1
|
Tomas J, Lafite P, Schuler M, Tatibouët A. Enzyme-Triggered Chromogenic and Fluorogenic Probes for Myrosinase Activity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23224-23232. [PMID: 39385497 DOI: 10.1021/acs.jafc.4c03326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Myrosinase, a thioglucosidase, is a key enzyme in the mechanism of defense of plants that hydrolyzes glucosinolates (GSLs) into isothiocyanates. These isothiocyanates are the main bioactive molecules exerting protective effect in Brassicales plants. These plants that contain this specific enzyme-substrate couple belong to our daily human diet and have demonstrated health benefits, such as chemopreventive effects. Thus, the detection of myrosinase activity is a key aspect of the production of isothiocyanates from glucosinolates. Two novel chromogenic and fluorogenic GSLs, GSL p-nitrophenoxy (GSL-pNP) and GSL-4-methylumbelliferone (GSL-4MU), were designed and synthesized to be used as simple and reliable molecular tools to spectrophotometrically detect myrosinase activity in simple and complex mixtures. Notably, the chromogenic GSL enabled the UV-vis detection and quantification of isolated myrosinase activity, while fluorogenic GSL could be used for in vitro activity monitoring of more complex plant materials, such as seeds.
Collapse
Affiliation(s)
- Josip Tomas
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Pierre Lafite
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Marie Schuler
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| | - Arnaud Tatibouët
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, Orléans F-45067, France
| |
Collapse
|
2
|
Lang W, Shu D, Liu S, Sun C, Liu H, Huang Q, Mao G, Yang S, Xing B. Enzyme-Responsive Fluorescent Labeling Strategy for In Vivo Imaging of Gut Bacteria. J Org Chem 2024; 89:14641-14649. [PMID: 38607989 DOI: 10.1021/acs.joc.3c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Myrosinase (Myr), as a unique β-thioglucosidase enzyme capable of converting natural and gut bacterial metabolite glucosinolates into bioactive agents, has recently attracted a great deal of attention because of its essential functions in exerting homeostasis dynamics and promoting human health. Such nutraceutical and biomedical significance demands unique and reliable strategies for specific identification of Myr enzymes of gut bacterial origin in living systems, whereas the dearth of methods for bacterial Myr detection and visualization remains a challenging concern. Herein, we present a series of unique molecular probes for specific identification and imaging of Myr-expressing gut bacterial strains. Typically, an artificial glucosinolate with an azide group in aglycone was synthesized and sequentially linked with the probe moieties of versatile channels through simple click conjugation. Upon gut bacterial enzymatic cleavage, the as-prepared probe molecules could be converted into reactive isothiocyanate forms, which can further act as reactive electrophiles for the covalent labeling of gut bacteria, thus realizing their localized fluorescent imaging within a wide range of wavelength channels in live bacterial strains and animal models. Overall, our proposed method presents a novel technology for selective gut bacterial Myr enzyme labeling in vitro and in vivo. We envision that such a rational probe design would serve as a promising solution for chemoprevention assessment, microflora metabolic mechanistic study, and gut bacterium-mediated physiopathological exploration.
Collapse
Affiliation(s)
- Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dunji Shu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Songhan Liu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qianqian Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
3
|
Gambari L, Pagnotta E, Ugolini L, Righetti L, Amore E, Grigolo B, Filardo G, Grassi F. Insights into Osteogenesis Induced by Crude Brassicaceae Seeds Extracts: A Role for Glucosinolates. Nutrients 2024; 16:3457. [PMID: 39458452 PMCID: PMC11510261 DOI: 10.3390/nu16203457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Crude extracts from the Brassica genus have recently emerged as promising phytochemicals for preventing bone loss. While the most documented evidence suggests that their general biological activity is due to glucosinolates' (GLSs') hydrolysis products, the direct activity of GLSs is beginning to be uncovered. However, the contribution of GLSs to the bone-sparing activity of crude Brassicaceae extracts has seldom been addressed. Here, we aimed to gain insights into this gap by studying in the same in vitro model of human osteogenesis the effect of two Brassica seed extracts (Eruca sativa and Lepidium sativum) obtained from defatted seed meals, comparing them to the isolated GLSs most represented in their composition, glucoerucin (GER) and glucotropaeolin (GTL), for Eruca sativa and Lepidium sativum, respectively. Methods: Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed by alizarin red staining assay and real-time PCR, respectively, evaluating mineral apposition and mRNA expression of specific osteogenic genes. Results: Both Brassica extracts and GLSs increased the osteogenic differentiation, indicating that the stimulating effect of Brassica extracts can be at least partially attributed to GLSs. Moreover, these data extend previous evidence of the effect of unhydrolyzed glucoraphanin (GRA) on osteogenesis to other types of GLSs: GER and GTL. Notably, E. sativa extract and GTL induced higher osteogenic stimulation than Lepidium sativum extract and GER, respectively. Conclusions: Overall, this study expands the knowledge on the possible application of Brassica-derived bioactive molecules as natural alternatives for the prevention and treatment of bone-loss pathologies.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.G.); (E.A.); (B.G.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Luisa Ugolini
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Via di Corticella 133, 40128 Bologna, Italy; (E.P.); (L.U.); (L.R.)
| | - Emanuela Amore
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.G.); (E.A.); (B.G.)
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.G.); (E.A.); (B.G.)
| | - Giuseppe Filardo
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Viale Pietro Capelli 1, 6962 Lugano, Switzerland;
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.G.); (E.A.); (B.G.)
| |
Collapse
|
4
|
Arora R. Glucosinolates and Their Hydrolytic Products-A Love Story of Environmental, Biological, and Chemical Conditions. J AOAC Int 2024; 107:867-875. [PMID: 38913875 DOI: 10.1093/jaoacint/qsae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Glucosinolates (GSL) play an important role in providing defense to plants and helping them to cope with various biotic, as well as abiotic, stresses. Many living beings including humans and animals, including some herbivores, have adapted themselves to use this defense mechanism for their own use. More than 120 glucosinolates are distributed within a large number of plants. Many factors are known to influence the GSL composition in a plant. Among these, cofactors, myrosinase isozymes, heavy metals and the environmental conditions such as light, CO2 and temperature are important in regulation. These factors ensure that different glucosinolate compositions can be produced by the plants, thus impacting the defense mechanism. OBJECTIVE The objective of the current review is to highlight the importance of the factors responsible for affecting glucosinolate composition and concentration. METHODS The review has been compiled using accessible literature from Pubmed, Scopus, and Google scholar. Efforts have been made to restrict the literature to the last 5 years (2018-2023), with some exceptions. RESULTS The current critical review acts as a resource for all the researchers working on these essential compounds. It provides information on the factors that may influence glucosinolate production. It also gives them an opportunity to modify the glucosinolate composition of a plant using the given information. CONCLUSIONS Glucosinolates have long been an ignored class of biomolecule. The plethora of biological activities of the compounds can be useful. Though there are some harmful components such as goitrin and progoitrin, these can be easily removed by modulating some of the factors highlighted in the review. HIGHLIGHTS The current review has covered most of the factors that have the ability to modify glucosinolate composition and concentration. The mechanistic action of these factors has also been discussed using the current available literature.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
5
|
Arora R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J AOAC Int 2024; 107:876-883. [PMID: 38964347 DOI: 10.1093/jaoacint/qsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens. The compound is broken down into smaller phytochemicals referred to as glucosinolate hydrolytic products (GHPs; nitriles, isothiocyanates [ITCs], and thiocyanates). These hydrolytic products are like a showstopper of the fashion industry. These compounds have some of the highest bioactivity in nature. They have been associated with a varied range of bioactivities (anticancer, antioxidant, insecticidal, weedicide, etc.) by researchers across the globe. OBJECTIVE The objective of the current article is to provide a critical review to highlight some of the important bioactivities of these ignored compounds and for promoting researchers to at least give these compounds a chance-to glow in the dark. METHODS This review has been written from analysis of accessible literature, mostly from the last 5 years (2018-2023), with some critically essential exceptions. RESULTS The review highlighted a brief background of GSLs and its hydrolysis. Efforts were made to include most of the biological properties of the compound. Special emphasis has been given to the anticancer activities of the compound with details of the involved mechanism. CONCLUSIONS Considering the wide array of bioactivities of GHPs, it is essential to consider it as a prospective medicinal compound. More GHPs-in a similar manner as sulforaphane-can be proceeded to phase trials. HIGHLIGHTS The mechanistic pathway for production of GHPs and related biological activities have been discussed in detail. The bioactivities have been further explained using the involved mechanism.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
6
|
Gao R, Liu P, Bi J, Jiang Y, Zhao T, Yuan X, Zhang C, Wang Y. The Effects of Different Thiol-Containing Compounds on the Degradation of Sulforaphene. Molecules 2024; 29:4328. [PMID: 39339323 PMCID: PMC11434082 DOI: 10.3390/molecules29184328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Sulforaphene (4-methylsufinyl-3-butenyl isothiocyanate, SFE), produced by myrosinase hydrolysis of glucoraphenin (4-methylsulfinyl-3-butenyl glucosinolate) found in radish seeds, is strongly associated with cancer prevention. In this study, we investigated the stability of SFE (purity above 98%) under various thiol-containing compounds at 25 °C, such as sodium hydrosulfide (NaHS), glutathione (GSH), and cysteine (Cys). We observed that the degradation of SFE was closely related to the presence and dissociation capacity of thiol-containing compounds in the solution, particularly the thiol group. We found that the degradation rate of SFE was influenced by incubation with NaHS, GSH, and Cys, with distinct degradation products detected for each of these thiol-containing compounds. Compared to GSH, sulfide and Cys played important roles in promoting the degradation of SFE. Furthermore, we found substantial quantities of hydrogen sulfide in conjunction with SFE during the hydrolysis process of seeds, and a heat treatment of the seeds resulted in increased production of SFE. However, the introduction of sulfide-oxidizing bacteria to the hydrolytic system did not exhibit any inhibitory effect on the degradation of SFE. These results provided a guideline for industries to improve the stability of SFE during preparation.
