024-06529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.
Collapse
Affiliation(s)
- Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, University of Heidelberg; BioQuant Center, BQ0030, University of Heidelberg; German Center for Infection Research (DZIF), German Center for Cardiovascular Research (DZHK), partner site, Heidelberg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
9
|
Rowe BA, Medina-Carle K, Chen K, Reese KJ, McCarthy KM, Concannon AA, Gunn GR, Gehman AP, Jiang Y, Meyer E. Unique challenges required reassessment and alterations to critical reagents to rescue a neutralizing antibody assay. Bioanalysis 2024; 16:735-745. [PMID: 38884331 PMCID: PMC11389750 DOI: 10.1080/17576180.2024.2360363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: To redevelop a neutralizing antibody (NAb) assay to be much more drug tolerant, have a large dynamic range and have high inhibition when using high levels of positive control (PC).Materials & methods: Early assay data suggested that typical biotin labeling of the capture reagent (Drug 1, produced in a human cell line) was blocking it from binding with the PC or the detection target, and that the detection target was out competing the PC. Methodical biotin labeling experiments were performed at several challenge ratios and an Fc linker was added to the detection target.Results & conclusion: A larger dynamic range, high inhibition and higher drug tolerance were achieved by adding an acid dissociation step to the assay, performing atypical biotin labeling of Drug 1 and switching to a detection target that contained an Fc linker to increase steric hinderance and decrease its binding affinity to Drug 1.
Collapse
Affiliation(s)
- Blake A Rowe
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Katie Medina-Carle
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Keguan Chen
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Kimberly J Reese
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Kenneth M McCarthy
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Amy A Concannon
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - George R Gunn
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Andrew P Gehman
- GSK Research Statistics, Biostatistics, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Yong Jiang
- Janssen Research & Development, 1400 McKean Rd, Lower Gwynedd Township, PA 19002,USA
| | - Erik Meyer
- GSK Precision Medicine, Biomarker & Bioanalytical Platforms, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| |
Collapse
|
10
|
Liu L, Zhong J, Zhang Z, Ye X, Wang X, Liu S, Zhang Z. Preclinical study and first-in-human imaging of [ 18F]FAP-2286, and comparison with 2-[ 18F]FDG PET/CT in various cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:2012-2022. [PMID: 38326656 DOI: 10.1007/s00259-024-06626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Fibroblast-activated protein (FAP) is highly expressed in cancer-associated fibroblasts (CAFs) of many solid cancers, but low or absent in normal tissues. Our study aimed to develop a novel FAP-specific tracer, namely [18F]FAP-2286, and evaluated its performance in comparison with well-established agents such as [18F]FAPI-42 and [68Ga]Ga-FAP-2286 in preclinical research, as well as 2-[18F]FDG in pilot clinical study. METHODS [18F]FAP-2286 was manually synthesized in accordance with Good Manufacturing Practice (GMP). Subsequent investigations encompassed cell uptake, competitive binding affinity, internalization and efflux assays using HT-1080hFAP cell lines. PET imaging and biodistribution studies were conducted in HEK-293ThFAP, A549hFAP, HT-1080hFAP tumor-bearing mice as well as HEK-293T, A549 and HT-1080 control groups. Furthermore, clinical evaluation of [18F]FAP-2286 was performed in fifteen patients with various cancers compared to 2-[18F]FDG PET. RESULTS The radiolabeling yield of [18F]FAP-2286 was 30.53 ± 5.20%, with a radiochemical purity exceeding 97%. In cell assays, [18F]FAP-2286 showed specific uptake, high internalization fraction and low cellular efflux. Rapid tumor uptake and satisfactory tumor retention was observed on micro-PET imaging and cancer patients. Meanwhile, the clinical research demonstrated that [18F]FAP-2286 may represent an alternative for low glucose-metabolism malignant tumors PET imaging such as gastric cancers. CONCLUSION [18F]FAP-2286 showed superior imaging quality including rapid and high target uptake and satisfactory retention in both tumor-bearing mice and cancer patients. It may emerge as a promising candidate for early or delayed phase imaging and 2-[18F]FDG non-avid cancers PET scan.
Collapse
Affiliation(s)
- Lifang Liu
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ziqi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoting Ye
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Zhanwen Zhang
- Nuclear Medicine Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
11
|
Liu C, Otsuka K, Kawai T. Recent advances in microscale separation techniques for glycome analysis. J Sep Sci 2024; 47:e2400170. [PMID: 38863084 DOI: 10.1002/jssc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Research Administration Center, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| |
Collapse
|
12
|
Klevanski M, Kim H, Heilemann M, Kuner T, Bartenschlager R. Glycan-directed SARS-CoV-2 inhibition by leek extract and lectins with insights into the mode-of-action of Concanavalin A. Antiviral Res 2024; 225:105856. [PMID: 38447646 DOI: 10.1016/j.antiviral.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Four years after its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global challenge for human health. At its surface, SARS-CoV-2 features numerous extensively glycosylated spike proteins. This glycan coat supports virion docking and entry into host cells and at the same time renders the virus less susceptible to neutralizing antibodies. Given the high genetic plasticity of SARS-CoV-2 and the rapid emergence of immune escape variants, targeting the glycan shield by carbohydrate-binding agents emerges as a promising strategy. However, the potential of carbohydrate-targeting reagents as viral inhibitors remains underexplored. Here, we tested seven plant-derived carbohydrate-binding proteins, called lectins, and one crude plant extract for their antiviral activity against SARS-CoV-2 in two types of human lung cells: A549 cells ectopically expressing the ACE2 receptor and Calu-3 cells. We identified three lectins and an Allium porrum (leek) extract inhibiting SARS-CoV-2 infection in both cell systems with selectivity indices (SI) ranging between >2 and >299. Amongst these, the lectin Concanavalin A (Con A) exerted the most potent and broad activity against a panel of SARS-CoV-2 variants. We used multiplex super-resolution microscopy to address lectin interactions with SARS-CoV-2 and its host cells. Notably, we discovered that Con A not only binds to SARS-CoV-2 virions and their host cells, but also causes SARS-CoV-2 aggregation. Thus, Con A exerts a dual mode-of-action comprising both, antiviral and virucidal, mechanisms. These results establish Con A and other plant lectins as candidates for COVID-19 prevention and basis for further drug development.
