1
|
Jiang W, Qiu X, Wei X, Xiang S, Yu J, Shang H, Guan T. Bacillus that produces TTMP enhances the total ester content in Baijiu through biofortification. Food Microbiol 2025; 128:104735. [PMID: 39952772 DOI: 10.1016/j.fm.2025.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
TTMP is a key flavor compound in Baijiu and also has potential health benefits. Bacillus are vital producers of TTMP; however, the connection between Bacillus in strong-flavor Daqu and TTMP is restricted. In this study, morphological and molecular biological screening and identification of Bacillus strains in strong-flavor Daqu were carried out, and their TTMP production capabilities were evaluated. Additionally, the influence of the selected strains on Baijiu flavor was assessed through simulated fermentation experiments. The experimental results demonstrated that out of the 18 strains of Bacillus spores screened, 12 could produce TTMP, indicating a diverse population of Bacillus spores capable of generating pyrazine compounds in Daqu. Among these, Bacillus subtilis YR-5 yields the highest TTMP at 761.32 mg/L, followed by Bacillus velzensis YR-3 and Bacillus velzensis YR-12 with yields of 553.25 mg/L and 341.19 mg/L, respectively. Under simulated fermentation conditions, the TTMP content increased significantly from 0.19 mg/mL to 0.63 mg/mL, 0.92 mg/mL, and 0.53 mg/mL after adding YR-3, YR-5, and YR-12 respectively; meanwhile, ester content in fermentation system increased by 69.84%,79.35%, and 64.15% respectively. These findings imply that the functional microorganisms required in the search for Baijiu can be screened and identified in Daqu, and the selected strains can be utilized for biofortification to enhance the content of TTMP in Baijiu and improve the flavor of Baijiu.
Collapse
Affiliation(s)
- Wanlue Jiang
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610039, PR.China
| | - Xianping Qiu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610039, PR.China; Sichuan Quanxing Liquor Co., Ltd., Chengdu, 611637, PR.China
| | - Xinyue Wei
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610039, PR.China
| | | | - Jianshen Yu
- Sichuan Quanxing Liquor Co., Ltd., Chengdu, 611637, PR.China
| | - Hongguang Shang
- Chengdu Shuzhiyuan Liquor Co., Ltd, Chengdu, 611330, PR.China
| | - Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chengdu, 610039, PR.China.
| |
Collapse
|
2
|
Liu G, Gong H, Tang H, Meng Z, Wang Z, Cui W, Zhang K, Chen Y, Yang Y. Enhanced lignocellulose degradation in Bacillus subtilis RLI2019 through CRISPR/Cas9-mediated chromosomal integration of ternary cellulase genes. Int J Biol Macromol 2025; 306:141727. [PMID: 40043602 DOI: 10.1016/j.ijbiomac.2025.141727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Bacillus subtilis (B. subtilis) is a crucial industrial microorganism for lignocellulose biomass degradation. However, wild-type strains from natural environments have inherent deficiencies in the composition of cellulase genes, so constructing recombinant strains through genome engineering is a generalizable strategy to overcome these shortcomings. Herein, eglS, cel48S, and bglS were integrated into the aprE, epr, and amyE loci of the B. subtilis RLI2019 chromosome, respectively, through CRISPR/Cas9-mediated genome editing, deriving the engineered strain B. subtilis AEA3. The activities of endoglucanase, exoglucanase, β-glucosidase, xylanase, and total cellulase in B. subtilis AEA3 were enhanced by 3.1-fold, 6.6-fold, 3.0-fold, 1.2-fold, and 1.8-fold, respectively, reaching 26.31 U/mL, 9.77 U/mL, 3.91 U/mL, 19.63 U/mL, and 2.42 U/mL. Notably, the engineered strain improved the saccharification efficiency of crop straws, effectively disrupting fiber structure, and significantly reducing the content of neutral and acid detergent fibers, lignocellulose and hemicellulose. In summary, this study provides a general strategy for enhancing the cellulose degradation capabilities of B. subtilis through comprehensive and systematic multi-module genetic engineering, broadening its potential application in lignocellulose biomass conversion.
Collapse
Affiliation(s)
- Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanxuan Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Microbial Research Institute of Liaoning Province, Chaoyang, Liaoning 122000, China
| | - Haoran Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongming Meng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyuan Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Hou X, Li W, Yang S, Huang Y, Jian J, Cai S. Effects of oral immunization with Bacillus subtilis displaying Vibrio harveyi FlgE protein on the intestinal structure and gut microbiota of grouper. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110234. [PMID: 40010618 DOI: 10.1016/j.fsi.2025.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
The development of a novel formulation that combines vaccines and probiotics as a primary strategy to protect fish against pathogenic bacteria and reduce reliance on antibiotics is essential for addressing aquatic diseases in the future. In this study, a novel Bacillus subtilis strain Bs-CotC-FlgE was engineered through genetic modification to express Vibrio harveyi FlgE protein for use in grouper immunization. We orally administered the recombinant Bs-CotC-FlgE spores and the control Bs-CotC spores to groupers and evaluated their effects on the intestinal structure and gut microbiota. To assess the intestinal structure, histological analysis of the hindgut was performed, including measurements of villus length, villus height, and intestinal wall thickness. For gut microbiota analysis, total genomic DNA was extracted from the intestines, and the V3-V4 region of the bacterial 16S rRNA gene was amplified and sequenced using Illumina novaseq6000. The abundance of Vibrio in different groups was evaluated by analyzing the sequencing data at the genus level. The results showed a relative percent survival (RPS) of 63 % for Bs-CotC-FlgE group, significantly higher than the 29.63 % observed in Bs-CotC group (p < 0.01). Both Bs-CotC-FlgE and Bs-CotC spores significantly increased intestinal villus length, villus height, intestinal wall thickness in grouper (p < 0.01). Furthermore, gut microbiota diversity in grouper improved after spore consumption, as indicated by increased Shannon and Shannoneven indices and decreased Simpson index. At the phylum level, compared to the control group, the abundance of Actinobacteria and Firmicutes increased, while that of Ascomycetes decreased in the treatment groups. At the genus level, the abundance of Vibrio was significantly lower in the Bs-CotC-FlgE and Bs-CotC groups than in the control group (p < 0.05), and the abundance of Ralstonia, Halomonas and Bacillus increased. Notably, the abundance of Vibrio in the Bs-CotC-FlgE group was significantly lower than that in the Bs-CotC group (p < 0.05), suggesting Bs-CotC-FlgE immunization stimulates the grouper to produce specific antibodies and inhibits the attachment of Vibrio in the intestine of grouper. However, we observed that the spores can only survive gastric acid exposure and remain viable in the intestine for a limited duration. These findings enhance our understanding of the interaction between Bacillus carrier vaccines and fish gut microbiota and have potential for the development of a live vector vaccine against V. harveyi in grouper, which could contribute to reducing the use of antibiotics in aquaculture. Taken together, our results demonstrate oral immunization with B. subtilis spore expressing FlgE on the surface was a promising, safe and needle-free vaccination strategy against V. harveyi infection in grouper. The Bacillus carrier vaccine strategy can be adapted for different species and environmental conditions, offering a versatile solution to enhance disease resistance and promote sustainable aquaculture development.
Collapse
Affiliation(s)
- Xiaoyong Hou
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Wenze Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yucong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
| |
Collapse
|
4
|
Liu M, Wang K, Zhang Y, Zhou X, Li W, Han W. Mechanistic Study of Protein Interaction with Natto Inhibitory Peptides Targeting Xanthine Oxidase: Insights from Machine Learning and Molecular Dynamics Simulations. J Chem Inf Model 2025; 65:3682-3696. [PMID: 40125929 DOI: 10.1021/acs.jcim.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Bioactive peptides from food sources offer a safe and biocompatible approach to enzyme inhibition, with potential applications in managing metabolic disorders such as hyperuricemia and gout, conditions linked to excessive xanthine oxidase activity. Using a machine learning-based screening approach inspired by the bioactivity of natto, two peptides, ECFK and FECK, were identified from the Bacillus subtilis proteome and validated as xanthine oxidase inhibitors with IC50 values of 37.36 and 71.57 mM, respectively. Further experiments confirmed their safety through cytotoxicity assays, and electronic tongue analysis demonstrated their mild sensory properties, supporting their edibility. Molecular dynamics simulations revealed that these peptides stabilize critical enzyme regions, with ECFK showing a higher dissociation energy barrier (52.08 kcal/mol) than FECK (46.39 kcal/mol), indicating strong, stable interactions. This study highlights food-derived peptides as safe and natural inhibitors of xanthine oxidase, offering promising therapeutic potential for metabolic disorder management.