Collapse
Affiliation(s)
- Rui Gao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingxiu Bi
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tong Zhao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xuexia Yuan
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Cooperative of Vegetable and Grain Cultivation, Liaocheng Yifeng Bloc, Liaocheng 252000, China
| |
Collapse
|
7
|
Hur GH, Lee TK, Cho YJ, Kim JH, Park JHY, Yang H, Lee KW. Optimization of cultivar, germination time and extraction for radish sprout extract with high sulforaphene content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5010-5020. [PMID: 38314949 DOI: 10.1002/jsfa.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cruciferous vegetable sprout has been highlighted as a promising functional material rich in bioactive compounds called isothiocyanates (ITCs) and it can be grown in very short periods in controlled indoor farms. However, because ITCs content depends on multiple factors such as cultivar, germination time and myrosinase activity, those variables need to be controlled during germination or extraction to produce functional materials enriched in ITCs. Sulforaphene (SFEN), an ITC found primarily in radishes (Raphanus sativus L.), exerts beneficial effects on obesity. However, the optimal germination and extraction conditions for radish sprout (RSP) to increase SFEN content remain unascertained, and the extract's anti-obesity effect has yet to be evaluated. RESULTS The present study found that the SFEN content was highest in purple radish sprout (PRSP) among the six cultivars investigated. Optimal SFEN content occurred after 2 days of PRSP germination (2 days PRSP). To maximize the dry matter yield, total ITCs and SFEN contents in RSP extract, we found the optimal conditions for extracting PRSP [27.5 °C, 60 min, 1:75.52 solute/solvent (w/v), no ascorbic acid] using response surface methodology. Consistent with high SFEN content, 2 days PRSP extract significantly outperformed 3 days or 4 days PRSP extract in inhibiting lipid accumulation in 3T3-L1 cells. Moreover, 2 days PRSP extract suppressed adipogenesis and lipogenesis-related protein expression. CONCLUSION Regarding the cultivar, germination time and extraction conditions, optimally produced PRSP extract contains high SFEN content and exerts anti-obesity effects. Thus, we suggest PRSP extract as a potent functional material for obesity prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gi Hyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Jin Cho
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul, Republic of Korea
- Basic Science Research Institute, Sungshin University, Seoul, Republic of Korea
| | | | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Center for Food and Bio convergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Sun R, Huang H, Wang Z, Chen P, Wu D, Zheng P. Computer-driven Evolution of Myrosinase from the Cabbage Aphid for Efficient Production of (R)-Sulforaphane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13217-13227. [PMID: 38809571 DOI: 10.1021/acs.jafc.4c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Myrosinase (Myr) catalyzes the hydrolysis of glucosinolates, yielding biologically active metabolites. In this study, glucoraphanin (GRA) extracted from broccoli seeds was effectively hydrolyzed using a Myr-obtained cabbage aphid (Brevicoryne brassicae) (BbMyr) to produce (R)-sulforaphane (SFN). The gene encoding BbMyr was successfully heterologously expressed in Escherichia coli, resulting in the production of 1.6 g/L (R)-SFN, with a remarkable yield of 20.8 mg/gbroccoli seeds, achieved using recombination E. coli whole-cell catalysis under optimal conditions (pH 4.5, 45 °C). Subsequently, BbMyr underwent combinatorial simulation-driven mutagenesis, yielding a mutant, DE9 (N321D/Y426S), showing a remarkable 2.91-fold increase in the catalytic efficiency (kcat/KM) compared with the original enzyme. Molecular dynamics simulations demonstrated that the N321D mutation in loopA of mutant DE9 enhanced loopA stability by inducing favorable alterations in hydrogen bonds, while the Y426S mutation in loopB decreased spatial resistance. This research lays a foundation for the environmentally sustainable enzymatic (R)-SFN synthesis.
Collapse
Affiliation(s)
- Ruobin Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Heou Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Ziyue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Truong TQ, Park YJ, Jeon JS, Choi J, Koo SY, Choi YB, Huynh PK, Moon J, Kim SM. Myrosinase isogenes in wasabi (Wasabia japonica Matsum) and their putative roles in glucosinolate metabolism. BMC PLANT BIOLOGY 2024; 24:353. [PMID: 38693493 PMCID: PMC11061951 DOI: 10.1186/s12870-024-05057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.
Collapse
Affiliation(s)
- To Quyen Truong
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yun Ji Park
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Je-Seung Jeon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Jaeyoung Choi
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yeong Bin Choi
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Phuong Kim Huynh
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Jinyoung Moon
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Sang Min Kim
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea.
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
11
|
Barnum C, Cho MJ, Markel K, Shih PM. Engineering Brassica Crops to Optimize Delivery of Bioactive Products Postcooking. ACS Synth Biol 2024; 13:736-744. [PMID: 38412618 PMCID: PMC10949231 DOI: 10.1021/acssynbio.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.
Collapse
Affiliation(s)
- Collin
R. Barnum
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Department
of Plant Biology, University of California
Davis, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California 95616, United States
| | - Myeong-Je Cho
- Innovative
Genomics Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Kasey Markel
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Patrick M. Shih
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94270, United States
- Innovative
Genomics Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94710, United States
- Feedstocks
Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
| |
Collapse
|
12
|
Sougrakpam Y, Deswal R. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111932. [PMID: 38030037 DOI: 10.1016/j.plantsci.2023.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
13
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan JN, Lorson CL, Watrelot AA, Foster JM, Mansell TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red Cabbage Juice-Mediated Gut Microbiota Modulation Improves Intestinal Epithelial Homeostasis and Ameliorates Colitis. Int J Mol Sci 2023; 25:539. [PMID: 38203712 PMCID: PMC10778654 DOI: 10.3390/ijms25010539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice. Using C57BL/6J mice, we evaluated RCJ's protective role in DSS-induced colitis through two cycles of 3% DSS. Mice were daily gavaged with PBS or RCJ until the endpoint, and gut microbiota composition was analyzed via shotgun metagenomics. RCJ treatment significantly improved body weight (p ≤ 0.001), survival in mice (p < 0.001) and reduced disease activity index (DAI) scores. Further, RCJ improved colonic barrier integrity by enhancing the expression of protective colonic mucins (p < 0.001) and tight junction proteins (p ≤ 0.01) in RCJ + DSS-treated mice compared to the DSS group. Shotgun metagenomic analysis revealed an enrichment of short-chain fatty acids (SCFAs)-producing bacteria (p < 0.05), leading to increased Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activation (p ≤ 0.001). This, in turn, resulted in repression of the nuclear factor κB (NFκB) signaling pathway, causing decreased production of inflammatory cytokines and chemokines. Our study demonstrates colitis remission in a DSS-induced mouse model, showcasing RCJ as a potential modulator for gut microbiota and metabolites, with promising implications for IBD prevention and treatment.