Collapse
Affiliation(s)
- Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany; German Center for Lung Research (DZL), Partner Site Heidelberg (TLRC), Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Lee JY, Huh HD, Lee DK, Park SY, Shin JE, Gee HY, Park HW. Reprogramming anchorage dependency to develop cell lines for recombinant protein expression. Biotechnol J 2024; 19:e2400104. [PMID: 38700448 DOI: 10.1002/biot.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
As the biopharmaceutical industry continues to mature in its cost-effectiveness and productivity, many companies have begun employing larger-scale biomanufacturing and bioprocessing protocols. While many of these protocols require cells with anchorage-independent growth, it remains challenging to induce the necessary suspension adaptations in many different cell types. In addition, although transfection efficiency is an important consideration for all cells, especially for therapeutic protein production, cells in suspension are generally more difficult to transfect than adherent cells. Thus, much of the biomanufacturing industry is focused on the development of new human cell lines with properties that can support more efficient biopharmaceutical production. With this in mind, we identified a set of "Adherent-to-Suspension Transition" (AST) factors, IKZF1, BTG2 and KLF1, the expression of which induces adherent cells to acquire anchorage-independent growth. Working from the HEK293A cell line, we established 293-AST cells and 293-AST-TetR cells for inducible and reversible reprogramming of anchorage dependency. Surprisingly, we found that the AST-TetR system induces the necessary suspension adaptations with an accompanying increase in transfection efficiency and protein expression rate. Our AST-TetR system therefore represents a novel technological platform for the development of cell lines used for generating therapeutic proteins.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong Ki Lee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Quintana JI, Delgado S, Rábano M, Azkargorta M, Florencio-Zabaleta M, Unione L, Vivanco MDM, Elortza F, Jiménez-Barbero J, Ardá A. The impact of glycosylation on the structure, function, and interactions of CD14. Glycobiology 2024; 34:cwae002. [PMID: 38227775 PMCID: PMC10987292 DOI: 10.1093/glycob/cwae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
CD14 is an innate immune receptor that senses pathogen-associated molecular patterns, such as lipopolysaccharide, to activate the innate immune response. Although CD14 is known to be glycosylated, detailed understanding about the structural and functional significance of this modification is still missing. Herein, an NMR and MS-based study, assisted by MD simulations, has provided a 3D-structural model of glycosylated CD14. Our results reveal the existence of a key N-glycosylation site at Asn282 that exclusively contains unprocessed oligomannnose N-glycans that perfectly fit the concave cavity of the bent-solenoid shaped protein. This site is not accessible to glycosidases and is fundamental for protein folding and secretion. A second N-site at Asn151 displays mostly complex N-glycans, with the typical terminal epitopes of the host cell-line expression system (i.e. βGal, α2,3 and α2,6 sialylated βGal, here), but also particularities, such as the lack of core fucosylation. The glycan at this site points outside the protein surface, resulting in N-glycoforms fully exposed and available for interactions with lectins. In fact, NMR experiments show that galectin-4, proposed as a binder of CD14 on monocytes to induce their differentiation into macrophages-like cells, interacts in vitro with CD14 through the recognition of the terminal glycoepitopes on Asn151. This work provides key information about CD14 glycosylation, which helps to better understand its functional roles and significance. Although protein glycosylation is known to be dynamic and influenced by many factors, some of the features found herein (presence of unprocessed N-glycans and lack of core Fuc) are likely to be protein specific.
Collapse
Affiliation(s)
- Jon Imanol Quintana
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Sandra Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Miriam Rábano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Mirane Florencio-Zabaleta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
| | - Maria dM Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Félix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Bizkaia 48940, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Carlos III Health Institute, C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, Madrid 28029, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
| |
Collapse
|
15
|
Bendre S, Merkens H, Kuo HT, Ng P, Wong AAWL, Lau WS, Zhang Z, Kurkowska S, Chen CC, Uribe C, Bénard F, Lin KS. Development, preclinical evaluation and preliminary dosimetry profiling of SB03178, a first-of-its-kind benzo[h]quinoline-based fibroblast activation protein-α-targeted radiotheranostic for cancer imaging and therapy. Eur J Med Chem 2024; 268:116238. [PMID: 38367492 DOI: 10.1016/j.ejmech.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. natGa-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of natGa-SB03178 being ∼17 times higher than natGa-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68Ga]Ga-SB04033. 177Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68Ga]Ga-/[177Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Pauline Ng
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Wing Sum Lau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada.
| |
Collapse
|
16
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin NA, Johnston NM, Bruun TUJ, Ghanim HY, Lesch BJ, Dudek AM, Porteus MH. Combining Cell-Intrinsic and -Extrinsic Resistance to HIV-1 By Engineering Hematopoietic Stem Cells for CCR5 Knockout and B Cell Secretion of Therapeutic Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583956. [PMID: 38496600 PMCID: PMC10942466 DOI: 10.1101/2024.03.08.583956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
|
17
|
Liang M, Ran F, Li L, Hang H, An L. In vitro evolution of diagnostic antibodies targeting native antigens in plasma by sandwich flow cytometry. Biotechnol J 2024; 19:e2300492. [PMID: 38403438 DOI: 10.1002/biot.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Monoclonal antibodies (mAbs) that recognize and bind to specific antigens (Ags) have a wide range of applications in research, therapy, and diagnostics. However, many of these antibodies cannot bind well to the native Ags. In this study, based on the Chinese hamster ovary (CHO) cell display platform developed previously in our lab, we reported a novel artificial evolution procedure to improve the affinity of mAb against the native Ag directly using the plasma samples without purification of the native Ag. In this procedure, a pair of antibodies able to bind the Ag in sandwich manner are first confirmed (Ab1/Ab2) and the antibody (Ab) to be affinity-improved (Ab1) is displayed on CHO cells for Ab mutation. Then the cells were detected and sorted with flow cytometry in the form of Ab1-Ag-fluorescence labeled Ab2, which we named sandwich flow cytometry. Here, we used soluble isoform of suppression of tumorigenicity 2 (sST2) protein as model Ag, carried out "sandwich" maturation directly using the plasma samples containing the native sST2 protein and optimized a pair of antibodies with significantly improved sensitivity in the detection of the native sST2 in plasma. This method could be very useful in optimization of the diagnostic Ab pairs working in a "sandwich" manner if more antibodies were also successfully affinity-matured with this method.