Collapse
Affiliation(s)
- Minghao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kaiyu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xue Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
5
|
Huang X, Hu L, Li J, Xie X, Meng C, Liu Y, Wei X. Dietary live microorganisms and depression-driven mortality in hypertensive patients: NHANES 2005-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:117. [PMID: 40223098 PMCID: PMC11995569 DOI: 10.1186/s41043-025-00861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To investigate the relationship between dietary microorganism intake and mortality risk among hypertensive adults with depression in the United States. METHODS This study utilizes data from the 2005-2018 National Health and Nutrition Examination Survey, focusing on individuals with hypertension. The Kaplan-Meier (K-M) curve is employed to preliminarily explore the relationship between dietary microorganism intake, depression, and mortality risk in hypertensive individuals. The Cox proportional hazards model is used for both individual and combined analyses of these relationships. Mediation analysis assesses the mediating effect of depression on the association between dietary microorganisms and mortality, while subgroup and sensitivity analysis evaluates the stability of the model. RESULTS This cohort study included 11,602 hypertensive participants (5,904 men and 5,698 women), with 1,201 having depression. During follow-up period, 2,085 died from all causes, 692 due to cardiovascular events. Preliminary analysis using the K-M curve reveals that hypertensive individuals with higher dietary microorganism intake and those without depression have lower mortality risks. Cox proportional hazards model analysis shows that increased dietary microorganism intake is associated with reduced mortality risk in hypertensive individuals (HRALL-cause=0.654, 95%CI: 0.555-0.771; HRCVD-cause:0.675, 95%CI: 0.472,0.967). High intake of diets rich in dietary microorganisms may mitigate the ALL-cause mortality risk of depression in hypertensive populations(HRALL-cause=0.493, 95%CI: 0.256-0.947). Mediation analysis revealed that depression serves as a partial mediator in the process of dietary microorganisms improving the long - term prognosis of the hypertensive population. Results of subgroup analysis and sensitivity analysis showed that the beneficial effect of dietary microorganism intake on prognosis remained stable in most of the hypertensive population. CONCLUSION Patients with depression among those suffering from hypertension can reduce the risk of all-cause mortality caused by depression by increasing their intake of dietary microorganisms. This provides clinicians with a new non-pharmacological intervention approach and offers a direction for the optimization of clinical combined treatment regimens.
Collapse
Affiliation(s)
- Xuanchun Huang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
| | - Xiaoling Xie
- Zhangzhou Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chao Meng
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Yiying Liu
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xiaoqi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Yi Y, Chen M, Yang H, Zong X, Coldea TE, Zhao H. New insights into the role of cellular states, cell-secreted metabolites, and essential nutrients in biofilm formation and menaquinone-7 biosynthesis in Bacillus subtilis natto. Food Res Int 2025; 206:116052. [PMID: 40058911 DOI: 10.1016/j.foodres.2025.116052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Menaquinone-7 (MK-7), known for its health benefits, is in high demand across the health and medical fields. Two-stage fermentation strategy can efficiently enhance MK-7 production by Bacillus subtilis natto (B. subtilis natto). However, B. subtilis natto at different growth phases exhibited significant differences in biofilm formation and MK-7 production during the two-stage fermentation, hindering the efficient and stable synthesis of MK-7. Specifically, 0.72 and 0.25 of biofilm biomass values for cells at the early exponential and stationary phases yield MK-7 concentrations of 55.90 and 12.67 mg/L, respectively, with significant variations in the expression levels of quorum sensing, MK-7 synthesis, and biofilm-related genes detected by RT-qPCR. Subsequently, based on experimental procedures involving fermentation supernatant intervention, nutrient supply, and medium renewal, it was found that the deficiency of essential nutrients, particularly low-molecular-weight (< 1 kDa) fractions of soy protein hydrolysate (SPH), was identified as the primary factor of these differences. Additionally, the influence of cell-secreted metabolites, including the downregulation of surfactin and bacilysin expression by 0.61-fold and 0.33-fold, respectively, further exacerbated these effects. Moreover, the increased proportion of depolarized cells and spores, along with reduced intracellular potassium levels in stationary phase cells, was a secondary effect resulting from the two primary causes. Supplementing with ultrafiltration and 75 % ethanol-precipitated fractions of SPH could restore the MK-7 production by 2.35 and 2.05-fold, and biofilm biomass by 2.43 and 2.11-fold, respectively, in B. subtilis natto at the stationary phase. These findings offer a new perspective on the factors influencing biofilm formation and MK-7 production in B. subtilis natto.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xuyan Zong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
7
|
Gresse R, Cappellozza BI, Macheboeuf D, Torrent A, Danon J, Capern L, Sandvang D, Niderkorn V, Copani G, Forano E. In Vitro Investigation of the Effects of Bacillus subtilis-810B and Bacillus licheniformis-809A on the Rumen Fermentation and Microbiota. Animals (Basel) 2025; 15:476. [PMID: 40002958 PMCID: PMC11851895 DOI: 10.3390/ani15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Direct-fed microbials (DFMs) have shown the potential to improve livestock performance and overall health. Extensive research has been conducted to identify new DFMs and understand their mechanisms of action in the gut. Bacillus species are multifunctional spore-forming bacteria that exhibit resilience to harsh conditions, making them ideal candidates for applications in the feed industry and livestock production. This study investigates the mode of action of B. licheniformis and B. subtilis in the rumen using diverse in vitro techniques. Our results revealed that both strains germinated and grew in sterile rumen and intestinal contents from dairy cows and bulls. Gas composition analysis of in vitro cultures in a medium containing 40% rumen fluid demonstrated that germination of B. licheniformis and B. subtilis strains reduced oxygen levels, promoting an anaerobic environment favorable to rumen microbes. Enzymatic activity assays showed that B. licheniformis released sugars from complex substrates and purified polysaccharides in filtered rumen content. Additionally, the combination of B. licheniformis and B. subtilis survived and grew in the presence of a commercial monensin dose in rumen fluid media. The effects of B. licheniformis and B. subtilis on rumen fermentation activity and microbiota were studied using an in vitro batch fermentation assay. In fermenters that received a combination of B. licheniformis and B. subtilis, less CO2 was produced while dry matter degradation and CH4 production was comparable to the control condition, indicating better efficiency of dry matter utilization by the microbiota. The investigation of microbiota composition between supplemented and control fermenters showed no significant effect on alpha and beta diversity. However, the differential analysis highlighted changes in several taxa between the two conditions. Altogether, our data suggests that the administration of these strains of Bacillus could have a beneficial impact on rumen function, and consequently, on health and performance of ruminants.
Collapse
Affiliation(s)
- Raphaële Gresse
- VetAgro Sup, UMR Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (V.N.)
- UMR 454 MEDIS, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (E.F.)
- Novonesis, 2970 Hørsholm, Denmark; (B.I.C.)
| | | | - Didier Macheboeuf
- VetAgro Sup, UMR Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (V.N.)
| | - Angélique Torrent
- VetAgro Sup, UMR Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (V.N.)
| | - Jeanne Danon
- UMR 454 MEDIS, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (E.F.)
| | | | | | - Vincent Niderkorn
- VetAgro Sup, UMR Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (V.N.)
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Jatinangor, Sumedang 45363, West Java, Indonesia
| | | | - Evelyne Forano
- UMR 454 MEDIS, INRAE, Université Clermont Auvergne, 63122 Saint-Genes-Champanelle, France (E.F.)
| |
Collapse
|
8
|
Greco D, D’Ascanio V, Santovito E, Abbasciano M, Quintieri L, Techer C, Avantaggiato G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods 2025; 14:360. [PMID: 39941953 PMCID: PMC11817501 DOI: 10.3390/foods14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, were screened for their ability to remove mycotoxins. All of them demonstrated mycotoxin-dependent removal efficacy, being very effective against ZEA and its analogues (α- and β-ZOL, α- and β-ZAL, and ZAL) achieving up to 100% removal within 24 h under aerobic, anaerobic, and restrictive growth conditions with toxins as the sole carbon source. ZEA removal remained effective across a wide range of pH values (5-8), temperatures (20-40 °C), and at high toxin concentrations (up to 10 µg/mL). Additionally, up to 87% ZEA removal was achieved after 48 h of incubation (30 °C) of the strains in a contaminated liquid food model containing 1 µg/mL of the toxin. Mechanistic studies suggest that ZEA detoxification involves metabolic processes rather than physical adsorption or entrapment into bacterial cells. Enzymatic activities within the bacterial cells or associated with their cell walls likely play a role in the metabolization of the toxin. Interestingly, it has been observed that growth conditions and culture media can influence the metabolization and/or conjugation of the toxin, which can result in the production of various metabolites. Further investigation is needed to identify these metabolites and assess their safety.