Collapse
Affiliation(s)
- Emily Jean Wilson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Nagabhishek Sirpu Natesh
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dipakkumar R. Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jussuf T. Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - John R. Dodam
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Aude A. Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Jason M. Foster
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas J. Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
15
|
Cárdenas PD, Landtved JP, Larsen SH, Lindegaard N, Wøhlk S, Jensen KR, Pattison DI, Burow M, Bak S, Crocoll C, Agerbirk N. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. PHYTOCHEMISTRY 2023; 213:113742. [PMID: 37269935 DOI: 10.1016/j.phytochem.2023.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.
Collapse
Affiliation(s)
- Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jonas P Landtved
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Signe H Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nicolai Lindegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sebastian Wøhlk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Shanmugam M, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan J, Lorson CL, Watrelot AA, Foster JM, Mansel TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red cabbage juice-mediated gut microbiota modulation improves intestinal epithelial homeostasis and ameliorates colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554560. [PMID: 37662255 PMCID: PMC10473712 DOI: 10.1101/2023.08.23.554560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms remain unknown. The current study investigated the modulation of gut microbiota in response to treatment with RCJ to ameliorate the DSS colitis. The initial results demonstrated that mice treated with DSS + RCJ showed increased body weight and decreased diarrhea and blood in feces compared to the DSS alone group. RCJ ameliorated colitis by regulating the intestinal barrier function by reducing the number of apoptotic cells, improving colonic protective mucin, and increasing tight junction protein in RCJ + DSS groups compared to the DSS group. Short-gun metagenomic analysis revealed significant enrichment of short-chain fatty acid (SCFAs)-producing bacteria (Butyrivibrio, Ruminococcaceae, Acetatifactor muris, Rosburia Sp. CAG:303 , Dorea Sp. 5-2) increased PPAR-© activation, leading to repression of the nuclear factor κB (NFκB) signaling pathway, thus decreasing the production of crucial inflammatory cytokines and chemokines in the RCJ + DSS groups compared to the DSS group. Pathway abundance analysis showed an increased abundance of the SCFA pathway, reduced histidine degradation ( Bacteroides sartorii, and Bacteroides caecimuris ), and LCFA production in the RCJ+DSS treated group, suggesting the promotion of good colonic health. Furthermore, increased T-reg (FOXP3+) cells in the colon were due to SCFAs produced by the gut microbiota, which was corroborated by an increase in IL-10, a vital anti-inflammatory cytokine. Thus, our study provides the first evidence that RCJ ameliorates colonic inflammation by modulating the gut microbiota.
Collapse
|
17
|
Reshi ZA, Ahmad W, Lukatkin AS, Javed SB. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023; 13:895. [PMID: 37623839 PMCID: PMC10456650 DOI: 10.3390/metabo13080895] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Secondary metabolites are gaining an increasing importance in various industries, such as pharmaceuticals, dyes, and food, as is the need for reliable and efficient methods of procuring these compounds. To develop sustainable and cost-effective approaches, a comprehensive understanding of the biosynthetic pathways and the factors influencing secondary metabolite production is essential. These compounds are a unique type of natural product which recognizes the oxidative damage caused by stresses, thereby activating the defence mechanism in plants. Various methods have been developed to enhance the production of secondary metabolites in plants. The elicitor-induced in vitro culture technique is considered an efficient tool for studying and improving the production of secondary metabolites in plants. In the present review, we have documented various biosynthetic pathways and the role of secondary metabolites under diverse environmental stresses. Furthermore, a practical strategy for obtaining consistent and abundant secondary metabolite production via various elicitation agents used in culturing techniques is also mentioned. By elucidating the intricate interplay of regulatory factors, this review paves the way for future advancements in sustainable and efficient production methods for high-value secondary metabolites.
Collapse
Affiliation(s)
- Zubair Altaf Reshi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Waquar Ahmad
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| | - Alexander S. Lukatkin
- Department of General Biology and Ecology, N.P. Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Saad Bin Javed
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (Z.A.R.); (W.A.)
| |
Collapse
|
18
|
Huang Z, Liu N, Fang Y, Hou X, Yang G, Lu J, Mi H, Ye Q, Zhu R, Liu S. Purification and characterization of a cold-active myrosinase from marine Pseudomonas oleovorans SuMy07. Acta Biochim Biophys Sin (Shanghai) 2023; 55:695-699. [PMID: 36988348 DOI: 10.3724/abbs.2023051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Affiliation(s)
- Zhifa Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Nannan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Haoyu Mi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Qinwen Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongjun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
19
|
Ali V, Rashid A, Kumar D, Vyas D. Stage-specific metabolomics suggests a trade-off between primary and secondary metabolites for nutritional advantage in Lepidium latifolium L. Food Chem 2023; 419:136035. [PMID: 37027970 DOI: 10.1016/j.foodchem.2023.136035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Lepidium latifolium L. is an established phytofood of the Ladakh Himalayas that contains differential content of important glucosinolates (GLS) in specific stages of sprouts. Therefore, in order to harness its nutraceutical potential, a comprehensive mass spectrometry-based stage-specific untargeted metabolomic analysis was performed. A total of 318 metabolites were detected, out of which 229 were significantly (p ≤ 0.05) changed during different stages. The Principal Component Analysis plot clearly differentiated different growth stages into three clusters. The nutritionally important metabolites, including amino acids, sugars, organic acids, and fatty acids, were found significantly (p ≤ 0.05) higher in the first cluster consisting of 1st, 2nd and 3rd week sprouts. The higher energy requirements during the early growth stages were observed with the higher metabolites of glycolysis and the TCA cycle. Further, the trade-off between primary and secondary sulfur-containing metabolites was observed, which may explain the differential GLS content in different growth stages.
Collapse
|
20
|
Dietary Isothiocyanates: Novel Insights into the Potential for Cancer Prevention and Therapy. Int J Mol Sci 2023; 24:ijms24031962. [PMID: 36768284 PMCID: PMC9916827 DOI: 10.3390/ijms24031962] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Diet plays an important role in health. A high intake of plant chemicals such as glucosinolates/isothiocyanates can promote optimal health and decrease the risk of cancer. Recent research has discovered more novel mechanisms of action for the effects of isothiocyanates including the modulation of tumor microenvironment, the inhibition of the self-renewal of stem cells, the rearrangement of multiple pathways of energy metabolism, the modulation of microbiota, and protection against Helicobacter pylori. However, the hormetic/biphasic effects of isothiocyanates may make the recommendations complicated. Isothiocyanates possess potent anti-cancer activities based on up-to-date evidence from in vitro and in vivo studies. The nature of hormesis suggests that the benefits or risks of isothiocyanates largely depend on the dose and endpoint of interest. Isothiocyanates are a promising class of cancer-preventative phytochemicals, but researchers should be aware of the potential adverse (and hormetic) effects. In the authors' opinion, dietary isothiocyanates are better used as adjunctive treatments in combination with known anti-cancer drugs. The application of nano-formulations and the delivery of isothiocyanates are also discussed in this review.