Collapse
Affiliation(s)
- Mingxia Liang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Fanlei Ran
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Li Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Lili An
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, Beijing, China
| |
Collapse
|
18
|
Hidayah SN, Biabani A, Gaikwad M, Nissen P, Voß H, Riedner M, Schlüter H, Siebels B. Application of sample displacement batch chromatography for fractionation of proteoforms. Proteomics 2024; 24:e2200424. [PMID: 37750450 DOI: 10.1002/pmic.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Fractionation of proteoforms is currently the most challenging topic in the field of proteoform analysis. The need for considering the existence of proteoforms in experimental approaches is not only important in Life Science research in general but especially in the manufacturing of therapeutic proteins (TPs) like recombinant therapeutic antibodies (mAbs). Some of the proteoforms of TPs have significantly decreased actions or even cause side effects. The identification and removal of proteoforms differing from the main species, having the desired action, is challenging because the difference in the composition of atoms is often very small and their concentration in comparison to the main proteoform can be low. In this study, we demonstrate that sample displacement batch chromatography (SDBC) is an easy-to-handle, economical, and efficient method for fractionating proteoforms. As a model sample a commercial ovalbumin fraction was used, containing many ovalbumin proteoforms. The most promising parameters for the SDBC were determined by a screening approach and applied for a 10-segment fractionation of ovalbumin with cation exchange chromatography resins. Mass spectrometry of intact proteoforms was used for characterizing the SDBC fractionation process. By SDBC, a significant separation of different proteoforms was obtained.
Collapse
Affiliation(s)
- Siti Nurul Hidayah
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia
| | - Ali Biabani
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manasi Gaikwad
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paula Nissen
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Riedner
- Technology Platform Mass Spectrometry, University of Hamburg, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Melo-Braga MN, Carvalho MB, Ferreira MCE, Lavinder J, Abbasi A, Palmisano G, Thaysen-Andersen M, Sajadi MM, Ippolito GC, Felicori LF. Unveiling the multifaceted landscape of N-glycosylation in antibody variable domains: Insights and implications. Int J Biol Macromol 2024; 257:128362. [PMID: 38029898 PMCID: PMC11003471 DOI: 10.1016/j.ijbiomac.2023.128362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
N-glycosylation at the antibody variable domain has emerged as an important modification influencing antibody function. Despite its significance, information regarding its role and regulation remains limited. To address this gap, we comprehensively explored antibody structures housing N-glycosylation within the Protein Data Bank, yielding fresh insights into this intricate landscape. Our findings revealed that among 208 structures, N-glycosylation was more prevalent in human and mouse antibodies containing IGHV1-8 and IGHV2-2 germline genes, respectively. Moreover, our research highlights the potential for somatic hypermutation to introduce N-glycosylation sites by substituting polar residues (Ser or Thr) in germline variable genes with asparagine. Notably, our study underscores the prevalence of N-glycosylation in antiviral antibodies, especially anti-HIV. Besides antigen-antibody interaction, our findings suggest that N-glycosylation may impact antibody specificity, affinity, and avidity by influencing Fab dimer formation and complementary-determining region orientation. We also identified different glycan structures in HIV and SARS-CoV-2 antibody proteomic datasets, highlighting disparities from the N-glycan structures between PDB antibodies and biological repertoires further highlighting the complexity of N-glycosylation patterns. Our findings significantly enrich our understanding of the N-glycosylation's multifaceted characteristics within the antibody variable domain. Additionally, they underscore the pressing imperative for a more comprehensive characterization of its impact on antibody function.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Milene Barbosa Carvalho
- Departamento de Ciência da Computação da Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil
| | - Manuela Cristina Emiliano Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jason Lavinder
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Abdolrahim Abbasi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Mohammad M Sajadi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Liza F Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Li Z, Du X, Wang YMC. A survey of FDA Approved Monoclonal Antibodies and Fc-fusion Proteins for Manufacturing Changes and Comparability Assessment. Pharm Res 2024; 41:13-27. [PMID: 37910341 DOI: 10.1007/s11095-023-03627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Manufacturing changes occur commonly throughout stages of biologics development and may result in product quality attribute changes. As changes in critical quality attributes have the potential to affect clinical safety and efficacy of products, it is imperative to ensure the quality and clinical performance before introducing the after-change products. Thus, we embarked on this project to understand what data have supported the manufacturing changes for licensed products with pre- and post-approval changes. METHODS We surveyed the manufacturing changes of 85 monoclonal antibodies and 10 Fc fusion proteins approved by the Food and Drug Administration as of December 25, 2021. After collecting the type and timing of changes for these products, we investigated the approaches that provided supporting data for the changes. The source documents included reports submitted by applicants and FDA's regulatory reviews. RESULTS Analytical comparability was assessed to support all identified manufacturing changes. Supporting clinical data were available in 92% of these manufacturing changes; including data from pharmacokinetic comparability studies alone (3%), other studies on efficacy or safety (70%) and a combination of both (19%). Clinical pharmacokinetic comparability data contributed to supporting substantial changes, such as host cell type or master cell bank changes, concentration or formulation changes, and changes from pre-filled syringes to autoinjectors, especially when introduced after completing pivotal studies. CONCLUSION Our comprehensive retrospective analysis provides an understanding of the regulatory experience and industry practice, which could facilitate developing appropriate comparability approaches to support manufacturing changes in the future.
Collapse
Affiliation(s)
- Zhe Li
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (OCP/CDER/FDA), 10903 New Hampshire Avenue, Silver Spring, MD, USA.
| | - Xiulian Du
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (OCP/CDER/FDA), 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Yow-Ming C Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (OCP/CDER/FDA), 10903 New Hampshire Avenue, Silver Spring, MD, USA
| |
Collapse
|
21
|
Huang HW, Shivatare VS, Tseng TH, Wong CH. Cell-based production of Fc-GlcNAc and Fc-alpha-2,6 sialyl glycan enriched antibody with improved effector functions through glycosylation pathway engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572280. [PMID: 38187613 PMCID: PMC10769250 DOI: 10.1101/2023.12.18.572280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Glycosylation of antibody plays an important role in Fc-mediated killing of tumor cells and virus-infected cells through effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody dependent cell-mediated phagocytosis (ADCP) and vaccinal effect. Previous studies showed that therapeutical humanized antibodies with α2-6 sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP and vaccinal effect. However, the production of antibodies with homogeneous Fc-SCT needs multiple in vitro enzymatic and purification steps. In this study, we report two different approaches to shorten the processes to produce SCT-enriched antibodies. First, we expressed a bacterial endoglycosidase in GNT1-KO EXPI293 cells to trim all N -glycans to mono-GlcNAc glycoforms for in vitro transglycosylation to generate homogeneous SCT antibody. Second, we engineered the glycosylation pathway of HEK293 cells through knockout of the undesired glycosyltransferases and expression of the desired glycosyltransferases to produce SCT enriched antibodies with similar binding affinity to Fc receptors and ADCC activity to homogenous SCT antibody.