Collapse
Affiliation(s)
- Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Elisa Santovito
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Mariagrazia Abbasciano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Clarisse Techer
- Mixscience, 2/4 Avenue de Ker Lann, CS17228, CEDEX, 35172 Bruz, France;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| |
Collapse
|
9
|
Zhang Z, Bao C, Li Z, He C, Jin W, Li C, Chen Y. Integrated omics analysis reveals the alteration of gut microbiota and fecal metabolites in Cervus elaphus kansuensis. Appl Microbiol Biotechnol 2024; 108:125. [PMID: 38229330 PMCID: PMC10789680 DOI: 10.1007/s00253-023-12841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changhong Bao
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Zhaonan Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Caixia He
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| |
Collapse
|
10
|
Jossefa AA, dos Anjo Viagem L, Cerozi BDS, Chenyambuga SW. Microbiological contamination of lettuce (Lactuca sativa) reared with tilapia in aquaponic systems and use of bacillus strains as probiotics to prevent diseases: A systematic review. PLoS One 2024; 19:e0313022. [PMID: 39527521 PMCID: PMC11554229 DOI: 10.1371/journal.pone.0313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Aquaponic systems are food production systems that combine aquaculture and hydroponic in a closed recirculation system where water provides nutrients to plants while plants purify water for fish. In this system, tilapia is the most commonly cultured fish and can be easily integrated with vegetable cultivation. However, tilapia host a diverse microbiota some of which are pathogenic and can infect humans. Previous studies have reported contamination of lettuce by pathogenic bacteria which can cause human diseases. Thus, there is an urgent need to employ effective methods to control those bacteria, and Bacillus strains have been successfully used in this context. This systematic review aimed to provide a comprehensive overview of lettuce contamination by pathogenic bacteria and the use of Bacillus as probiotics to prevent diseases in aquaponics systems. This systematic review was performed using Preferred Reporting Items for Systematic Review and Meta-Analysis Statement (PRISMA) Guidelines. A total of 1,239 articles were retrieved and based on eligibility criteria, six articles were included after screening. The review revealed that Enterobacteriaceae, Coliforms, and Shiga Toxin-producing E. coli are the predominant bacteria contaminating lettuce leaves in Aquaponic systems, and Shiga Toxin-Producing E. coli can internalize in the lettuce leaves, putting public health at risk. The included studies did not report the presence of V. cholerae in lettuce grown in aquaponic systems, and the use of Bacillus as probiotics to control Escherichia coli and Vibrio Cholerae. Further research is needed to explore the potential of tilapia to act as a source of pathogenic bacteria that can contaminate lettuce, as well as to investigate the effectiveness of Bacillus strains as probiotics to control these bacteria and ensure food safety.
Collapse
Affiliation(s)
- Angélica Adiação Jossefa
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Higher School of Rural Development, Eduardo Mondlane University, Inhambane, Mozambique
| | - Leonildo dos Anjo Viagem
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Food and Agricultural, Rovuma University, Morogoro, Cabo Delgado, Mozambique
| | - Brunno da Silva Cerozi
- Department of Animal Science, College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
11
|
Wu X, Liu H, Han J, Zhou Z, Chen J, Liu X. Introducing Bacillus natto and Propionibacterium shermanii into soymilk fermentation: A promising strategy for quality improvement and bioactive peptide production during in vitro digestion. Food Chem 2024; 455:139585. [PMID: 38850988 DOI: 10.1016/j.foodchem.2024.139585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
Herein, the texture properties, polyphenol contents, and in vitro protein digestion characteristics of soymilk single- or co-fermented by non-typical milk fermenter Bacillus natto (B. natto), Propionibacterium freudenreichii subsp. shermanii (P. shermanii), and traditional milk fermenter were evaluated. Co-fermenting procedure containing B. natto or P. shermanii could raise the amounts of gallic acid, caffeic acid, and GABA when compared to the unfermented soymilk. Co-fermented soymilk has higher in vitro protein digestibility and nutritional protein quality. Through peptidomic analysis, the co-work of P. shermanii and Lactobacillus plantarum (L. plantarum) may release the highest relative percentage of bioactive peptides, while the intervention of B. natto and Streptococcus thermophilus (S. thermophilus) resulted in more differentiated peptides. The multi-functional bioactive peptides were mainly released from glycine-rich protein, β-conglycinin alpha subunit 1, and ACB domain-containing protein. These findings indicated the potential usage of B. natto/S. thermophilus or P. shermanii/L. plantarum in bio-enhanced soymilk fermentation.
Collapse
Affiliation(s)
- Xiaohui Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Honghong Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junqing Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhitong Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Mazhar MU, Naz S, Khan JZ, Khalid S, Ghazanfar S, Selim S, Tipu MK, Ashique S, Yasmin S, Almuhayawi MS, Alshahrani A, Ansari MY. Safety Evaluation and antioxidant potential of new probiotic strain Bacillus subtilis (NMCC-path-14) in Balb/c mice by sub-acute repeated dose toxicity. Heliyon 2024; 10:e38581. [PMID: 39403501 PMCID: PMC11471459 DOI: 10.1016/j.heliyon.2024.e38581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 03/06/2025] Open
Abstract
Probiotics have recently gained significant interest for their possible therapeutic effects in treating numerous health conditions. Probiotics containing Bacillus subtilis have been shown to have several health benefits, most notably in preventing diarrhea and gastrointestinal problems. A novel probiotic strain, Bacillus subtilis (NMCC-path-14), isolated from the rumen of a Nilli Ravi Buffalo, was evaluated for 28-day repeated dose toxicity in Balb/c mice. The NMCC-path-14 in low dose (1 × 108 CFU/ml) and high dose (1 × 1010 CFU/ml) was administered to the mice through gavage regularly. After 28 days of treatment, it was discovered that the no-observed-adverse-effect level (NOAEL) for NMCC-path-14 wasgreater than 1 × 1010 CFU/animal/day. This study also revealed no treatment-related changes in clinical parameters, body weight, gross pathology, or histology. Food consumption, hemoglobin, hematocrit, red blood cell counts, and colon length increased, while total/differential leukocyte count and platelets remained unchanged. The administration of NMCC-path-14 also resulted in decreased bilirubin and creatinine levels. Furthermore, NMCC-path-14 also displayed a promising antioxidant potential by increasing the antioxidant enzymes (GST, GSH, and CAT) and decreasing oxidant enzyme (MDA and NO) levels in vital organs like the liver, kidneys, spleen, and colon. TheNMCC-path-14also decreased the pathogenic bacterial population while increasing the beneficial population. Given the lack of adverse effects observed after NMCC-path-14 treatment, this strain is safe and must be considered as a potential probiotic in humans.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sharjeel Khalid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
13
|
Li Q, Wang Y, Chen C, Zeng M, Jia Q, Ding J, Zhang C, Jiao S, Guo X, Wu J, Fan C, Chen Y, Hu Z. Isolation of a novel Bacillus subtilis HF1 strain that is rich in lipopeptide homologs and has strong effects on the resistance of plant fungi and growth improvement of broilers. Front Microbiol 2024; 15:1433598. [PMID: 39411434 PMCID: PMC11474111 DOI: 10.3389/fmicb.2024.1433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Bacillus subtilis is an important probiotic microorganism that secretes a variety of antimicrobial compounds, including lipopeptides, which are a class of small molecule peptides with important application value in the fields of feed additives, food, biopesticides, biofertilizers, medicine and the biological control of plant diseases. In this study, we isolated a novel B. subtilis HF1 strain that is rich in lipopeptide components and homologs, has a strong antagonistic effect on a variety of plant fungi, and is highly efficient in promoting the growth of broilers. The live B. subtilis HF1 and its fermentation broth without cells showed significant inhibitory effects on 20 species of plant fungi. The crude extracts of lipopeptides in the fermentation supernatant of B. subtilis HF1 were obtained by combining acid precipitation and methanol extraction, and the lipopeptide compositions were analyzed by ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The results showed that HF1 could produce 11 homologs of surfactin and 13 homologs of fengycin. Among the fengycin homologs, C13-C19 fengycin A and C15-C17 fengycin B were identified; among the surfactin homologs, C11-C17 surfactin A and C13-C16 surfactin B were characterized. C13 fengycin A, C11 surfactin A and C17 surfactin A were reported for the first time, and their functions are worthy of further study. In addition, we found that HF1 fermentation broth with and without live cells could be used as a feed additive to promote the growth of broilers by significantly increasing body weight up to 15.84%. HF1 could be a prospective strain for developing a biocontrol agent for plant fungal diseases and an efficient feed additive for green agriculture.