Collapse
|
21
|
Dang R, Guan H, Wang C. Sinapis Semen: A review on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics. Front Pharmacol 2023; 14:1113583. [PMID: 37124205 PMCID: PMC10130658 DOI: 10.3389/fphar.2023.1113583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Sinapis Semen (SS), the dried mature seed of Sinapis alba L. and Brassica juncea (L.) Czern. et Coss., is one of the traditional Chinese medicinal materials with a wide range of pharmacological effects being used for asthma, cough and many other ailments. SS is also widely used in food agriculture, medicine and other industries in North America and South Asia. More recently, the research on SS has gradually intensified and increased. However, there is no systematic review of SS. In this review, through literature exploration and analysis, the research advance on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics of SS was aggregated initially. Total 144 compounds have been isolated and identified from SS. Among them, glucosinolates and their hydrolysates and volatile oils are the main active ingredients and important chemical classification markers. SS has a wide range of pharmacological effects, especially in cough suppressing, asthma calming, anti-inflammatory, neuroprotective, cardiovascular protective, inhibiting androgenic effects, anti-tumor, and skin permeation promoting effects. Sinapine and sinapic acid are the main active ingredients of SS for its medicinal effects. However, SS has a strong skin irritation, presumably related to the time of application, the method of processing, and original medicinal plants. This review will provide useful data for the follow-up research and safe and reasonable clinical application of SS.
Collapse
|
22
|
Plaza-Vinuesa L, Hernandez-Hernandez O, Sánchez-Arroyo A, Cumella JM, Corzo N, Muñoz-Labrador AM, Moreno FJ, Rivas BDL, Muñoz R. Deciphering the Myrosinase-like Activity of Lactiplantibacillus plantarum WCFS1 among GH1 Family Glycoside Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15531-15538. [PMID: 36454042 DOI: 10.1021/acs.jafc.2c06240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The hydrolysis of plant glucosinolates by myrosinases (thioglucosidases) originates metabolites with chemopreventive properties. In this study, the ability to hydrolyze the glucosinolate sinigrin by cultures or protein extracts of Lactiplantibacillus plantarum WCFS1 was assayed. This strain possesses myrosinase-like activity as sinigrin was partly hydrolyzed by induced cultures but not by protein extracts. The 11 glycoside hydrolase GH1 family proteins, annotated as 6-phospho-β-glucosidases, were the proteins most similar to plant myrosinases. The activity of these proteins was assayed against sinigrin and synthetic glucosides. As expected, none of the proteins assayed possessed myrosinase activity against sinigrin or the synthetic β-thio-glucoside derivative or against the β-glucoside. However, all 11 proteins were active on the phosphorylated-β-glucoside derivative. Moreover, only eight of these proteins were active on phospho-β-thioglucose. These results supported that, in L. plantarum WCFS1, glucosinolates may undergo previous phosphorylation, and GH1 proteins are the glycosidases involved in the hydrolysis of phosphorylated glucosinolates.
Collapse
Affiliation(s)
- Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Ana Sánchez-Arroyo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - José M Cumella
- Instituto de Química Médica (IQM), CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Nieves Corzo
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Ana M Muñoz-Labrador
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| |
Collapse
|
23
|
Cuellar-Nuñez ML, Luzardo-Ocampo I, Lee-Martínez S, Larrauri-Rodríguez M, Zaldívar-Lelo de Larrea G, Pérez-Serrano RM, Camacho-Calderón N. Isothiocyanate-Rich Extracts from Cauliflower ( Brassica oleracea Var. Botrytis) and Radish ( Raphanus sativus) Inhibited Metabolic Activity and Induced ROS in Selected Human HCT116 and HT-29 Colorectal Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214919. [PMID: 36429638 PMCID: PMC9691161 DOI: 10.3390/ijerph192214919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cruciferous vegetables such as cauliflower and radish contain isothiocyanates exhibiting chemoprotective effects in vitro and in vivo. This research aimed to assess the impact of cauliflower (CIE) and radish (RIE) isothiocyanate extracts on the metabolic activity, intracellular reactive oxygen species (ROS), and LDH production of selected human colorectal adenocarcinoma cells (HCT116 and HT-29 for early and late colon cancer development, respectively). Non-cancerous colon cells (CCD-33Co) were used as a cytotoxicity control. The CIE samples displayed the highest allyl isothiocyanate (AITC: 12.55 µg/g) contents, whereas RIE was the most abundant in benzyl isothiocyanate (BITC: 15.35 µg/g). Both extracts effectively inhibited HCT116 and HT-29 metabolic activity, but the CIE impact was higher than that of RIE on HCT116 (IC50: 0.56 mg/mL). Assays using the half-inhibitory concentrations (IC50) of all treatments, including AITC and BITC, displayed increased (p < 0.05) LDH (absorbance: 0.25-0.40 nm) and ROS release (1190-1697 relative fluorescence units) in both cell lines. BITC showed the highest in silico binding affinity with all the tested colorectal cancer molecular markers (NF-kB, β-catenin, and NRF2-NFE2). The theoretical evaluation of AITC and BITC bioavailability showed high values for both compounds. The results indicate that CIE and RIE extracts display chemopreventive effects in vitro, but additional experiments are needed to validate their effects.
Collapse
Affiliation(s)
- Mardey Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Queretaro 76230, Mexico
| | - Sarah Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Michelle Larrauri-Rodríguez
- Licenciatura en Medicina General, Facultad de Medicina, Universidad Autónoma de Querétaro, Queretaro 76176, Mexico
| | | | - Rosa Martha Pérez-Serrano
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Nicolás Camacho-Calderón
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| |
Collapse
|
24
|
Characterization of a Novel Myrosinase with High Activity from Marine Bacterium Shewanella baltica Myr-37. Int J Mol Sci 2022; 23:ijms231911258. [PMID: 36232557 PMCID: PMC9569522 DOI: 10.3390/ijms231911258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Myrosinase can hydrolyze glucosinolates to generate isothiocyanates, which have cancer prevention and anti-cancer properties. The main sources of myrosinase are cruciferous plants. To further improve the efficiency of isothiocyanates preparation, it is necessary to explore novel sources of myrosinases. In this study, we described a bacterium, Shewanella baltica Myr-37, isolated from marine mud, capable of producing a novel myrosinase (Smyr37) with a molecular weight of 100 kDa. The crude enzyme of Smyr37 showed the highest activity at 50 °C and pH 8.0. The sinigrin- and glucoraphanin-hydrolyzing activities of Smyr37 were 6.95 and 5.87 U/mg, respectively. Moreover, when the reaction temperature was 40 °C and pH was 7.0, the crude enzyme of Smyr37 could efficiently degrade glucoraphanin into sulforaphane within 25 min with a yield of 0.57 mg/mL. The corresponding conversion efficiency of sulforaphane from glucoraphanin was 89%. In summary, S. baltica Myr-37 myrosinase Smyr37, a novel myrosinase, can be used in the preparation of isothiocyanates.
Collapse
|
25
|
Bertova A, Kontar S, Polozsanyi Z, Simkovic M, Rosenbergova Z, Rebros M, Sulova Z, Breier A, Imrichova D. Effects of Sulforaphane-Induced Cell Death upon Repeated Passage of Either P-Glycoprotein-Negative or P-Glycoprotein-Positive L1210 Cell Variants. Int J Mol Sci 2022; 23:ijms231810818. [PMID: 36142752 PMCID: PMC9501161 DOI: 10.3390/ijms231810818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The expression of the membrane ABCB1 transporter in neoplastic cells is one of the most common causes of reduced sensitivity to chemotherapy. In our previous study, we investigated the effect of a single culture of ABCB1-negative (S) and ABCB1-positive variants of L1210 cells (R and T) in the presence of sulforaphane (SFN). We demonstrated that SFN induces the onset of autophagy more markedly in S cells than in R or T cells. In the current study, we focused on the effect of the repeated culture of S, R and T cells in SFN-containing media. The repeated cultures increased the onset of autophagy compared to the simple culture, mainly in S cells and to a lesser extent in R and T cells, as indicated by changes in the cellular content of 16 and 18 kDa fragments of LC3B protein or changes in the specific staining of cells with monodansylcadaverine. We conclude that SFN affects ABCB1-negative S cells more than ABCB1-positive R and T cells during repeated culturing. Changes in cell sensitivity to SFN appear to be related to the expression of genes for cell-cycle checkpoints, such as cyclins and cyclin-dependent kinases.