Collapse
|
22
|
Ren W, Yang L, Feng J, Wang S, Hu Q, Liu H, Zhang J, Wang Z, Yan M, Yu H, Wang Y. A platform for qualitative and quantitative characterization of α-Gal and NeuGc at the oligosaccharide level. Anal Biochem 2023; 683:115362. [PMID: 37866525 DOI: 10.1016/j.ab.2023.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Glycosylation modification serves as a pivotal quality attribute in glycoprotein-based therapeutics, emphasizing its role in drug safety and efficacy. Prior studies have underscored the potential immunogenic risks posed by the presence of galactose-α-1,3-galactose (α-Gal) and N-glycolylneuraminic acid (NeuGc) in glycoprotein formulations. This accentuates the imperative for developing robust qualitative and quantitative analytical methods to monitor these immunogenic epitopes, thereby ensuring drug safety. In the present investigation, α-Gal and NeuGc were accurately quantified using UPLC-FLR-MS/MS at the oligosaccharide level. Remarkably, α-Gal could be identified when the ion intensity ratio or the mass-to-charge ratio (m/z) of 528.19 to 366.14 exceeded 1. Concurrently, NeuGc and N-acetylneuraminic acid (NeuAc) could be unambiguously identified through their respective fragment ions at m/z 673.23 and m/z 657.23. Furthermore, relative quantification of α-Gal and NeuGc was achieved using fluorescence signals. This study introduces a sensitive and reliable analytical approach for the qualitative and quantitative assessment of α-Gal and NeuGc in glycoprotein pharmaceuticals. The methodology offers significant potential for application in process control and optimization of glycoprotein production, aimed at minimizing immunogenicity and enhancing product quality.
Collapse
Affiliation(s)
- Weicheng Ren
- School of Life Sciences, Jilin University, Changchun, 130015, China
| | - Lan Yang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Jia Feng
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Shuyue Wang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Qi Hu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Hailong Liu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Jinliang Zhang
- School of Life Sciences, Jilin University, Changchun, 130015, China; GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Zhiwei Wang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Menghan Yan
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Hongwei Yu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, 130015, China.
| |
Collapse
|
23
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Hausfeld JN, Challand R, McLendon K, Macapagal N, Bruce-Staskal P, Fiaschetti C, Sampey DB. Pharmacokinetic Profiles of a Proposed Biosimilar Ustekinumab (BFI-751): Results From a Randomized Phase 1 Trial. Clin Pharmacol Drug Dev 2023; 12:1001-1012. [PMID: 37483071 DOI: 10.1002/cpdd.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
BioFactura has developed a proposed biosimilar candidate (BFI-751) to ustekinumab reference product. Results are reported for the first-in-human trial designed to compare the pharmacokinetic profiles, safety, and immunogenicity of BFI-751 and ustekinumab reference products from the European Union and United States as well as similarity of the EU and US reference products. This was a multicenter, randomized, double blind, 3-parallel-group study (trial ID: NCT04843631). Healthy subjects were randomized to receive a single subcutaneous dose of 45 mg of BFI-751, EU ustekinumab, or US ustekinumab. The pharmacokinetic parameters were area under the concentration-time curve (AUC) from time zero to infinity, AUC from time zero to the last quantifiable concentration, and maximum concentration. Safety, tolerability, and immunogenicity data were also reported. Pairwise comparisons among the 3 treatments all met the standard bioequivalence criteria that the 90% confidence interval of the geometric mean ratios of AUC from time zero to infinity, AUC from time zero to the last quantifiable concentration, and maximum concentration are completely within the acceptance interval of 80%-125%. There were no marked differences in the safety and tolerability profiles for subjects receiving BFI-751 as compared to EU or US ustekinumab. Treatment-emergent adverse events were mild to moderate for all treatment groups.
Collapse
|
25
|
Sauvageau J, Koyuturk I, St Michael F, Brochu D, Goneau MF, Schoenhofen I, Perret S, Star A, Robotham A, Haqqani A, Kelly J, Gilbert M, Durocher Y. Simplifying glycan monitoring of complex antigens such as the SARS-CoV-2 spike to accelerate vaccine development. Commun Chem 2023; 6:189. [PMID: 37684364 PMCID: PMC10491790 DOI: 10.1038/s42004-023-00988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.
Collapse
Affiliation(s)
- Janelle Sauvageau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| | - Izel Koyuturk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Frank St Michael
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Denis Brochu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Marie-France Goneau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ian Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Alexandra Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
26
|
Lawson NL, Scorer PW, Williams GH, Vandenberghe ME, Ratcliffe MJ, Barker C. Impact of Decalcification, Cold Ischemia, and Deglycosylation on Performance of Programmed Cell Death Ligand-1 Antibodies With Different Binding Epitopes: Comparison of 7 Clones. Mod Pathol 2023; 36:100220. [PMID: 37230414 DOI: 10.1016/j.modpat.2023.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Programmed cell death ligand-1 (PD-L1) expression levels in patients' tumors have demonstrated clinical utility across many cancer types and are used to determine treatment eligibility. Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available and have demonstrated different levels of staining between assays, generating interest in understanding the similarities and differences between assays. Previously, we identified epitopes in the internal and external domains of PD-L1, bound by antibodies in routine clinical use (SP263, SP142, 22C3, and 28-8). Variance in performance of assays utilizing these antibodies, observed following exposure to preanalytical factors such as decalcification, cold ischemia, and duration of fixation, encouraged additional investigation of antibody-binding sites, to understand whether binding site structures/conformations contribute to differential PD-L1 IHC assay staining. We proceeded to further investigate the epitopes on PD-L1 bound by these antibodies, alongside the major clones utilized in laboratory-developed tests (E1L3N, QR1, and 73-10). Characterization of QR1 and 73-10 clones demonstrated that both bind the PD-L1 C-terminal internal domain, similar to SP263/SP142. Our results also demonstrate that under suboptimal decalcification or fixation conditions, the performance of internal domain antibodies is less detrimentally affected than that of external domain antibodies 22C3/28-8. Furthermore, we show that the binding sites of external domain antibodies are susceptible to deglycosylation and conformational structural changes, which directly result in IHC staining reduction or loss. The binding sites of internal domain antibodies were unaffected by deglycosylation or conformational structural change. This study demonstrates that the location and conformation of binding sites, recognized by antibodies employed in PD-L1 diagnostic assays, differ significantly and exhibit differing degrees of robustness. These findings should reinforce the need for vigilance when performing clinical testing with different PD-L1 IHC assays, particularly in the control of cold ischemia and the selection of fixation and decalcification conditions.