Collapse
Affiliation(s)
- Qianru Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingbai Zeng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyun Jia
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhao Ding
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjian Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shanhai Jiao
- AUSCA Oils and Grains Industries Co., Ltd., Fangchenggang, China
| | - Xupeng Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- The 306th Hospital of PLA, Beijing, China
| | - Chengming Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
15
|
Cui Y, Zhu J, Li P, Guo F, Yang B, Su X, Zhou H, Zhu K, Xu F. Assessment of probiotic Bacillus velezensis supplementation to reduce Campylobacter jejuni colonization in chickens. Poult Sci 2024; 103:103897. [PMID: 38865770 PMCID: PMC11223109 DOI: 10.1016/j.psj.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter jejuni continues to be a major public health issue worldwide. Poultry are recognized as the main reservoir for this foodborne pathogen. Implementing measures to decrease C. jejuni colonization on farms has been regarded as the most effective strategy to control the incidence of campylobacteriosis. The probiotics supplementation has been regarded as an attractive approach against C. jejuni in chickens. Here the inhibitory effects of one probiotic B. velezensis isolate CAU277 against C. jejuni was evaluated in vitro and in vivo. The in vitro antimicrobial activity showed that the supernatant of B. velezensis exhibited the most pronounced inhibitory effects on Campylobacter strains compared to other bacterial species. When co-cultured with B. velezensis, the growth of C. jejuni reduced significantly from 7.46 log10 CFU/mL (24 h) to 1.02 log10 CFU/mL (48 h). Further, the antimicrobial activity of B. velezensis against C. jejuni remained stable under a broad range of temperature, pH, and protease treatments. The in vivo experiments demonstrated that oral administration of B. velezensis significantly reduced the colonization of C. jejuni by 2.0 log10 CFU/g of feces in chicken cecum at 15 d postinoculation. In addition, the supplementary of B. velezensis significantly increased microbial species richness and diversity in chicken ileum, especially enhanced the bacterial population of Alistipes and Christensenellaceae, and decreased the existence of Lachnoclostridium. Our study presents that B. velezensis possesses antimicrobial activities against C. jejuni and promotes microbiota diversity in chicken intestines. These findings indicate a potential to develop an effective probiotic additive to control C. jejuni infection in chicken.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengxiang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
16
|
Yuan C, Ji X, Zhang Y, Liu X, Ding L, Li J, Ren S, Liu F, Chen Z, Zhang L, Zhu W, Yu J, Wu J. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J Microbiol Biotechnol 2024; 40:268. [PMID: 39007987 DOI: 10.1007/s11274-024-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.
Collapse
Affiliation(s)
- Chunmei Yuan
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiang Ji
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xinli Liu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxing Zhu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
17
|
Yin H, Wang C, Shuai Y, Xie Z, Liu J. Pig-Derived Probiotic Bacillus tequilensis YB-2 Alleviates Intestinal Inflammation and Intestinal Barrier Damage in Colitis Mice by Suppressing the TLR4/NF-κB Signaling Pathway. Animals (Basel) 2024; 14:1989. [PMID: 38998101 PMCID: PMC11240761 DOI: 10.3390/ani14131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The search for new probiotics has been regarded as an important approach to improving intestinal health in animals. Bacillus has many advantages, such as strong resistance to harmful external factors, wide distribution, and easy colonization of the intestine. Hence, this study aims to screen for a probiotic Bacillus strain that improves animal intestinal health and to elucidate its probiotic mechanism so as to provide probiotic resources for the development of feed-using probiotic formulations. In this research, a strain of Bacillus was isolated from adult pig feces and named B. tequilensis YB-2. In vitro probiotic experiments showed that B. tequilensis YB-2 had strong acid and bile salt resistance, indicating that this strain can customize in the intestine. To further explore the effect of B. tequilensis YB-2 upon animal intestinal health, DSS-induced murine colitis models were established, and the body weight, colonic morphology, inflammatory cytokines level, and intestinal-barrier- and TLR4/NF-κB-pathway-related protein were determined. The results showed that mice receiving drinking water with 3% DSS were found to develop colitis symptoms, including body weight loss and increased disease activity index (DAI); colon length and microvilli shedding were shortened; tight junctions were disrupted; goblet cells decreased; anti-inflammatory cytokines were inhibited; and pro-inflammatory cytokines and the TLR4/NF-κB signaling pathway were activated. Notably, orally received B. tequilensis YB-2 alleviated symptoms of DSS-induced colitis in mice. The above results indicated that B. tequilensis YB-2 was capable of improving colitis in mice by weakening inflammation and intestinal barrier damage, and its mechanism may involve the TLR4/NF-κB pathway. Overall, this research suggests that B. tequilensis YB-2 has the potential to serve as an animal feed additive to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengbi Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yi Shuai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhuoya Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
18
|
Lin YT, Hung YC, Chen LH, Lee KT, Han YS. Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109556. [PMID: 38608848 DOI: 10.1016/j.fsi.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Japanese eel, Anguilla japonica, holds significant importance in Taiwanese aquaculture. With the intensification of eel farming, the impact of Edwardsiella tarda has become increasingly severe. Consequently, the abusive use of antibiotics has risen. Bacillus subtilis natto NTU-18, a strain of Bacillus with a high survival rate in feed processing, plays a crucial role in promoting intestinal health through competitive rejection, enhancing immune responses against bacterial pathogens, and improving intestinal health by modulating gastrointestinal microbiota to produce beneficial metabolites of mice and grass carp, Ctenopharyngodon idella. This study investigated the effects of different proportions (control, 0.25 %, 0.5 %, 1 %, and 2 %) of B. subtilis natto NTU-18 added to paste feed on the growth performance, intestinal morphology, and microbiota, expression of immune-related genes, and resistance to E. tarda in Japanese glass eel. The results indicated that the growth performance of all groups with B. subtilis natto NTU-18 added was significantly higher than that of the control group and did not impact the villi morphology. The expression of immune-related genes in the kidney, specifically HSP70 and SOD, was significantly higher from 0.5 % and above than the control; however, no significant differences were observed in CAT, POD, and HSP90. In the liver, significant differences were found in HSP70 and IgM above 0.25 % compared to the control group, with no significant differences in SOD, CAT, POD, and HSP90 among all groups. Additionally, intestinal microbiota analysis revealed that the 2 % additional group had significantly lower diversity than other groups, with Cetobacterium as the dominant species. The challenge test observed that the survival rates of the 0.5 % and 1 % groups were significantly higher. This research suggests that adding 0.5 % and 1 % of B. subtilis natto NTU-18 to the diet is beneficial for Japanese glass eel's immunity, growth performance, and disease resistance.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chen Hung
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Liu S, Hu J, Zhong Y, Hu X, Yin J, Xiong T, Nie S, Xie M. A review: Effects of microbial fermentation on the structure and bioactivity of polysaccharides in plant-based foods. Food Chem 2024; 440:137453. [PMID: 38154284 DOI: 10.1016/j.foodchem.2023.137453] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Fermented plant-based foods that catering to consumers' diverse dietary preferences play an important role in promoting human health. Recent exploration of their nutritional value has sparked increasing interest in the structural and bioactive changes of polysaccharides during fermentation, the essential components of plant-based foods which have been extensively studied for their structures and functional properties. Based on the latest key findings, this review summarized the dominant fermented plant-based foods in the market, the involved microbes and plant polysaccharides, and the corresponding modification in polysaccharides structure. Further microbial utilization of these polysaccharides, influencing factors, and the potential contributions of altered structure to the functions of polysaccharides were collectively illustrated. Moreover, future research trend was proposed, focusing on the directional modification of polysaccharides and exploration of the mechanisms underlying structural changes and enhanced biological activity during fermentation.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
20
|
Wen W, Hu M, Gao Y, Zhang P, Meng W, Zhang F, Fan B, Wang F, Li S. Effect of Soy Protein Products on Growth and Metabolism of Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus. Foods 2024; 13:1525. [PMID: 38790825 PMCID: PMC11121397 DOI: 10.3390/foods13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial nitrogen sources are promising, and soy protein as a plant-based nitrogen source has absolute advantages in creating microbial culture medium in terms of renewability, eco-friendliness, and greater safety. Soy protein is rich in variety due to different extraction technologies and significantly different in the cell growth and metabolism of microorganisms as nitrogen source. Therefore, different soy proteins (soy meal powder, SMP; soy peptone, SP; soy protein concentrate, SPC; soy protein isolate, SPI; and soy protein hydrolysate, SPH) were used as nitrogen sources to culture Bacillus subtilis, Streptococcus lactis, and Streptomyces clavuligerus to evaluate the suitable soy nitrogen sources of the above strains. The results showed that B. subtilis had the highest bacteria density in SMP medium; S. lactis had the highest bacteria density in SPI medium; and S. clavuligerus had the highest PMV in SPI medium. Nattokinase activity was the highest in SP medium; the bacteriostatic effect of nisin was the best in SPI medium; and the clavulanic acid concentration was the highest in SMP medium. Based on analyzing the correlation between the nutritional composition and growth metabolism of the strains, the results indicated that the protein content and amino acid composition were the key factors influencing the cell growth and metabolism of the strains. These findings present a new, high-value application opportunity for soybean protein.
Collapse
Affiliation(s)
- Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Weimin Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengxia Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (W.W.); (M.H.); (Y.G.); (P.Z.); (W.M.); (F.Z.); (B.F.)
| |
Collapse
|
21
|
Hazare C, Bhagwat P, Singh S, Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024; 10:e26668. [PMID: 38434287 PMCID: PMC10907686 DOI: 10.1016/j.heliyon.2024.e26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.