Collapse
Affiliation(s)
- Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Zoltan Polozsanyi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Simkovic
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Zuzana Rosenbergova
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Rebros
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Correspondence: (A.B.); (D.I.)
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
- Correspondence: (A.B.); (D.I.)
| |
Collapse
|
26
|
Youseif SH, Abdel-Fatah HMK, Khalil MS. A new source of bacterial myrosinase isolated from endophytic Bacillus sp. NGB-B10, and its relevance in biological control activity. World J Microbiol Biotechnol 2022; 38:215. [PMID: 36056962 PMCID: PMC9440883 DOI: 10.1007/s11274-022-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Plant metabolism interacts strongly with the plant microbiome. Glucosinolates, secondary metabolites synthesized by Brassica plants, are hydrolyzed by myrosinase into bioactive compounds of great importance in human health and plant protection. Compared with myrosinase from plant sources, myrosinase enzymes of microbial origin have not been extensively investigated. Therefore, seven endophytic strains corresponding to Bacillus sp. were isolated from Eruca vesicaria ssp. sativa plants that could hydrolyse glucosinolates (sinigrin) in the culture medium and showed myrosinase activity (0.08–19.92 U mL−1). The bglA myrosinase-related gene encoding the 6-phospho-β-glucosidase (GH 1) from Bacillus sp. NGB-B10, the most active myrosinase-producing bacterium, was successfully identified. Response surface methodology (RSM) was applied to statistically optimize culture conditions for myrosinase production from Bacillus sp. strain NGB-B10. The Plackett–Burman design indicated that nitrogen concentration, incubation period, and agitation speed were the significant parameters in myrosinase production. The application of the Box–Behnken design of RSM resulted in a 10.03-fold increase in enzyme activity as compared to the non-optimized culture conditions. The myrosinase was partially purified by 40% fractionation followed by SDS-PAGE analysis which yielded two subunits that had a molecular weight of 38.6 and 35.0 KDa. The purified enzyme was stable under a broad range of pH (5.5–10) and temperatures (10–65 °C). The hydrolysis products released by bacterial myrosinase from some glucosinolate extracts had higher and/or equivalent in vitro antagonistic activity against several phytopathogenic fungi compared to the nystatin (a broad-spectrum antifungal agent). This study provides original information about a new source of bacterial myrosinase and affords an optimized method to enhance myrosinase production.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza, 12619, Egypt. .,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October, Giza, 12451, Egypt.
| | - Hanan M K Abdel-Fatah
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mary S Khalil
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
27
|
He S, Jiang B, Chakraborty A, Yu G. The Evolution of Glycoside Hydrolase Family 1 in Insects Related to Their Adaptation to Plant Utilization. INSECTS 2022; 13:786. [PMID: 36135486 PMCID: PMC9500737 DOI: 10.3390/insects13090786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Insects closely interact with plants with multiple genes involved in their interactions. β-glucosidase, constituted mainly by glycoside hydrolase family 1 (GH1), is a crucial enzyme in insects to digest plant cell walls and defend against natural enemies with sequestered plant metabolites. To gain more insights into the role of this enzyme in plant-insect interactions, we analyzed the evolutionary history of the GH1 gene family with publicly available insect genomes. We found that GH1 is widely present in insects, while the gene numbers are significantly higher in insect herbivores directly feeding on plant cell walls than in other insects. After reconciling the insect GH1 gene tree with a species tree, we found that the patterns of duplication and loss of GH1 genes differ among insect orders, which may be associated with the evolution of their ecology. Furthermore, the majority of insects' GH1 genes were tandem-duplicated and subsequently went through neofunctionalization. This study shows the evolutionary history of an important gene family GH1 in insects and facilitates our understanding of the evolution of insect-plant interactions.
Collapse
Affiliation(s)
- Shulin He
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Bin Jiang
- College of Life Science, Anhui Normal University, Beijing Rd. 1, Wuhu 241000, China
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Guozhi Yu
- College of Life Science, Sichuan Agricultural University, Xinkang Rd. 46, Ya’an 625014, China
| |
Collapse
|
28
|
Mahn A, Pérez CE, Zambrano V, Barrientos H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods 2022; 11:foods11131906. [PMID: 35804720 PMCID: PMC9266238 DOI: 10.3390/foods11131906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli sprouts are a recognized source of health-promoting compounds, such as glucosinolates, glucoraphanin, and sulforaphane (SFN). Maximization of SFN content can be achieved by technological processing. We investigated the effect of blanching conditions to determine the optimal treatment that maximizes sulforaphane content in broccoli sprouts. Broccoli seeds (cv. Traditional) grown under controlled conditions were harvested after 11 days from germination and subjected to different blanching conditions based on a central composite design with temperature and time as experimental factors. Results were analyzed by ANOVA followed by a Tukey test. The optimum conditions were identified through response surface methodology. Blanching increased sulforaphane content compared with untreated sprouts, agreeing with a decrease in total glucosinolates and glucoraphanin content. Temperature significantly affected SFN content. Higher temperatures and shorter immersion times favor glucoraphanin hydrolysis, thus increasing SFN content. The optimum conditions were blanching at 61 °C for 4.8 min, resulting in 54.3 ± 0.20 µmol SFN/g dry weight, representing a 3.3-fold increase with respect to untreated sprouts. This is the highest SFN content reported for sprouts subjected to any treatment so far. The process described in this work may contribute to developing functional foods and nutraceuticals that provide sulforaphane as an active principle.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
- Correspondence: ; Tel.: +56-227-181-833
| | - Carmen Elena Pérez
- Department of Agro Industrial Engineering, Pontificia Bolivariana University, Cra. 6 No. 97A-99, Montería 230001, Colombia;
| | - Víctor Zambrano
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
| | - Herna Barrientos
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170019, Chile;
| |
Collapse
|
29
|
Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022. [DOI: 10.3390/catal12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The myrosinase enzyme hydrolyzes glucosinolates, among which is glucoraphanin, the precursor of the anticancer isothiocyanate sulforaphane (SFN). The main source of glucoraphanin is Brassicaceae; however, its natural concentration is relatively low, limiting the availability of SFN. An option to obtain SFN is its exogenous production, through enzymatic processes and under controlled conditions, allowing complete conversion of glucoraphanin to SFN. We characterized the kinetics of wild-type (BMYR) and recombinant broccoli myrosinases produced in E. coli (EMYR) and S. cerevisiae (SMYR) in terms of the reaction conditions. Kinetics was adjusted using empirical and mechanistic models that describe reaction rate as a function of substrate concentration, temperature, and pH, resulting in R2 values higher than 90%. EMYR kinetics differed significantly from those of BMYR and SMYR probably due to the absence of glycosylations in the enzyme produced in E. coli. BMYR and SMYR were subjected to substrate inhibition but followed different kinetic mechanisms attributed to different glycosylation patterns. EMYR (inactivation Ea = 76.1 kJ/mol) was more thermolabile than BMYR and SMYR. BMYR showed the highest thermostability (inactivation Ea = 52.8 kJ/mol). BMYR and EMYR showed similar behavior regarding pH, with similar pK1 (3.4 and 3.1, respectively) and pK2 (5.4 and 5.0, respectively), but differed considerably from SMYR.