Collapse
Affiliation(s)
- Nicola L Lawson
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, United Kingdom; Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
| | - Paul W Scorer
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Michel E Vandenberghe
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Marianne J Ratcliffe
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Craig Barker
- Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
27
|
Honda-Okubo Y, Sakala IG, André G, Tarbet EB, Hurst BL, Petrovsky N. An Advax-CpG55.2 adjuvanted recombinant hemagglutinin vaccine provides immunity against H7N9 influenza in adult and neonatal mice. Vaccine 2023; 41:5592-5602. [PMID: 37532610 DOI: 10.1016/j.vaccine.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
28
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Millul J, Koepke L, Haridas GR, Sparrer KMJ, Mansi R, Fani M. Head-to-head comparison of different classes of FAP radioligands designed to increase tumor residence time: monomer, dimer, albumin binders, and small molecules vs peptides. Eur J Nucl Med Mol Imaging 2023; 50:3050-3061. [PMID: 37261473 PMCID: PMC10382406 DOI: 10.1007/s00259-023-06272-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Fibroblast activation protein-α (FAP)-targeting radioligands have recently demonstrated high diagnostic potential. However, their therapeutic value is impaired by the short tumor residence time. Several strategies have been tested to overcome this limitation, but a head-to-head comparison has never been done. With the aim to identify strengths and limitations of the suggested strategies, we compared the monomer FAPI-46 versus (a) its dimer (FAPI-46-F1D), (b) two albumin binders conjugates (FAPI-46-Ibu (ibuprofen) and FAPI-46-EB (Evans Blue)), and (c) cyclic peptide FAP-2286. METHODS 177Lu-labeled ligands were evaluated in vitro in cell lines with low (HT-1080.hFAP) and high (HEK-293.hFAP) humanFAP expression. SPECT/CT imaging and biodistribution studies were conducted in HT-1080.hFAP and HEK-293.hFAP xenografts. The areas under the curve (AUC) of the tumor uptake and tumor-to-critical-organs ratios and the absorbed doses were estimated. RESULTS Radioligands showed IC50 in the picomolar range. Striking differences were observed in vivo regarding tumor uptake, residence, specificity, and total body distribution. All [177Lu]Lu-FAPI-46-based radioligands showed similar uptake between the two tumor models. [177Lu]Lu-FAP-2286 showed higher uptake in HEK-293.hFAP and the least background. The AUC of the tumor uptake and absorbed dose was higher for [177Lu]Lu-FAPI-46-F1D and the two albumin binder conjugates, [177Lu]Lu-FAPI-46-Ibu and [177Lu]Lu-FAPI-46-EB, in HT1080.hFAP xenografts and for [177Lu]Lu-FAPI-46-EB and [177Lu]Lu-FAP-2286 in HEK293.hFAP xenografts. The tumor-to-critical-organs AUC values and the absorbed doses were in favor of [177Lu]Lu-FAP-2286, but tumor-to-kidneys. CONCLUSION The study indicated dimerization and cyclic peptide structures as promising strategies for prolonging tumor residence time, sparing healthy tissues. Albumin binding strategy outcome depended on the albumin binding moiety. The peptide showed advantages in terms of tumor-to-background ratios, besides tumor-to-kidneys, but its tumor uptake was FAP expression-dependent.
Collapse
Affiliation(s)
- Jacopo Millul
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
30
|
A M, Wales TE, Zhou H, Draga-Coletă SV, Gorgulla C, Blackmore KA, Mittenbühler MJ, Kim CR, Bogoslavski D, Zhang Q, Wang ZF, Jedrychowski MP, Seo HS, Song K, Xu AZ, Sebastian L, Gygi SP, Arthanari H, Dhe-Paganon S, Griffin PR, Engen JR, Spiegelman BM. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α. Mol Cell 2023; 83:1903-1920.e12. [PMID: 37267907 PMCID: PMC10984146 DOI: 10.1016/j.molcel.2023.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVβ5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/β5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVβ5 complex docking model. Irisin binds very tightly to an alternative interface on αVβ5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.
Collapse
Affiliation(s)
- Mu A
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Haixia Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sorin-Valeriu Draga-Coletă
- Virtual Discovery, Inc. 569 Hammond Street, Chestnut Hill, MA 02467, USA; Non-Governmental Research Organization Biologic, 14 Schitului Street, Bucharest 032044, Romania
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Katherine A Blackmore
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline R Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dina Bogoslavski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Qiuyang Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zi-Fu Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew Z Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick R Griffin
- UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
32
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
33
|
Kaipa JM, Krasnoselska G, Owens RJ, van den Heuvel J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules 2023; 13:biom13050817. [PMID: 37238687 DOI: 10.3390/biom13050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane proteins are difficult biomolecules to express and purify. In this paper, we compare the small-scale production of six selected eukaryotic integral membrane proteins in insect and mammalian cell expression systems using different techniques for gene delivery. The target proteins were C terminally fused to the green fluorescent marker protein GFP to enable sensitive monitoring. We show that the choice of expression systems makes a considerable difference to the yield and quality of the six selected membrane proteins. Virus-free transient gene expression (TGE) in insect High Five cells combined with solubilization in dodecylmaltoside plus cholesteryl hemisuccinate generated the most homogeneous samples for all six targets. Further, the affinity purification of the solubilized proteins using the Twin-Strep® tag improved protein quality in terms of yield and homogeneity compared to His-tag purification. TGE in High Five insect cells offers a fast and economically attractive alternative to the established methods that require either baculovirus construction and the infection of the insect cells or relatively expensive transient gene expression in mammalian cells for the production of integral membrane proteins.
Collapse
Affiliation(s)
| | - Ganna Krasnoselska
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 18.5, 42, 2200 Copenhagen, Denmark
| | - Raymond J Owens
- Structural Biology Division, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Joop van den Heuvel
- Helmholtz Center for Infection Research, Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
34
|
Shivatare VS, Chuang PK, Tseng TH, Zeng YF, Huang HW, Veeranjaneyulu G, Wu HC, Wong CH. Study on antibody Fc-glycosylation for optimal effector functions. Chem Commun (Camb) 2023; 59:5555-5558. [PMID: 37071468 PMCID: PMC10259620 DOI: 10.1039/d3cc00672g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A comprehensive structure-activity relationship study on antibody Fc-glycosylation has been performed using the chimeric anti-SSEA4 antibody chMC813-70 as a model. The α-2,6 sialylated biantennary complex type glycan was identified as the optimal Fc-glycan with significant enhancement in antibody effector functions, including binding to different Fc receptors and ADCC.