Collapse
Affiliation(s)
- Chinmay Hazare
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| |
Collapse
|
22
|
Cao Y, Wang Z, Dai X, Zhang D, Zeng Y, Ni X, Pan K. Evaluation of probiotic properties of a Brevibacillus laterosporus strain. FASEB J 2024; 38:e23530. [PMID: 38466314 DOI: 10.1096/fj.202302408r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.
Collapse
Affiliation(s)
- Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
24
|
Evangelista AG, Nazareth TDM, Luz C, Dopazo V, Moreno A, Riolo M, Meca G, Luciano FB. The Probiotic Potential and Metabolite Characterization of Bioprotective Bacillus and Streptomyces for Applications in Animal Production. Animals (Basel) 2024; 14:388. [PMID: 38338031 PMCID: PMC10854626 DOI: 10.3390/ani14030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Probiotics are increasingly recognized for their potential in managing bacterial challenges in animal production. This study aimed to evaluate the probiotic potential of Bacillus and Streptomyces strains, specifically their bioprotective ability against Salmonella. In agar inhibition assays, these bacteria supported Salmonella-inhibition zones, ranging from 2.5 ± 0.5 to 6.3 ± 2.0 mm. Analyses of antimicrobial metabolites revealed their capacity to produce compounds with anti-Salmonella properties, except for Bacillus subtilis MLB2. When Salmonella was exposed to lyophilized metabolites, inhibition occurred in both liquid (at concentrations between 250 and 500 g/L) and solid cultures (at 500 g/L). To confirm their probiotic potential, the S. griseus and Bacillus strains underwent evaluations for antimicrobial resistance, bile salt tolerance, auto- and co-aggregation, pH resistance, and their ability to adhere to and inhibit Salmonella in Caco-2 cells. These assessments confirmed their probiotic potential. The probiotic strains were further encapsulated and subjected to simulated swine and poultry digestion. They demonstrated survival potential through the gastrointestinal tract and significantly reduced the Salmonella population. Thus, these strains exhibit considerable promise for producing biotechnological products aimed at controlling Salmonella in animal production. This approach ensures the health and hygiene of farming facilities, mitigates the spread of zoonotic bacteria, and contributes positively to public health.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155 Prado Velho, Curitiba 80215-901, PR, Brazil;
| | - Tiago de Melo Nazareth
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155 Prado Velho, Curitiba 80215-901, PR, Brazil;
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Carlos Luz
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Victor Dopazo
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Ana Moreno
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Mario Riolo
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Giuseppe Meca
- Departament Medicina Preventiva i Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100 València, Spain; (C.L.); (V.D.); (A.M.); (M.R.); (G.M.)
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155 Prado Velho, Curitiba 80215-901, PR, Brazil;
| |
Collapse
|
25
|
Herrmann LW, Letti LAJ, Penha RDO, Soccol VT, Rodrigues C, Soccol CR. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnol Adv 2024; 70:108300. [PMID: 38101553 DOI: 10.1016/j.biotechadv.2023.108300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.
Collapse
Affiliation(s)
- Leonardo Wedderhoff Herrmann
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil.
| | - Luiz Alberto Junior Letti
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Rafaela de Oliveira Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Vanete Thomaz Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| |
Collapse
|
26
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Yaderets V, Karpova N, Glagoleva E, Shibaeva A, Dzhavakhiya V. Bacillus subtilis RBT-7/32 and Bacillus licheniformis RBT-11/17 as New Promising Strains for Use in Probiotic Feed Additives. Microorganisms 2023; 11:2729. [PMID: 38004741 PMCID: PMC10672880 DOI: 10.3390/microorganisms11112729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The normal functioning of a gastrointestinal microflora in poultry and livestock is of significant importance, since its imbalance negatively influences an organism's functions. In this study, the UV mutagenesis and selection were used to obtain two Bacillus strains possessing antagonistic activity towards Escherichia coli and Staphylococcus aureus, and their potential as a probiotic feed additive was evaluated. Compared to the parental strains, the ability of B. subtilis RBT-7/32 and B. licheniformis RBT-11/17 strains to suppress E. coli increased by 77 and 63%, respectively; the corresponding ability of these strains to suppress S. aureus increased by 80 and 79%, respectively. RBT-11/17 could not utilize microcrystalline cellulose and carboxymethyl cellulose, whereas cellulolytic activity of RBT-7/32 was doubled compared to the initial strain. The amylolytic activity of new strains was increased by 40%. Cultivation of strains on media containing soybean, pea, and corn meal did not provide any difference in the biomass production compared to the control. The heating of a water suspension of a dried biomass of the strains for 10-20 min at 80 and 100 °C or incubation in water solutions of citric, ascorbic, acetic, and formic acids (pH 3.0) for 3 and 24 h at 40 °C did not provide any negative influence on the spore survivability. Both strains were evaluated for their resistance to a number of veterinary antibiotics. Thus, RBT-7/32 and RBT-11/17 strains have good prospects for use in feed additives.
Collapse
Affiliation(s)
- Vera Yaderets
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| | | | | | | | - Vakhtang Dzhavakhiya
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| |
Collapse
|
28
|
Zhen S, Abdul Rauf Z, Fenfen X, Zhan K, Ruiyu M, Wang Z. Microbial fermentation technology for degradation of saponins from peony seed meal. Prep Biochem Biotechnol 2023; 53:1263-1275. [PMID: 36927259 DOI: 10.1080/10826068.2023.2188408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Peony seed meal is a very important feed protein raw material with a high potential for development; however, the presence of some anti-nutritional factors, such as saponins, reduces its reusability. This study aimed to establish ideal microbial fermentation conditions for the degradation of saponins in peony seed meal for its subsequent use in poultry feed. First, saponins were extracted via two methods: ethanol extraction and reflux. Then, response surface methodology and orthogonal array testing were used to establish the optimal conditions for the degradation of saponins by (a) liquid fermentation of single bacteria, (b) liquid fermentation of compound bacteria, and (c) solid-state fermentation. The degradation efficiencies were 40.21% (±1.62), 59.82% (±1.54), and 69.31% (±2.95), respectively. The maximum degradation was obtained via solid-state fermentation, and the soluble protein content for this fermentation product was found to be 14% higher than that of unfermented peony seed meal.
Collapse
Affiliation(s)
- Sun Zhen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Zirwa Abdul Rauf
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiao Fenfen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ma Ruiyu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zaigui Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
29
|
Biermann R, Beutel S. Endospore production of Bacillus spp. for industrial use. Eng Life Sci 2023; 23:e2300013. [PMID: 37970521 PMCID: PMC10630785 DOI: 10.1002/elsc.202300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.
Collapse
Affiliation(s)
- Riekje Biermann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
30
|
Jia P, Dong LF, Tu Y, Diao QY. Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows. MICROBIOME 2023; 11:229. [PMID: 37858227 PMCID: PMC10585854 DOI: 10.1186/s40168-023-01654-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Ruminant livestock production is a considerable source of enteric methane (CH4) emissions. In a previous study, we found that dietary inclusions of Bacillus subtilis (BS) and Macleaya cordata extract (MCE) increased dry matter intake and milk production, while reduced enteric CH4 emission in dairy cows. The objective of this study was to further elucidate the impact of feeding BS and MCE on rumen methanogenesis in dairy cows using rumen metagenomics techniques. RESULTS Sixty dairy cows were blocked in 20 groups of 3 cows accordingly to their live weight, milk yield, and days in milk, and within each group, the 3 cows were randomly allocated to 1 of 3 treatments: control diet (CON), control diet plus BS (BS), and control diet plus MCE (MCE). After 75 days of feeding experimental diets, 12 cows were selected from each treatment for collection of rumen samples for the metagenomic sequencing. Results showed that BS decreased ruminal acetate and butyrate, while increased propionate concentrations, resulting in decreased acetate:propionate ratio. The metagenomics analysis revealed that MCE reduced relative abundances of Methanobrevibacter wolinii, Methanobrevibacter sp. AbM4, Candidatus Methanomassiliicoccus intestinalis, Methanobrevibacter cuticularis, Methanomicrobium mobile, Methanobacterium formicicum, and Methanobacterium congolense. Both BS and MCE reduced relative abundances of Methanosphaera sp. WGK6 and Methanosphaera stadtmanae. The co-occurrence network analysis of rumen bacteria and archaea revealed that dietary treatments influenced microbial interaction patterns, with BS and MCE cows having more and stronger associations than CON cows. The random forest and heatmaps analysis demonstrated that the Halopenitus persicus was positively correlated with fat- and protein-corrected milk yield; Clostridium sp. CAG 269, Clostridium sp. 27 14, Haloarcula rubripromontorii, and Methanobrevibacter curvatus were negatively correlated with rumen acetate and butyrate concentrations, and acetate:propionate ratio, whereas Selenomonas rumiantium was positively correlated with those variables. CONCLUSIONS The present results provided new information for mitigation of enteric methane emissions of dairy cows by feeding BS and MCE to influence rumen microbial activities. This fundamental knowledge is essential for developing enteric CH4 reduction strategies to mitigate climate change and reduce dietary energy waste. Video Abstract.