Collapse
|
30
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
31
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
32
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
33
|
Broccoli Myrosinase cDNA Expression in Escherichia coli and Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12020233. [PMID: 35204734 PMCID: PMC8961631 DOI: 10.3390/biom12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myrosinases (EC 3.2.1.147) are enzymes known for the generation of hydrolysis products that have a potential beneficial effect on human health. Their reaction mechanisms are widely studied, in order to improve and optimize secondary metabolite production processes. In this work, kinetic and biochemical properties of the broccoli myrosinase enzyme produced from its cDNA cloned in Escherichia coli and Saccharomyces cerevisiae were investigated. The results revealed that the thermal stability of the enzyme produced in S. cerevisiae was slightly higher (30 to 60 °C) than that of myrosinase produced in E. coli (20 to 50 °C). The effect of pH on the enzymatic activity was similar in both enzymes, with pH 3 being the optimum value under the reaction conditions used. The kinetic behavior of both enzymes was adjusted to the Michaelis–Menten model. The catalytic efficiency was up to 4 times higher in myrosinase produced in S. cerevisiae, compared to myrosinase produced in E. coli. The glycosylations present in the enzyme would be related to the formation of a dimeric quaternary structure and would not play an essential role in enzymatic activity, since both enzymes were biologically active. These results will probably allow the development of strategies for the production of bioactive metabolites of medical interest.
Collapse
|
34
|
Lv Q, Li X, Fan B, Zhu C, Chen Z. The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens. Int J Mol Sci 2022; 23:ijms23031577. [PMID: 35163500 PMCID: PMC8836197 DOI: 10.3390/ijms23031577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate–myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate–myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate–myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.
Collapse
Affiliation(s)
- Qiaoqiao Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
35
|
Kyriakou S, Tragkola V, Alghol H, Anestopoulos I, Amery T, Stewart K, Winyard PG, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals (Basel) 2022; 15:141. [PMID: 35215254 PMCID: PMC8879096 DOI: 10.3390/ph15020141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and (ii) biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e., mixture of leaves and lateral buds) and non-edible (i.e., stems) parts of watercress in an in vitro model of malignant melanoma consisting of human malignant melanoma (A375), non-melanoma (A431) and keratinocyte (HaCaT) cells. The extraction of the main constituents of watercress was performed by subjecting the freeze-dried edible and non-edible samples through different extraction protocols, whereas their concentration was obtained utilizing analytical methodologies. In addition, cell viability was evaluated by the Alamar Blue assay, whereas levels of oxidative stress and apoptosis were determined by commercially available kits. The edible watercress sample contained a higher amount of various nutrients and phytochemicals in the hexane fraction compared to the non-edible one, as evidenced by the presence of PEITC, phenolics, flavonoids, pigments, ascorbic acid, etc. The cytotoxicity potential of the edible watercress sample in the hexane fraction was considerably higher than the non-edible one in A375 cells, whereas A431 and HaCaT cells appeared to be either more resistant or minimally affected, respectively. Finally, levels of oxidative stress and apoptotic induction were increased in both watercress samples, but the magnitude of the induction was much higher in the edible than the non-edible watercress samples. Herein, we provide further evidence documenting the potential development of watercress extracts (including watercress waste by-products) as promising anti-cancer agent(s) against malignant melanoma cells.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Heba Alghol
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Tom Amery
- The Watercress Company, Dorchester DT2 8QY, UK;
| | - Kyle Stewart
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Paul G. Winyard
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| |
Collapse
|
36
|
Cebeci F, Mayer MJ, Rossiter JT, Mithen R, Narbad A. Molecular Cloning, Expression and Characterisation of a Bacterial Myrosinase from Citrobacter Wye1. Protein J 2022; 41:131-140. [PMID: 35031980 DOI: 10.1007/s10930-021-10034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Glucosinolates are plant natural products which on degradation by myrosinases give rise to the beneficial bioactive isothiocyanates. Recently, a myrosinase activity was detected in a Citrobacter strain isolated from soil. This enzyme was purified enabling its amino acid sequence and gene sequence (cmyr) to be determined. In order to study this myrosinase it was necessary to establish an expression system that would enable future work such as a structural determination of the protein to be carried out. The myrosinase gene was amplified, cloned and expressed in Escherichia coli with a 6XHis-tag. The heterologous expression of cmyr enabled relatively large amounts of myrosinase to be produced (3.4 mg cmyr/100 ml culture). Myrosinase activity was determined by mixing substrate and enzyme and determining glucose release. Optimum pH and temperature were determined to be pH 6.0 and 25 °C for the Ni-NTA purified protein. The kinetic parameters of the purified myrosinase were determined using sinigrin as a substrate. Km and Vmax were estimated as 0.18 mM and 0.033 mmol/min/mg respectively for sinigrin under optimum conditions and compared to other kinetic data for myrosinases. The substrate specificity of myrosinase was determined having the highest affinity for sinigrin followed by glucoiberin, progoitrin, glucoerucin, glucoraphanin and glucotropaeolin.
Collapse
Affiliation(s)
- Fatma Cebeci
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK. .,Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey.
| | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - John T Rossiter
- Department of Life Sciences, Imperial College London, London, UK
| | - Richard Mithen
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Arjan Narbad
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
37
|
Tie Y, Zhu W, Zhang C, Yin L, Zhang Y, Liu L, Yuan H. Identification of Two Myrosinases from a Leclercia adecarboxylata Strain and Investigation of Its Tolerance Mechanism to Glucosinolate Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14151-14164. [PMID: 34806371 DOI: 10.1021/acs.jafc.1c05285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GSLs), secondary metabolites synthesized by cruciferous plants, can be hydrolyzed by myrosinase into compounds, such as isothiocyanates (ITCs), with various bioactivities. Thus, myrosinase plays an important role in the utilization of GSLs. We isolated a bacterial strain, which was identified as Leclercia adecarboxylata, from the rhizosphere soil of rape seedlings and identified two myrosinase genes and an ITC hydrolase gene. Both myrosinases are intracellular and have 658 amino acid residues. Via molecular docking and chemical modification assays investigating the active sites of the myrosinases, arginine was found to be essential for their catalytic activity. Transcriptomic analysis of the response to sinigrin revealed significant up-regulation of some genes involved in allyl-ITC detoxification, with metallo-β-lactamase 3836 having the highest fold change. Thus, we discovered two myrosinases from L. adecarboxylata and demonstrated that the mechanism of tolerance of the bacterium to allyl-ITC likely involved metallo-β-lactamase activity.
Collapse
Affiliation(s)
- Yu Tie
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Wenyou Zhu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Chao Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Liguo Yin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Yalin Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Huawei Yuan
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| |
Collapse
|
38
|
Incarbone M, Clavel M, Monsion B, Kuhn L, Scheer H, Vantard É, Poignavent V, Dunoyer P, Genschik P, Ritzenthaler C. Immunocapture of dsRNA-bound proteins provides insight into Tobacco rattle virus replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector. THE PLANT CELL 2021; 33:3402-3420. [PMID: 34436604 PMCID: PMC8566308 DOI: 10.1093/plcell/koab214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/17/2021] [Indexed: 05/02/2023]
Abstract
Plant RNA viruses form organized membrane-bound replication complexes to replicate their genomes. This process requires virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) replication intermediates. Here, we describe the use of Arabidopsis thaliana expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down dsRNA and associated proteins in planta upon infection with Tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from infected plants revealed the presence of viral proteins and numerous host proteins. Among a selection of nine host candidate proteins, eight showed relocalization upon infection, and seven of these colocalized with B2-labeled TRV replication complexes. Infection of A. thaliana T-DNA mutant lines for eight such factors revealed that genetic knockout of dsRNA-BINDING PROTEIN 2 (DRB2) leads to increased TRV accumulation and DRB2 overexpression caused a decrease in the accumulation of four different plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We propose B2:GFP-mediated pull down of dsRNA to be a versatile method to explore virus replication complex proteomes and to discover key host virus replication factors. Given the universality of dsRNA, development of this tool holds great potential to investigate RNA viruses in other host organisms.