Collapse
Affiliation(s)
- Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Gannedi Veeranjaneyulu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
35
|
Mastrangeli R, Satwekar A, Bierau H. Innovative Metrics for Reporting and Comparing the Glycan Structural Profile in Biotherapeutics. Molecules 2023; 28:molecules28083304. [PMID: 37110538 PMCID: PMC10143042 DOI: 10.3390/molecules28083304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Glycosylation is a critical quality attribute in biotherapeutics, impacting properties such as protein stability, solubility, clearance rate, efficacy, immunogenicity, and safety. Due to the heterogenic and complex nature of protein glycosylation, comprehensive characterization is demanding. Moreover, the lack of standardized metrics for evaluating and comparing glycosylation profiles hinders comparability studies and the establishment of manufacturing control strategies. To address both challenges, we propose a standardized approach based on novel metrics for a comprehensive glycosylation fingerprint which greatly facilitates the reporting and objective comparison of glycosylation profiles. The analytical workflow is based on a liquid chromatography-mass spectrometry-based multi-attribute method. Based on the analytical data, a matrix of glycosylation-related quality attributes, both at site-specific and whole molecule level, are computed, which provide metrics for a comprehensive product glycosylation fingerprint. Two case studies illustrate the applicability of the proposed indices as a standardized and versatile approach for reporting all dimensions of the glycosylation profile. The proposed approach further facilitates the assessments of risks associated with changes in the glycosylation profile that may affect efficacy, clearance, and immunogenicity.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Global CMC Development Technology & Innovation, CMC Science & Intelligence, Merck Serono SpA (An affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, 00012 Rome, Italy
| | - Abhijeet Satwekar
- Global CMC Development, Global Analytical Development, Global Analytical-Pharmaceutical Science & Innovation, Merck Serono SpA (An affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, 00012 Rome, Italy
| | - Horst Bierau
- Global CMC Development Technology & Innovation, CMC Science & Intelligence, Merck Serono SpA (An affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, 00012 Rome, Italy
| |
Collapse
|
36
|
Green EA, Hamaker NK, Lee KH. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol 2023; 23:7. [PMID: 36882740 PMCID: PMC9990576 DOI: 10.1186/s12896-023-00777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Nathaniel K Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA.
| |
Collapse
|
37
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Katahira Y, Murakami F, Inoue S, Miyakawa S, Sakamoto E, Furusaka Y, Watanabe A, Sekine A, Kuroda M, Hasegawa H, Mizoguchi I, Yoshimoto T. Protective effects of conditioned media of immortalized stem cells from human exfoliated deciduous teeth on pressure ulcer formation. Front Immunol 2023; 13:1010700. [PMID: 36713359 PMCID: PMC9881429 DOI: 10.3389/fimmu.2022.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Pressure ulcers (PUs) are increasing with aging worldwide, but there is no effective causal therapy. Although mesenchymal stem cells (MSCs) promote cutaneous wound healing, the effects of the conditioned medium (CM) of MSCs on cutaneous PU formation induced by ischemia-reperfusion injury have been poorly investigated. To address this issue, herein, we first established an immortalized stem cell line from human exfoliated deciduous teeth (SHED). This cell line was revealed to have superior characteristics in that it grows infinitely and vigorously, and stably and consistently secretes a variety of cytokines. Using the CM obtained from the immortalized SHED cell line, we investigated the therapeutic potential on a cutaneous ischemia-reperfusion mouse model for PU formation using two magnetic plates. This is the first study to show that CM from immortalized SHEDs exerts therapeutic effects on PU formation by promoting angiogenesis and oxidative stress resistance through vascular endothelial growth factor and hepatocyte growth factor. Thus, the CM of MSCs has potent therapeutic effects, whereas these therapies have not been implemented in human medicine. To try to meet the regulatory requirements for manufacturing and quality control as much as possible, it is necessary to produce CM that is consistently safe and effective. The immortalization of stem cells could be one of the breakthroughs to meet the regulatory requirements and consequently open up a novel avenue to create a novel type of cell-free regenerative medicine, although further investigation into the quality control is warranted.
Collapse
Affiliation(s)
- Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan,*Correspondence: Takayuki Yoshimoto,
| |
Collapse
|
39
|
Simplifying the detection and monitoring of protein glycosylation during in vitro glycoengineering. Sci Rep 2023; 13:567. [PMID: 36631484 PMCID: PMC9834283 DOI: 10.1038/s41598-023-27634-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The majority of mammalian proteins are glycosylated, with the glycans serving to modulate a wide range of biological activities. Variations in protein glycosylation can have dramatic effects on protein stability, immunogenicity, antibody effector function, pharmacological safety and potency, as well as serum half-life. The glycosylation of therapeutic biologicals is a critical quality attribute (CQA) that must be carefully monitored to ensure batch-to-batch consistency. Notably, many factors can affect the composition of the glycans during glycoprotein production, and variations in glycosylation are among the leading causes of pharmaceutical batch rejection. Currently, the characterization of protein glycosylation relies heavily on methods that employ chromatography and/or mass spectrometry, which require a high level of expertise, are time-consuming and costly and, because they are challenging to implement during in-process biologics production or during in vitro glycan modification, are generally performed only post-production. Here we report a simplified approach to assist in monitoring glycosylation features during glycoprotein engineering, that employs flow cytometry using fluorescent microspheres chemically coupled to high-specificity glycan binding reagents. In our GlycoSense method, a range of carbohydrate-sensing microspheres with distinct optical properties may be combined into a multiplex suspension array capable of detecting multiple orthogonal glycosylation features simultaneously, using commonplace instrumentation, without the need for glycan release. The GlycoSense method is not intended to replace more detailed post-production glycan profiling, but instead, to complement them by potentially providing a cost-effective, rapid, yet robust method for use at-line as a process analytic technology (PAT) in a biopharmaceutical workflow or at the research bench. The growing interest in using in vitro glycoengineering to generate glycoproteins with well-defined glycosylation, provides motivation to demonstrate the capabilities of the GlycoSense method, which we apply here to monitor changes in the protein glycosylation pattern (GlycoPrint) during the in vitro enzymatic modification of the glycans in model glycoproteins.