Collapse
Affiliation(s)
- Peng Jia
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Li-Feng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Yan Tu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Qi-Yu Diao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
31
|
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023; 13:1515. [PMID: 37892197 PMCID: PMC10604914 DOI: 10.3390/biom13101515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.
Collapse
Affiliation(s)
- Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Ninganagouda R. Patil
- Department of Physics, B. V Bhoomaraddi College of Engineering and Technology, Hubballi 580031, Karnataka, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
32
|
Liu C, Ma N, Feng Y, Zhou M, Li H, Zhang X, Ma X. From probiotics to postbiotics: Concepts and applications. ANIMAL RESEARCH AND ONE HEALTH 2023; 1:92-114. [DOI: 10.1002/aro2.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent years, the important role of gut microbiota in promoting animal health and regulating immune function in livestock and poultry has been widely reported. The issue of animal health problems causes significant economic losses each year. Probiotics and postbiotics have been widely developed as additives due to their beneficial effects in balancing host gut microbiota, enhancing intestinal epithelial barrier, regulating immunity, and whole‐body metabolism. Probiotics and postbiotics are composed of complex ingredients, with different components and compositions having different effects, requiring classification for discussing their mechanisms of action. Probiotics and postbiotics have considerable prospects in preventing various diseases in the livestock industry and animal feed and medical applications. This review highlights the application value of probiotics and postbiotics as potential probiotic products, emphasizing their concept, mechanism of action, and application, to improve the productivity of livestock and poultry.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Huahui Li
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xiujun Zhang
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
33
|
Yuan S, Sun Y, Chang W, Zhang J, Sang J, Zhao J, Song M, Qiao Y, Zhang C, Zhu M, Tang Y, Lou H. The silkworm (Bombyx mori) gut microbiota is involved in metabolic detoxification by glucosylation of plant toxins. Commun Biol 2023; 6:790. [PMID: 37516758 PMCID: PMC10387059 DOI: 10.1038/s42003-023-05150-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Herbivores have evolved the ability to detoxify feed components through different mechanisms. The oligophagous silkworm feeds on Cudrania tricuspidata leaves (CTLs) instead of mulberry leaves for the purpose of producing special, high-quality silk. However, CTL-fed silkworms are found to have smaller bodies, slower growth and lower silk production than those fed mulberry leaves. Here, we show that the high content of prenylated isoflavones (PIFs) that occurred in CTLs is converted into glycosylated derivatives (GPIFs) in silkworm faeces through the silkworm gut microbiota, and this biotransformation is the key process in PIFs detoxification because GPIFs are found to be much less toxic, as revealed both in vitro and in vivo. Additionally, adding Bacillus subtilis as a probiotic to remodel the gut microbiota could beneficially promote silkworm growth and development. Consequently, this study provides meaningful guidance for silk production by improving the adaptability of CTL-fed silkworms.
Collapse
Affiliation(s)
- Shuangzhi Yuan
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yong Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Wenqiang Chang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Jifa Sang
- Linyi University, Yishui, Linyi, 276400, P. R. China
| | - Jiachun Zhao
- Linyi University, Yishui, Linyi, 276400, P. R. China
| | - Minghui Song
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yanan Qiao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Chunyang Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Mingzhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology of the Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China.
| |
Collapse
|
34
|
Wang C, Chen J, Tian W, Han Y, Xu X, Ren T, Tian C, Chen C. Natto: A medicinal and edible food with health function. CHINESE HERBAL MEDICINES 2023; 15:349-359. [PMID: 37538862 PMCID: PMC10394349 DOI: 10.1016/j.chmed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 08/05/2023] Open
Abstract
Natto is a soybean product fermented by natto bacteria. It is rich in a variety of amino acids, vitamins, proteins and active enzymes. It has a number of biological activities, such as thrombolysis, prevention of osteoporosis, antibacterial, anticancer, antioxidant and so on. It is widely used in medicine, health-care food, biocatalysis and other fields. Natto is rich in many pharmacological active substances and has significant medicinal research value. This paper summarizes the pharmacological activities and applications of natto in and outside China, so as to provide references for further research and development of natto.
Collapse
Affiliation(s)
- Chunfang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Jinpeng Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Wenguo Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Yanqi Han
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Xu Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Tao Ren
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Chengwang Tian
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Changqing Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| |
Collapse
|
35
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
36
|
Pramanik S, Venkatraman S, Karthik P, Vaidyanathan VK. A systematic review on selection characterization and implementation of probiotics in human health. Food Sci Biotechnol 2023; 32:423-440. [PMID: 36911328 PMCID: PMC9992678 DOI: 10.1007/s10068-022-01210-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues. The global probiotics market has been incrementally growing in recent years, as consumers' demand for healthy diets and wellness has continued to increase. This has prompted the food industry to develop new probiotic-containing food products, as well as researchers to explore their specific characteristics and impacts on human health. Although most probiotics are fastidious microorganisms that are nutritionally demanding and sensitive to environmental conditions, they become less viable as they are processed and stored. In this review we studied the current literature on the fundamental idea of probiotic bacteria, their medical benefits, and their selection, characterization, and implementations. Graphical Abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Pothiyappan Karthik
- Department of Food Biotechnology, Karpagam Academic of Higher Education, Coimbatore, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| |
Collapse
|
37
|
Probiotic Properties of Exopolysaccharide-Producing Bacteria from Natto. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:3298723. [PMID: 36762123 PMCID: PMC9904927 DOI: 10.1155/2023/3298723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Natto is a traditional Japanese food made from soybeans fermented with Bacillus subtilis var. natto. It is also a famous food in Thailand. Potential probiotics were screened from natto. Bacillus subtilis strain VN5 produced the most quantity of exopolysaccharide (EPS), so it was selected to study the properties of microbial EPS and probiotics. The Fourier transform infrared spectrometer or FT-IR spectroscopy confirmed the presence of carboxyl and hydroxyl groups. The patterns of FT-IR and levans are similar. The basic properties of probiotics were revealed. The 90% of VN5 strain resisted lysozyme within 30 min. VN5 survived under acidic conditions (pH 1-6), and the survival rate in 0.3%, 0.5%, and 1% bile solutions for 24 h was 100%. Unfortunately, VN5 did not inhibit the growth of Escherichia coli, Staphylococcus aureus, and Salmonella typhi. Gamma hemolysis was determined in VN5 strain. The finding on Bacillus subtilis strain (VN5) from natto paves the way to a high potential, useful new strain of probiotics.
Collapse
|
38
|
Zhang Z, Liang L, Li D, Li Y, Sun Q, Li Y, Yang H. Bacillus subtilis phage phi18: genomic analysis and receptor identification. Arch Virol 2023; 168:17. [PMID: 36593367 DOI: 10.1007/s00705-022-05686-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023]
Abstract
Bacillus subtilis strains play a pivotal role in the fermentation industry. B. subtilis phages can cause severe damage by infecting bacterial cells used in industrial fermentation processes. In this work, we isolated and characterized a Bacillus subtilis-infecting phage, termed phi18. Transmission electron microscopy revealed that phage phi18 particles have typical myovirus morphology, with an icosahedral head connected to a contractile tail. Genomic analysis revealed that the phage genome is a linear double-stranded DNA molecule of 147,298 bp with terminal redundancy of 14,434 bp, and 226 protein coding genes and four tRNA genes were predicted in the genome. Phage-resistant mutants were selected from a mariner transposon-insertion library of B. subtilis 168 in which two bacterial genes, tagE and pgcA, which are required for the glycosylation of wall teichoic acid (WTA), were found to be disrupted, suggesting that WTA is the receptor for phage phi18. Comparative genomic analysis showed that phage phi18 is a new member of the genus Okubovirus of the family Herelleviridae. Finally, general characteristics of the phage-resistant mutants, including biofilm formation, growth, and sporulation, were examined. The results showed that the phage-resistant mutants grew as rapidly as the parental strain B. subtilis 168 at 42 °C, suggesting that these phage-resistant mutants may be used as starters in fermentation processes.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li Liang
- Shandong Vland Biotech Co., Ltd, Shandong, 251700, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yutong Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qinghui Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Hainan, 571199, China
| | - Ye Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Hainan University, Hainan, 571199, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
39
|
Liu J, Ma X, Zhuo Y, Xu S, Hua L, Li J, Feng B, Fang Z, Jiang X, Che L, Zhu Z, Lin Y, Wu D. The Effects of Bacillus subtilis QST713 and β-mannanase on growth performance, intestinal barrier function, and the gut microbiota in weaned piglets. J Anim Sci 2023; 101:skad257. [PMID: 37583344 PMCID: PMC10449409 DOI: 10.1093/jas/skad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
We investigated the effects of different Bacillus subtilis QST713 doses and a B. subtilis QST713 and β-mannanase mix on growth performance, intestinal barrier function, and gut microbiota in weaned piglets. In total, 320 healthy piglets were randomly assigned to four groups: 1) control group (basal diet), 2) BS100 group (basal diet plus 100 mg/kg B. subtilis QST713), 3) BS200 group (basal diet plus 200 mg/kg B. subtilis QST713), and 4) a BS100XT group (basal diet plus 100 mg/kg B. subtilis QST713 and 150 mg/kg β-mannanase). The study duration was 42 d. We showed that feed intake in weaned piglets on days 1 to 21 was increased in group BS100 (P < 0.05), and that the feed conversion ratio in group BS100XT animals decreased throughout the study (P < 0.05). In terms of microbial counts, the BS100XT group showed reduced Escherichia coli and Clostridium perfringens numbers on day 21 (P < 0.05). Moreover, no significant α-diversity differences were observed across all groups during the study (P > 0.05). However, principal coordinates analysis indicated clear separations in bacterial community structures across groups (analysis of similarities: P < 0.05) on days 21 and 42. Additionally, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression in piglet feces increased (P < 0.05) by adding B. subtilis QST713 and β-mannanase to diets. Notably, this addition decreased short-chain fatty acid concentrations. In conclusion, B. subtilis QST713 addition or combined B. subtilis QST713 plus β-mannanase effectively improved growth performance, intestinal barrier function, and microbial balance in weaned piglets.