Collapse
Affiliation(s)
- Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Author for correspondence: (M.I.), (C.R.)
| | - Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Baptiste Monsion
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Émilie Vantard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Vianney Poignavent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Author for correspondence: (M.I.), (C.R.)
| |
Collapse
|
39
|
Improved Production of Recombinant Myrosinase in Pichia pastoris. Int J Mol Sci 2021; 22:ijms222111889. [PMID: 34769315 PMCID: PMC8585081 DOI: 10.3390/ijms222111889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The effect of the deletion of a 57 bp native signal sequence, which transports the nascent protein through the endoplasmic reticulum membrane in plants, on improved AtTGG1 plant myrosinase production in Pichia pastoris was studied. Myrosinase was extracellularly produced in a 3-liter laboratory fermenter using α-mating factor as the secretion signal. After the deletion of the native signal sequence, both the specific productivity (164.8 U/L/h) and volumetric activity (27 U/mL) increased more than 40-fold compared to the expression of myrosinase containing its native signal sequence in combination with α-mating factor. The deletion of the native signal sequence resulted in slight changes in myrosinase properties: the optimum pH shifted from 6.5 to 7.0 and the maximal activating concentration of ascorbic acid increased from 1 mM to 1.5 mM. Kinetic parameters toward sinigrin were determined: 0.249 mM (Km) and 435.7 U/mg (Vmax). These results could be applied to the expression of other plant enzymes.
Collapse
|
40
|
Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021; 8:748433. [PMID: 34631775 PMCID: PMC8492924 DOI: 10.3389/fnut.2021.748433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli, are associated with numerous health benefits. The anti-cancer properties of these foods are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated from biological precursor compounds called glucosinolates. ITCs, and particularly sulforaphane (SFN), are of intense interest as they block the initiation, and suppress the progression of cancer, through genetic and epigenetic mechanisms. The efficacy of these compounds is well-demonstrated in cell culture and animal models, however, high levels of inter-individual variation in absorption and excretion of ITCs is a significant barrier to the use of dietary glucosinolates to prevent and treat disease. The source of inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may play a key role. This review highlights evidence that the gut microbiome influences the metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual variations in gut microbiome composition coincides with variations in ITC absorption and excretion, and some bacteria produce ITCs from glucosinolates. Additionally, consumption of cruciferous vegetables can alter the composition of the gut microbiome and shift the physiochemical environment of the gut lumen, influencing the production of phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to the decrease of cancer fighting phytochemicals such as SFN and increase the production of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the use of novel “omics” technologies to elucidate the interplay of the gut microbiome and ITC formation.
Collapse
Affiliation(s)
- John A Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
41
|
Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63789-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Widemann E, Bruinsma K, Walshe-Roussel B, Rioja C, Arbona V, Saha RK, Letwin D, Zhurov V, Gómez-Cadenas A, Bernards MA, Grbić M, Grbić V. Multiple indole glucosinolates and myrosinases defend Arabidopsis against Tetranychus urticae herbivory. PLANT PHYSIOLOGY 2021; 187:116-132. [PMID: 34618148 PMCID: PMC8418412 DOI: 10.1093/plphys/kiab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) defenses against herbivores are regulated by the jasmonate (JA) hormonal signaling pathway, which leads to the production of a plethora of defense compounds. Arabidopsis defense compounds include tryptophan-derived metabolites, which limit Arabidopsis infestation by the generalist herbivore two-spotted spider mite, Tetranychus urticae. However, the phytochemicals responsible for Arabidopsis protection against T. urticae are unknown. Here, we used Arabidopsis mutants disrupted in the synthesis of tryptophan-derived secondary metabolites to identify phytochemicals involved in the defense against T. urticae. We show that of the three tryptophan-dependent pathways found in Arabidopsis, the indole glucosinolate (IG) pathway is necessary and sufficient to assure tryptophan-mediated defense against T. urticae. We demonstrate that all three IGs can limit T. urticae herbivory, but that they must be processed by myrosinases to hinder T. urticae oviposition. Putative IG breakdown products were detected in mite-infested leaves, suggesting in planta processing by myrosinases. Finally, we demonstrate that besides IGs, there are additional JA-regulated defenses that control T. urticae herbivory. Together, our results reveal the complexity of Arabidopsis defenses against T. urticae that rely on multiple IGs, specific myrosinases, and additional JA-dependent defenses.
Collapse
Affiliation(s)
- Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brendan Walshe-Roussel
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Natural and Non-Prescription Health Products Directorate Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Repon Kumer Saha
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - David Letwin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Mark A. Bernards
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Author for communication:
| |
Collapse
|
43
|
Lietzow J. Biologically Active Compounds in Mustard Seeds: A Toxicological Perspective. Foods 2021; 10:2089. [PMID: 34574199 PMCID: PMC8472142 DOI: 10.3390/foods10092089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mustard plants have been widely cultivated and used as spice, medicine and as source of edible oils. Currently, the use of the seeds of the mustard species Sinapis alba (white mustard or yellow mustard), Brassica juncea (brown mustard) and Brassica nigra (black mustard) in the food and beverage industry is immensely growing due to their nutritional and functional properties. The seeds serve as a source for a wide range of biologically active components including isothiocyanates that are responsible for the specific flavor of mustard, and tend to reveal conflicting results regarding possible health effects. Other potentially undesirable or toxic compounds, such as bisphenol F, erucic acid or allergens, may also occur in the seeds and in mustard products intended for human consumption. The aim of this article is to provide comprehensive information about potentially harmful compounds in mustard seeds and to evaluate potential health risks as an increasing use of mustard seeds is expected in the upcoming years.
Collapse
Affiliation(s)
- Julika Lietzow
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
44
|
Zhao Y, Chen Z, Chen J, Chen B, Tang W, Chen X, Lai Z, Guo R. Comparative transcriptomic analyses of glucosinolate metabolic genes during the formation of Chinese kale seeds. BMC PLANT BIOLOGY 2021; 21:394. [PMID: 34418959 PMCID: PMC8380351 DOI: 10.1186/s12870-021-03168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. RESULTS The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. CONCLUSIONS Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.
Collapse
Affiliation(s)
- Yijiao Zhao
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zeyuan Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiaxuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Bingxing Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weiling Tang
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaodong Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Rongfang Guo
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
45
|
Differential Response to Single and Combined Salt and Heat Stresses: Impact on Accumulation of Proteins and Metabolites in Dead Pericarps of Brassica juncea. Int J Mol Sci 2021; 22:ijms22137076. [PMID: 34209216 PMCID: PMC8267682 DOI: 10.3390/ijms22137076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Dead organs enclosing embryos, such as seed coats and pericarps, are emerging as important maternally-derived components of the dispersal unit that affect seed performance and fate. In the face of climate change and increased incidents of heatwaves, we sought to investigate the effect of salinity (S), short episodes of high temperature (HS), and combination of S + HS (SHS), at the reproductive phase, on the properties of dead pericarps of Brassica juncea. Proteome and metabolome analyses revealed multiple proteins and metabolites stored in dead pericarps whose levels and composition were altered under single and combined stress conditions. The protein profile of SHS showed a higher correlation with salt than with HS indicating the dominant effect of salt over heat stress. On the other hand, the analysis of metabolites showed that the profile of SHS has better correlation with HS than with salt. The integration of metabolic and proteomic data showed that changes in TCA cycle intermediates and certain amino acids (e.g., proline) under salt treatments (S and SHS) are highly correlated with changes in proteins involved in their biosynthetic pathways. Thus, accumulation of proteins and metabolites in dead pericarps is differently affected by single and combination of salt and heat stresses. Salinity appears to dominate plant response to combined stresses at the protein level, while heat appears to be the major factor affecting metabolite accumulation in dead pericarps.