Collapse
|
40
|
Identification of Cell Culture Factors Influencing Afucosylation Levels in Monoclonal Antibodies by Partial Least-Squares Regression and Variable Importance Metrics. Processes (Basel) 2023. [DOI: 10.3390/pr11010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analysis of historic data for cell culture processes is a powerful tool to develop further process understanding. In particular, deploying retrospective analyses can identify important cell culture process parameters for controlling critical quality attributes, e.g., afucosylation, for the production of monoclonal antibodies (mAbs). However, a challenge of analyzing large cell culture data is the high correlation between regressors (particularly media composition), which makes traditional analyses, such as analysis of variance and multivariate linear regression, inappropriate. Instead, partial least-squares regression (PLSR) models, in combination with machine learning techniques such as variable importance metrics, are an orthogonal or alternative approach to identifying important regressors and overcoming the challenge of a highly covariant data structure. A specific workflow for the retrospective analysis of cell culture data is proposed that covers data curation, PLS regression, model analysis, and further steps. In this study, the proposed workflow was applied to data from four mAb products in an industrial cell culture process to identify significant process parameters that influence the afucosylation levels. The PLSR workflow successfully identified several significant parameters, such as temperature and media composition, to enhance process understanding of the relationship between cell culture processes and afucosylation levels.
Collapse
|
41
|
Gupta S, Shah B, Fung CS, Chan PK, Wakefield DL, Kuhns S, Goudar CT, Piret JM. Engineering protein glycosylation in CHO cells to be highly similar to murine host cells. Front Bioeng Biotechnol 2023; 11:1113994. [PMID: 36873370 PMCID: PMC9978007 DOI: 10.3389/fbioe.2023.1113994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Since 2015 more than 34 biosimilars have been approved by the FDA. This new era of biosimilar competition has stimulated renewed technology development focused on therapeutic protein or biologic manufacturing. One challenge in biosimilar development is the genetic differences in the host cell lines used to manufacture the biologics. For example, many biologics approved between 1994 and 2011 were expressed in murine NS0 and SP2/0 cell lines. Chinese Hamster ovary (CHO) cells, however, have since become the preferred hosts for production due to their increased productivity, ease of use, and stability. Differences between murine and hamster glycosylation have been identified in biologics produced using murine and CHO cells. In the case of monoclonal antibodies (mAbs), glycan structure can significantly affect critical antibody effector function, binding activity, stability, efficacy, and in vivo half-life. In an attempt to leverage the intrinsic advantages of the CHO expression system and match the reference biologic murine glycosylation, we engineered a CHO cell expressing an antibody that was originally produced in a murine cell line to produce murine-like glycans. Specifically, we overexpressed cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) and N-acetyllactosaminide alpha-1,3-galactosyltransferase (GGTA) to obtain glycans with N-glycolylneuraminic acid (Neu5Gc) and galactose-α-1,3-galactose (alpha gal). The resulting CHO cells were shown to produce mAbs with murine glycans, and they were then analyzed by the spectrum of analytical methods typically used to demonstrate analytical similarity as a part of demonstrating biosimilarity. This included high-resolution mass spectrometry, biochemical, as well as cell-based assays. Through selection and optimization in fed-batch cultures, two CHO cell clones were identified with similar growth and productivity criteria to the original cell line. They maintained stable production for 65 population doubling times while matching the glycosylation profile and function of the reference product expressed in murine cells. This study demonstrates the feasibility of engineering CHO cells to express mAbs with murine glycans to facilitate the development of biosimilars that are highly similar to marketed reference products expressed in murine cells. Furthermore, this technology can potentially reduce the residual uncertainty regarding biosimilarity, resulting in a higher probability of regulatory approval and potentially reduced costs and time in development.
Collapse
Affiliation(s)
- Shivani Gupta
- Amgen, Inc., San Francisco, CA, United States.,Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Scott Kuhns
- Amgen, Inc., Thousand Oaks, CA, United States
| | | | - James M Piret
- Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Impact of N-Linked Glycosylation on Therapeutic Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248859. [PMID: 36557993 PMCID: PMC9781892 DOI: 10.3390/molecules27248859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications. As one of the most important post-translational modifications, glycosylation has been shown to exert positive effects on many properties of proteins, including molecular stability, and pharmacodynamic and pharmacokinetic characteristics. Glycoengineering, which involves changing the glycosylation patterns of proteins, is therefore expected to be an effective means of overcoming the problems of therapeutic proteins. In this review, we summarize recent efforts and advances in the glycoengineering of erythropoietin and IgG monoclonal antibodies, with the goals of illustrating the importance of this strategy in improving the performance of therapeutic proteins and providing a brief overview of how glycoengineering is applied to protein-based drugs.
Collapse
|
43
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
44
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Fuselli A, de Los Milagros Bürgi M, Kratje R, Prieto C. Generation and functional evaluation of novel monoclonal antibodies targeting glycosylated human stem cell factor. Appl Microbiol Biotechnol 2022; 106:8121-8137. [PMID: 36401641 DOI: 10.1007/s00253-022-12282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Human stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy. Developing new tools to characterize recombinant hSCF in most native-like form as possible is crucial to understand the complexity of its in vivo functions and for improving its biotechnological applications. The soluble domain of hSCF was expressed in HEK293 cells. Highly purified rhSCF showed great molecular mass variability due to the presence of N- and O-linked carbohydrates, and it presented a 2.5-fold increase on proliferative activity compared to bacteria-derived hSCF. Three hybridoma clones producing monoclonal antibodies (mAbs) with high specificity for the glycoprotein were obtained. 1C4 and 2D3 mAbs were able to detect bacteria-derived and glycosylated rhSCF and demonstrated to be excellent candidates to develop a sandwich ELISA assay for rhSCF quantification, with detection limits of 0.18 and 0.07 ng/ml, respectively. Interestingly, 1A10 mAb only recognized glycosylated rhSCF, suggesting that sugar moieties might be involved in epitope recognition. 1A10 mAb showed the highest binding affinity, and it constituted the best candidate for immunodetection of the entire set rhSCF glycoforms in western blot assays, and for intracellular cytokine staining. Our work shows that combining glycosylated rhSCF expression with hybridoma technology is a powerful strategy to obtain specific suitable immunochemical assays and thus improve glycoprotein-producing bioprocesses. KEY POINTS: • Soluble glycosylated human SCF exerted improved proliferative activity on UT-7 cells. • Three mAbs with high specificity targeting glycosylated human SCF were obtained. • mAbs applications comprise sandwich ELISA, western blot, and immunofluorescence assays.