Collapse
Affiliation(s)
- Junchen Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangyuan Ma
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zeyuan Zhu
- Elanco Animal Health, Mutiara Damansara, Selangor, Malaysia
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
40
|
Kim SH, Yehuala GA, Bang WY, Yang J, Jung YH, Park MK. Safety Evaluation of Bacillus subtilis IDCC1101, Newly Isolated from Cheonggukjang, for Industrial Applications. Microorganisms 2022; 10:microorganisms10122494. [PMID: 36557747 PMCID: PMC9784242 DOI: 10.3390/microorganisms10122494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate the safety of Bacillus subtilis (BS) IDCC1101, newly isolated from Cheonggukjang in Korea. Genome sequencing of BS IDCC1101 was performed to investigate the presence of secondary metabolites, virulence, antibiotic resistance, and mobile elements. Its phenotypic safety analyses included antibiotic susceptibility, enzyme activity, carbohydrate utilization, production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and toxicities in HaCaT cells and rats. The genome of BS IDCC1101 consisted of 4,118,950 bp with 3077 functional genes. Among them, antimicrobial and antifungal secondary metabolites were found, such as fengycin, bacillibactin, and bacilysin. Antibiotic resistance and virulence genes did not exhibit transferability since they did not overlap with mobile elements in the genome. BS IDCC1101 was susceptible to almost all antibiotics suggested for assessment of BS's antibiotic susceptibility by EFSA guidelines, except for streptomycin. BS IDCC1101 showed the utilization of a wide range of 27 carbohydrates, as well as enzyme activities such as alkaline phosphatase, esterase, esterase lipase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, and β-glucosidase activities. Additionally, BS IDCC1101 did not exhibit the production of D-/L-lactate and hemolytic activities. Its toxicity in HaCaT cells and rats was also not detected. Thus, these genotypic and phenotypic findings indicate that BS IDCC1101 can be safely used for industrial applications.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gashaw Assefa Yehuala
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Food Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-5776
| |
Collapse
|
41
|
Jia P, Tu Y, Liu Z, Li F, Yan T, Ma S, Dong L, Diao Q. Diets supplementation with Bacillus subtilis and Macleaya cordata extract improve production performance and the metabolism of energy and nitrogen, while reduce enteric methane emissions in dairy cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhang B, Peng C, Lu J, Hu X, Ren L. Enhancing menaquinone-7 biosynthesis by adaptive evolution of Bacillus natto through chemical modulator. BIORESOUR BIOPROCESS 2022; 9:120. [PMID: 38647796 PMCID: PMC10992315 DOI: 10.1186/s40643-022-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Menaquinone-7 (MK-7) is a kind of vitamin K2 playing an important role in the treatment and prevention of cardiovascular disease, osteoporosis and arterial calcification. The purpose of this study is to establish an adaptive evolution strategy based on a chemical modulator to improve MK-7 biosynthesis in Bacillus natto. The inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase), glyphosate, was chosen as the chemical modulator to perform the experiments. The final strain ALE-25-40, which was obtained after 40 cycles in 25 mmol/L glyphosate, showed a maximal MK-7 titer of 62 mg/L and MK-7 productivity of 0.42 mg/(L h), representing 2.5 and 3 times the original strain, respectively. Moreover, ALE-25-40 generated fewer spores and showed a higher NADH and redox potential. Furthermore, the mechanism related to the improved performance of ALE-25-40 was investigated by comparative transcriptomics analysis. Genes related to the sporation formation were down-regulated. In addition, several genes related to NADH formation were also up-regulated. This strategy proposed here may provide a new and alternative directive for the industrial production of vitamin K2.
Collapse
Affiliation(s)
- Bei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Cheng Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jianyao Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co., Ltd., No. 1288, Huateng Road, Shanghai, 201700, China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
43
|
Zhang Y, Wang C, Su W, Jiang Z, He H, Gong T, Kai L, Xu H, Wang Y, Lu Z. Co-fermented yellow wine lees by Bacillus subtilis and Enterococcus faecium regulates growth performance and gut microbiota in finishing pigs. Front Microbiol 2022; 13:1003498. [PMID: 36338073 PMCID: PMC9633856 DOI: 10.3389/fmicb.2022.1003498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 10/05/2023] Open
Abstract
Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and improve pig performance. Based on the preparation of co-FYWL using Bacillus subtilis and Enterococcus faecalis, the purpose of this study was to investigate the effects of co-FYWL on growth performance, gut microbiota, meat quality, and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed that the 8% FYWL group significantly reduced the F/G and increased the average daily weight gain of pigs compared to the control group. In addition, 8% FYWL improved the richness of Lactobacillus and B. subtilis in the gut, which correlated with growth performance, serum immune parameters, and meat quality. Furthermore, acetate and butyrate in the feces were improved in the FYWL group. Simultaneously, FYWL improved the volatile flavor substances of meat, increased the content of flavor amino acids, and played a positive role in the palatability of meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, the growth performance, the gut microbiota associated with fiber degradation, meat quality, and immune status were improved in the 8% FYWL group.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zipeng Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan He
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Gong
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lixia Kai
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangen Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Zhang L, Wu JL, Xu P, Guo S, Zhou T, Li N. Soy protein degradation drives diversity of amino-containing compounds via Bacillus subtilis natto fermentation. Food Chem 2022; 388:133034. [PMID: 35483288 DOI: 10.1016/j.foodchem.2022.133034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Food fermentation has been playing an important role in producing bioactive components (e.g., peptides), which exert many healthy effects. In this study, it was observed that natto possessed significantly higher angiotensin I-converting enzyme (ACE) inhibitory effect than soybean. Meanwhile, a total of 246 amino-containing compounds were identified via LC-Q-TOF-MS/MS, including amino acids, dipeptides, tripeptides, O-methyl-peptide, and biogenic amines, 187 of them were only detected in natto. Of the list, dipeptides, with ACE inhibitory abilities or potentials, were found to be the most significantly up-regulated class and positively correlated with significantly increased ACE inhibitory activity of natto. Moreover, dynamic profiling elucidated the increased dipeptides were generated from water soluble and insoluble protein via Bacillus subtilis natto fermentation. Taken together, this study enriches the chemical diversity of natto and provides an in-depth insight into the degradation mechanism of soy protein during natto fermentation, which can be extended to other functional foods.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| | - Pan Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Zhou
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
45
|
Shehata AM, Paswan VK, Attia YA, Abougabal MS, Khamis T, Alqosaibi AI, Alnamshan MM, Elmazoudy R, Abaza MA, Salama EAA, El-Saadony MT, Saad AM, Abdel-Moneim AME. In ovo Inoculation of Bacillus subtilis and Raffinose Affects Growth Performance, Cecal Microbiota, Volatile Fatty Acid, Ileal Morphology and Gene Expression, and Sustainability of Broiler Chickens ( Gallus gallus). Front Nutr 2022; 9:903847. [PMID: 35711554 PMCID: PMC9194610 DOI: 10.3389/fnut.2022.903847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Banning antibiotic growth promoters has negatively impacted poultry production and sustainability, which led to exploring efficient alternatives such as probiotics, probiotics, and synbiotics. Effect of in ovo injection of Bacillus subtilis, raffinose, and their synbiotics on growth performance, cecal microbial population and volatile fatty acid concentration, ileal histomorphology, and ileal gene expression was investigated in broilers (Gallus gallus) raised for 21 days. On 300 h of incubation, a total of 1,500 embryonated eggs were equally allotted into 10 groups. The first was non-injected (NC) and the remaining in ovo injected with sterile distilled water (PC), B. subtilis 4 × 105 and 4 × 106 CFU (BS1 and BS2), Raffinose 2 and 3 mg (R1 and R2), B. subtilis 4 × 105 CFU + raffinose 2 mg (BS1R1), B. subtilis 4 × 105 CFU + raffinose 3 mg (BS1R2), B. subtilis 4 × 106 CFU + raffinose 2 mg (BS2R1), and B. subtilis 4 × 106 CFU + raffinose 3 mg (BS2R2). At hatch, 60 chicks from each group were randomly chosen, divided into groups of 6 replicates (10 birds/replicate), and fed with a corn–soybean-based diet. In ovo inoculation of B. subtilis and raffinose alone or combinations significantly improved body weight, feed intake, and feed conversion ratio of 21-day-old broilers compared to NC. Cecal concentrations of butyric, pentanoic, propionic, and isobutyric acids were significantly elevated in R1, R2, BS2R1, and BS2R2, whereas isovaleric and acetic acids were significantly increased in R1 and BS2R1 compared to NC. Cecal microbial population was significantly altered in treated groups. Ileal villus height was increased (p < 0.001) in BS1, R2, and BS2R2 compared to NC. The mRNA expression of mucin-2 was upregulated (p < 0.05) in synbiotic groups except for BS1R1. Vascular endothelial growth factor (VEGF) expression was increased (p < 0.05) in BS2, R1, BS1R1, and BS1R2 compared to NC. SGLT-1 expression was upregulated (p < 0.05) in all treated birds except those of R1 group compared to NC. The mRNA expressions of interleukin (IL)-2 and toll-like receptor (TLR)-4 were downregulated (p < 0.05) in BS2 and R1 for IL-2 and BS1R1 and BS2R2 for TLR-4. It was concluded that in ovo B. subtilis, raffinose, and synbiotics positively affected growth performance, cecal microbiota, gut health, immune responses, and thus the sustainability of production in 21-day-old broilers.