Collapse
|
46
|
Sporer T, Körnig J, Wielsch N, Gebauer-Jung S, Reichelt M, Hupfer Y, Beran F. Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases. FRONTIERS IN PLANT SCIENCE 2021; 12:645030. [PMID: 34093609 PMCID: PMC8173161 DOI: 10.3389/fpls.2021.645030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Myrosinase enzymes play a key role in the chemical defense of plants of the order Brassicales. Upon herbivory, myrosinases hydrolyze the β-S-linked glucose moiety of glucosinolates, the characteristic secondary metabolites of brassicaceous plants, which leads to the formation of different toxic hydrolysis products. The specialist flea beetle, Phyllotreta armoraciae, is capable of accumulating high levels of glucosinolates in the body and can thus at least partially avoid plant myrosinase activity. In feeding experiments with the myrosinase-deficient Arabidopsis thaliana tgg1 × tgg2 (tgg) mutant and the corresponding Arabidopsis Col-0 wild type, we investigated the influence of plant myrosinase activity on the metabolic fate of ingested glucosinolates in adult P. armoraciae beetles. Arabidopsis myrosinases hydrolyzed a fraction of ingested glucosinolates and thereby reduced the glucosinolate sequestration rate by up to 50% in adult beetles. These results show that P. armoraciae cannot fully prevent glucosinolate hydrolysis; however, the exposure of adult beetles to glucosinolate hydrolysis products had no impact on the beetle's energy budget under our experimental conditions. To understand how P. armoraciae can partially prevent glucosinolate hydrolysis, we analyzed the short-term fate of ingested glucosinolates and found them to be rapidly absorbed from the gut. In addition, we determined the fate of ingested Arabidopsis myrosinase enzymes in P. armoraciae. Although we detected Arabidopsis myrosinase protein in the feces, we found only traces of myrosinase activity, suggesting that P. armoraciae can inactivate plant myrosinases in the gut. Based on our findings, we propose that the ability to tolerate plant myrosinase activity and a fast glucosinolate uptake mechanism represent key adaptations of P. armoraciae to their brassicaceous host plants.
Collapse
Affiliation(s)
- Theresa Sporer
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Johannes Körnig
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Steffi Gebauer-Jung
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yvonne Hupfer
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
47
|
Wang L, Jiang H, Liang X, Zhou W, Qiu Y, Xue C, Sun J, Mao X. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade Yarrowia lipolytica Harboring High Myrosinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5363-5371. [PMID: 33929187 DOI: 10.1021/acs.jafc.1c01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulforaphene prepared from glucoraphenin by myrosinase is one of the main active ingredients of radish, which has various biological activities and brilliant potential for food and pharmaceutical applications. In this paper, a recombinant food-grade yeast transformant 20-8 with high-level myrosinase activity was constructed by over-expressing a myrosinase gene from Arabidopsis thaliana in Yarrowia lipolytica. The highest myrosinase activity produced by the transformant 20-8 reached 44.84 U/g dry cell weight when it was cultivated in a 10 L fermentor within 108 h. Under the optimal reaction conditions, 6.1 mg of sulforaphene was yielded from 1 g of radish seeds under the catalysis of the crude myrosinase preparation (4.95 U) at room temperature within 1.5 h. What is more is that when the whole yeast cells harboring myrosinase activity were reused 10 times, the sulforaphene yield still reached 92.53% of the initial level. Therefore, this efficient approach has broad application prospects in recyclable and large-scale preparation of sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xingxing Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenting Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| |
Collapse
|
48
|
Garcia-Ibañez P, Roses C, Agudelo A, Milagro FI, Barceló AM, Viadel B, Nieto JA, Moreno DA, Carvajal M. The Influence of Red Cabbage Extract Nanoencapsulated with Brassica Plasma Membrane Vesicles on the Gut Microbiome of Obese Volunteers. Foods 2021; 10:foods10051038. [PMID: 34068672 PMCID: PMC8151636 DOI: 10.3390/foods10051038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the study was to evaluate the influence of the red cabbage extracts on the bioaccessibility of their isothiocyanates, and their effect on the intestinal microbiota using a dynamic model of human digestion treated with the gut microbiome of obese adults. The elicitation of red cabbage plants with methyl jasmonate (MeJA) duplicated the content of glucosinolates (GSLs) in the plant organs used for elaborating the encapsulated formula. The use of plasma membrane vesicles, according to a proper methodology and technology, showed a high retention of sulforaphane (SFN) and indol-3-carbinol (I3C) over the course of the 14-day digestion study. The microbiome was scarcely affected by the treatments in terms of microbiota composition or the Bacteroidetes/Firmicutes ratio, but a 3 to 4-fold increase was observed in the production of butyric acid with the encapsulated extract treatment. Based on our pilot red cabbage extract study, the consumption of this extract, mainly encapsulated, may play a potential role in the management of obesity in adults.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (P.G.-I.); (M.C.)
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Carles Roses
- Servei de Genòmica I Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.R.); (A.M.B.)
| | - Agatha Agudelo
- Sakata Seed Ibérica S.L., Pl. Poeta Vicente Gaos, 6 Bajo, 46021 Valencia, Spain;
- Biotechnology Department, Universidad Politécnica de Valencia, UPV, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fermin I. Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de la Salud Carlos III, 289029 Madrid, Spain
| | - Ana M. Barceló
- Servei de Genòmica I Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.R.); (A.M.B.)
| | - Blanca Viadel
- AINIA, Technology Centre, C/Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valencia, Spain; (B.V.); (J.A.N.)
| | - Juan Antonio Nieto
- AINIA, Technology Centre, C/Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valencia, Spain; (B.V.); (J.A.N.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
- Correspondence:
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (P.G.-I.); (M.C.)
| |
Collapse
|
49
|
Bhat R, Faiz S, Ali V, Khajuria M, Mukherjee D, Vyas D. Effect of temperature and insect herbivory on the regulation of glucosinolate-myrosinase system in Lepidium latifolium. PHYSIOLOGIA PLANTARUM 2021; 172:53-63. [PMID: 33231316 DOI: 10.1111/ppl.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
The glucosinolate-myrosinase (GLS-MYR) system is an important component of plant-insect interactions. However, there is no report on its performance in field conditions where the plants are subjected to both abiotic and biotic pressures simultaneously. We investigated the GLS-MYR system in a Himalayan ecotype of Lepidium latifolium that is recognized for its adaptive potential in field conditions. In order to understand the independent contribution of temperature and Pieris brassicae herbivory on the components of the GLS-MYR system, different conditions were simulated in the growth chamber. During field conditions, the final GLS hydrolysis products were found to be regulated by the metabolic GLS levels, the temperature conditions, and the density of insect interactions. These factors influence the expression of the hydrolyzing and specifier proteins, which further affects the GLS hydrolysis products. Our results suggest that the production of hydrolysis products is differentially affected under field conditions. While allyl isothiocyanate is significantly (P ≤ 0.05) affected by temperature but not insect density, 1-cyano-2,3-epithiopropane is not affected by either. The study shows that the outcome of the GLS-MYR system in a plant is a consequence of the combinatorial effect of ecophysiological factors and the insect interactions that eventually decide the performance of a plant in an environment.
Collapse
Affiliation(s)
- Rohini Bhat
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sheenam Faiz
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Villayat Ali
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Manu Khajuria
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Dhiraj Vyas
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
50
|
Rosenbergová Z, Kántorová K, Šimkovič M, Breier A, Rebroš M. Optimisation of Recombinant Myrosinase Production in Pichia pastoris. Int J Mol Sci 2021; 22:ijms22073677. [PMID: 33916093 PMCID: PMC8037066 DOI: 10.3390/ijms22073677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Myrosinase is a plant defence enzyme catalysing the hydrolysis of glucosinolates, a group of plant secondary metabolites, to a range of volatile compounds. One of the products, isothiocyanates, proved to have neuroprotective and chemo-preventive properties, making myrosinase a pharmaceutically interesting enzyme. In this work, extracellular expression of TGG1 myrosinase from Arabidopsis thaliana in the Pichia pastoris KM71H (MutS) strain was upscaled to a 3 L laboratory fermenter for the first time. Fermentation conditions (temperature and pH) were optimised, which resulted in a threefold increase in myrosinase productivity compared to unoptimised fermentation conditions. Dry cell weight increased 1.5-fold, reaching 100.5 g/L without additional glycerol feeding. Overall, a specific productivity of 4.1 U/Lmedium/h was achieved, which was 102.5-fold higher compared to flask cultivations.
Collapse
Affiliation(s)
- Zuzana Rosenbergová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (Z.R.); (K.K.)
| | - Kristína Kántorová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (Z.R.); (K.K.)
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.Š.); (A.B.)
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.Š.); (A.B.)
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (Z.R.); (K.K.)
- Correspondence:
| |
Collapse
|