Collapse
Affiliation(s)
- Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - María de Los Milagros Bürgi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina.
- Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina.
| |
Collapse
|
46
|
Mao L, Schneider JW, Robinson AS. Progress toward rapid, at-line N-glycosylation detection and control for recombinant protein expression. Curr Opin Biotechnol 2022; 78:102788. [PMID: 36126382 DOI: 10.1016/j.copbio.2022.102788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Proteins continue to represent a large fraction of the therapeutics market, reaching over a hundred billion dollars in market size globally. One key feature of protein modification that can affect both structure and function is the addition of glycosylation following protein folding, leading to regulatory requirements for the accurate assessment of protein attributes, including glycan structures. The non-template-driven, innately heterogeneous N-glycosylation process thus requires accurate detection to robustly generate protein therapies. A challenge exists in the timely detection of protein glycosylation without labor-intensive manipulation. In this article, we discuss progress toward N-glycoprotein control, focusing on novel control strategies and the advancement of rapid, high-throughput analysis methods.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
47
|
Huang A, Kurhade SE, Ross P, Apley KD, Griffin JD, Berkland CJ, Farrell MP. Disrupting N-Glycosylation Using Type I Mannosidase Inhibitors Alters B-Cell Receptor Signaling. ACS Pharmacol Transl Sci 2022; 5:1062-1069. [PMID: 36407961 PMCID: PMC9667535 DOI: 10.1021/acsptsci.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Kifunensine is a known inhibitor of type I α-mannosidase enzymes and has been shown to have therapeutic potential for a variety of diseases and application in the expression of high-mannose N-glycan bearing glycoproteins; however, the compound's hydrophilic nature limits its efficacy. We previously synthesized two hydrophobic acylated derivatives of kifunensine, namely, JDW-II-004 and JDW-II-010, and found that these compounds were over 75-fold more potent than kifunensine. Here we explored the effects of these compounds on different mice and human B cells, and we demonstrate that they affected the cells in a similar fashion to kifunensine, further demonstrating their functional equivalence to kifunensine in assays utilizing primary cells. Specifically, a dose-dependent increase in the formation of high-mannose N-glycans decorated glycoproteins were observed upon treatment with kifunensine, JDW-II-004, and JDW-II-010, but greater potency was observed with the acylated derivatives. Treatment with kifunensine or the acylated derivatives also resulted in impaired B-cell receptor (BCR) signaling of the primary mouse B cells; however, primary human B cells treated with kifunensine or JDW-II-004 did not affect BCR signaling, while a modest increase in BCR signaling was observed upon treatment with JDW-010. Nevertheless, these findings demonstrate that the hydrophobic acylated derivatives of kifunensine can help overcome the mass-transfer limitations of the parent compound, and they may have applications for the treatment of ERAD-related diseases or prove to be more cost-effective alternatives for the generation and production of high-mannose N-glycan bearing glycoproteins.
Collapse
Affiliation(s)
- Aric Huang
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | - Suresh E. Kurhade
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Patrick Ross
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Kyle D. Apley
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | | | - Cory J. Berkland
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering
Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Chemical and Petroleum Engineering, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Mark P. Farrell
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| |
Collapse
|
48
|
Bentur L, Pollak M. Trikafta—Extending Its Success to Less Common Mutations. J Pers Med 2022; 12:jpm12091528. [PMID: 36143317 PMCID: PMC9504046 DOI: 10.3390/jpm12091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lea Bentur
- Pediatric Pulmonary Institute, Ruth Children’s Hospital, Rambam Health Care Center, Haifa 31096, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (L.B.); (M.P.)
| | - Mordechai Pollak
- Pediatric Pulmonary Institute, Ruth Children’s Hospital, Rambam Health Care Center, Haifa 31096, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (L.B.); (M.P.)
| |
Collapse
|
49
|
She YM, Dai S, Tam RY. Highly sensitive characterization of non-human glycan structures of monoclonal antibody drugs utilizing tandem mass spectrometry. Sci Rep 2022; 12:15109. [PMID: 36068283 PMCID: PMC9448817 DOI: 10.1038/s41598-022-19488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is an important attribute of monoclonal antibodies (mAbs) for assessing manufacturing quality. Analysis of non-human glycans containing terminal galactose-α1,3-galactose and N-glycolylneuraminic acid is essential due to the potential immunogenicity and insufficient efficacy caused by mAb expression in non-human mammalian cells. Using parallel sequencing of isobaric glycopeptides and isomeric glycans that were separated by reversed-phase and porous graphitic carbon LC, we report a highly sensitive LC MS/MS method for the comprehensive characterization of low-abundance non-human glycans and their closely related structural isomers. We demonstrate that the straightforward use of high-abundance diagnostic ions and complementary fragments under the positive ionization low-energy collision-induced dissociation is a universal approach to rapidly discriminate branch-linkage structures of biantennary glycans. Our findings reveal the structural diversity of non-human glycans and sulfation of α-galactosylated glycans, providing both an analytical method and candidate structures that could potentially be used in the crucial quality control of therapeutic mAb products.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Roger Y Tam
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| |
Collapse
|
50
|
Puranik A, Saldanha M, Chirmule N, Dandekar P, Jain R. Advanced strategies in glycosylation prediction and control during biopharmaceutical development: Avenues toward Industry 4.0. Biotechnol Prog 2022; 38:e3283. [PMID: 35752935 DOI: 10.1002/btpr.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Glycosylation has been shown to define the safety and efficacy of biopharmaceuticals, thus classified as a critical quality attribute. However, controlling glycan heterogeneity has always been a major challenge owing to the multi-variate factors that govern the glycosylation process. Conventional approaches for controlling glycosylation such as gene editing and metabolic control have succeeded in obtaining desired glycan profiles in accordance with the Quality by Design paradigm. Nonetheless, the development of smart algorithms and omics-enabled complete cell characterization have made it possible to predict glycan profiles beforehand, and manipulate process variables accordingly. This review thus discusses the various approaches available for control and prediction of glycosylation in biopharmaceuticals. Further, the futuristic goal of integrating such technologies is discussed in order to attain an automated and digitized continuous bioprocess for control of glycosylation. Given, control of a process as complex as glycosylation requires intense monitoring intervention, we examine the current technologies that enable automation. Finally, we discuss the challenges and the technological gap that currently limits incorporation of an automated process in routine bio-manufacturing, with a glimpse into the economic bearing. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Marianne Saldanha
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|