Collapse
Affiliation(s)
- Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.,Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Youssef A Attia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.,Sustainable Agriculture Research Group, Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Sh Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany I Alqosaibi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mashael M Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A Abaza
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
46
|
Influence of Bacillus Subtilis Fermentation on Content of Selected Macronutrients in Seeds and Beans. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In this study, five plant matrices (pea, mung bean, lentils, soy and sunflower) were fermented using Bacillus subtilis var. natto. Then the process influence on the content of fatty acids and proteins was evaluated, depending on the fermentation length. Fermentation was conducted for 144 hours in controlled conditions of temperature and relative humidity (37°C, 75%). Samples for tests were collected every 24 hours. Gas chromatography coupled with triple quadrupole tandem mass spectrometry (GC-MS/MS) was used to evaluate fatty acids content in fermented seeds. Their composition was expressed as a percentage of the total quantity of fatty acids. The protein content in plant matrices was analysed with the modified Bradford protein assay, using the TECAN apparatus with the i-Control software, of the wave length of ʎ=595 nm. Studies showed that the prolonged fermentation time influenced an increase of polyunsaturated fatty acids (PUFA) content in all studied seeds. Promising results were obtained for soy, sunflower, and lentil seeds, amounting to 3.6%; 68.7% and 67.7%, respectively. This proves that the process of seed fermentation can be effectively used to increase their nutritional value.
Collapse
|
47
|
Kober AKMH, Riaz Rajoka MS, Mehwish HM, Villena J, Kitazawa H. Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms 2022; 10:microorganisms10020388. [PMID: 35208843 PMCID: PMC8878146 DOI: 10.3390/microorganisms10020388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the use of probiotics as feed supplements in animal production has increased considerably due to the ban on antibiotic growth promoters in livestock. This review provides an overview of the current situation, limitation, and prospects for probiotic formulations applied to livestock. Recently, the use of probiotics in livestock has been suggested to significantly improve their health, immunity, growth performance, nutritional digestibility, and intestinal microbial balance. Furthermore, it was reported that the use of probiotics in animals was helpful in equilibrating their beneficial microbial population and microbial turnover via stimulating the host immune response through specific secretions and competitive exclusion of potentially pathogenic bacteria in the digestive tract. Recently, there has been great interest in the understanding of probiotics targeted diet and its ability to compete with harmful microbes and acquire their niches. Therefore, the present review explores the most commonly used probiotic formulations in livestock feed and their effect on animal health. In summary, this article provides an in-depth knowledge about the formulation of probiotics as a step toward a better alternative to antibiotic healthy growth strategies.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hafiza Mahreen Mehwish
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina;
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| |
Collapse
|
48
|
Optimization of Soybean Meal Fermentation for Aqua-Feed with Bacillus subtilis natto Using the Response Surface Methodology. FERMENTATION 2021. [DOI: 10.3390/fermentation7040306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study aimed to improve the nutritional value of soybean meal (SBM) by solid-state fermentation (SSF) using Bacillus subtilis natto (B. s. natto) to overcome the limitations of SBM usage in aquafeed. The response surface methodology (RSM) was employed to explore the relationships of fermentation conditions, such as temperature, time, water-substrate ratio, and layer thickness, on the degree of protein hydrolysis (DH) and the crude protein (CP) content. The optimum conditions for achieving the higher DH (15.96%) and CP (55.76%) were 43.82 °C, 62.32 h, 1.08 of water-substrate ratio, and a layer thickness of 2.02 cm. CP and DH in the fermented soybean meal (FSM) increased by 9.8% and 177.1%, respectively, and crude fiber decreased by 14.1% compared to SBM. The protein dispersibility index (PDI) decreased by 29.8%, while KOH protein solubility (KPS) was significantly increased by 17.4%. Flavonoids and total phenolic acid content in FSM were increased by 231.0% and 309.4%, respectively. Neutral protease activity (NPA) also reached a high level (1723.6 U g−1). Total essential amino acids (EAA) in FSM increased by 12.2%, higher than the 10.8% increase of total non-essential amino acids (NEAA), while the total free amino acids content was 12.76 times higher than that of SBM. Major anti-nutritional factors in SBM were significantly reduced during the process, and almost all SBM protein macromolecules were decomposed. Together with the cost-effectiveness of SSF, B. s. natto-fermented SBM products have great potential to improve the plant composition and replace high-cost ingredients in aquafeed, contributing to food security and environmental sustainability.
Collapse
|
49
|
Hosaka Y, Itoh K, Matsutani S, Kawate S, Miura A, Mizoura Y, Yamada S, Konno H, Grave E, Nagata K, Wakui H, Itoh H. Fermented food Tempeh induces interleukin 12 and enhances macrophage phagocytosis. J Food Biochem 2021; 45:e13958. [PMID: 34611901 DOI: 10.1111/jfbc.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/20/2023]
Abstract
It is known that lactic acid bacteria induce the IL-12. The IL-12 activates NK cells and promotes the production of IFN-γ. The IFN-γ activates macrophages resulting in enhanced phagocytosis and bactericidal activity. We have been investigating fermented foods that activate the immune function. In this study, we investigated the IL-12 inducibility of fermented foods using the specific antibody. Fermented soybean foods such as Tempeh and Natto are attracting attention in terms of nutrition, functionality, and food problems. In this study, Tempeh induced 1,080 µg/ml of IL-12, and IFN-γ associated with the induction of IL-12 was also induced at 682 µg/ml. This was more than twice the induced intensity of PBS. On the contrary, Natto hardly induced IL-12 and IFN-γ. Tempeh also accelerated phagocytosis of the macrophage THP-1 cells. In this study, it was found that the fermented soybean-derived food, Tempeh, has a function of activating the immune function. This is the first report that Tempeh activates innate immunity. PRACTICAL APPLICATIONS: Tempeh, a fermented soybean food induced the IL-12 and IFN-γ production and the increase of macrophage phagocytosis in this study suggested a new function to enhance immunity. Tempeh is also expected to be effective in preventing lifestyle diseases. Fermented soybean products of Tempeh was considered to be a very useful health food for the problems of modern society such as maintaining health by eating, improving immunity, and ingesting vegetable protein due to diversifying food.
Collapse
Affiliation(s)
- Yoshihito Hosaka
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan.,Akita Konno Co., Ltd., Akita, Japan
| | - Kei Itoh
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Shun Matsutani
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Shinya Kawate
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Atsuko Miura
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Yukaze Mizoura
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Sayumi Yamada
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | | | - Ewa Grave
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, Berglund B, Xiao H, Li L, Yao M. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr 2021; 63:1037-1054. [PMID: 34323634 DOI: 10.1080/10408398.2021.1958744] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|