1
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
2
|
Banico EC, Sira EMJS, Fajardo LE, Dulay ANG, Odchimar NMO, Simbulan AM, Orosco FL. Advancing one health vaccination: In silico design and evaluation of a multi-epitope subunit vaccine against Nipah virus for cross-species immunization using immunoinformatics and molecular modeling. PLoS One 2024; 19:e0310703. [PMID: 39325755 PMCID: PMC11426463 DOI: 10.1371/journal.pone.0310703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The resurgence of the Nipah virus (NiV) in 2023 has raised concerns for another potentially severe pandemic, given its history of high mortality from previous outbreaks. Unfortunately, no therapeutics and vaccines have been available for the virus. This study used immunoinformatics and molecular modeling to design and evaluate a multi-epitope subunit vaccine targeting NiV. The designed vaccine construct aims to stimulate immune responses in humans and two other intermediate animal hosts of the virus-swine and equine. Using several epitope prediction tools, ten peptides that induced B-lymphocyte responses, 17 peptides that induced cytotoxic T-lymphocyte (CTL) responses, and 12 peptides that induced helper T-lymphocyte (HTL) responses were mapped from nine NiV protein sequences. However, the CTL and HTL-inducing peptides were reduced to ten and eight, respectively, following molecular docking and dynamics. These screened peptides exhibited stability with 30 common major histocompatibility complex (MHC) receptors found in humans, swine, and equine. All peptides were linked using peptide linkers to form the multi-epitope construct and various adjuvants were tested to enhance its immunogenicity. The vaccine construct with resuscitation-promoting factor E (RpfE) adjuvant was selected as the final design based on its favorable physicochemical properties and superior immune response profile. Molecular docking was used to visualize the interaction of the vaccine to toll-like receptor 4 (TLR4), while molecular dynamics confirmed the structural stability of this interaction. Physicochemical property evaluation and computational simulations showed that the designed vaccine construct exhibited favorable properties and elicited higher antibody titers than the six multi-epitope NiV vaccine designs available in the literature. Further in vivo and in vitro experiments are necessary to validate the immunogenicity conferred by the designed vaccine construct and its epitope components. This study demonstrates the capability of computational methodologies in rational vaccine design and highlights the potential of cross-species vaccination strategies for mitigating potential NiV threats.
Collapse
Affiliation(s)
- Edward Coralde Banico
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Ella Mae Joy Sinco Sira
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Lauren Emily Fajardo
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Albert Neil Gura Dulay
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Nyzar Mabeth Obenio Odchimar
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Alea Maurice Simbulan
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
| | - Fredmoore Legaspi Orosco
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Development Technology Institute, Taguig City, Metro Manila, Philippines
- Department of Science and Technology, S&T Fellows Program, Taguig City, Metro Manila, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila City, Metro Manila, Philippines
| |
Collapse
|
3
|
Das T, Datta S, Sen A. Revolutionizing Nipah virus vaccinology: insights into subunit vaccine development strategies and immunological advances. In Silico Pharmacol 2024; 12:69. [PMID: 39070666 PMCID: PMC11282045 DOI: 10.1007/s40203-024-00246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV), a zoonotic virus in the Henipavirus genus of the Paramyxoviridae family, emerged in Malaysia in 1998 and later spread globally. Diseased patients may have a 40- 70% chance of fatality depending on the severity and early medication. The recent outbreak of NiV was reported in Kerala (India) by a new strain of MCL-19-H-1134 isolate. Currently, no vaccines are available, highlighting the critical need for a conclusive remedy. Our study aims to develop a subunit vaccine against the NiV by analyzing its proteome. NiV genome and proteome sequences were obtained from the NCBI database. A phylogenetic tree was constructed based on genome alignment. T-cell, helper T-cell, and B-cell epitopes were predicted from the protein sequences using NetCTL-1.2, NetMHCIIPan-4.1, and IEDB servers, respectively. High-affinity epitopes for human receptors were selected to construct a multi-epitope vaccine (MEV). These epitopes' antigenicity, toxicity, and allergenicity were evaluated using VaxiJen, AllergenFP-v.1.0, and AllergenFP algorithms. Molecular interactions with specific receptors were analyzed using PyRx and ClusPro. Amino acid interactions were visualized and analyzed using PyMOL and LigPlot. Immuno-simulation was conducted using C-ImmSim to assess the immune response elicited by the MEV. Finally, the vaccine cDNA was inserted into the pET28a(+) expression vector using SnapGene tool for in silico cloning in an E. coli host. The potential for an imminent outbreak cannot be overlooked. A subunit vaccine is more cost-effective and time-efficient. With additional in vitro and in vivo validation, this vaccine could become a superior preventive measure against NiV disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00246-9.
Collapse
Affiliation(s)
- Tapas Das
- Department of Botany, University of North Bengal, Siliguri, India
| | - Sutapa Datta
- Department of Botany, University of North Bengal, Siliguri, India
| | - Arnab Sen
- Department of Botany, University of North Bengal, Siliguri, India
- Bioinformatics Facility Centre, University of North Bengal, Siliguri, India
- Biswa Bangla Genome Centre, University of North Bengal, Siliguri, India
| |
Collapse
|
4
|
Kaur B, Karnwal A, Bansal A, Malik T. An Immunoinformatic-Based In Silico Identification on the Creation of a Multiepitope-Based Vaccination Against the Nipah Virus. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4066641. [PMID: 38962403 PMCID: PMC11221950 DOI: 10.1155/2024/4066641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.
Collapse
Affiliation(s)
- Beant Kaur
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Arun Karnwal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Anu Bansal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma University, Jimma, Ethiopia
| |
Collapse
|
5
|
Mahnoor I, Shabbir H, Nawaz S, Aziz K, Aziz U, Khalid K, Irum S, Andleeb S. Characterization of exclusively non-commensal Neisseria gonorrhoeae pangenome to prioritize globally conserved and thermodynamically stable vaccine candidates using immune-molecular dynamic simulations. Microb Pathog 2023; 185:106439. [PMID: 37944674 DOI: 10.1016/j.micpath.2023.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Neisseria gonorrhoeae (Ngo) has emerged as a global threat leading to one of the most common sexually transmitted diseases in the world. It has also become one of the leading antimicrobial resistant organisms, resulting in fewer treatment options and an increased morbidity. Therefore, in recent years, there has been an increased focus on the development of new treatments and preventive strategies to combat its infection. In this study, we have combined the most conserved epitopes from the completely assembled strains of Ngo to develop a universal and a thermodynamically stable vaccine candidate. For our vaccine design, the epitopes were selected for their high immunogenicity, non-allergenicity and non-cytotoxicity, making them the ideal candidates for vaccine development. For the screening process, several reverse vaccinology tools were employed to rigorously extract non-homologous and immunogenic epitopes from the selected proteins. Consequently, a total number of 3 B-cell epitopes and 6 T-cell epitopes were selected and joined by multiple immune-modulating adjuvants and linkers to generate a promiscuous immune response. Additionally, the stability and flexible nature of the vaccine construct was confirmed using various molecular dynamic simulation tools. Overall, the vaccine candidate showed promising binding affinity to various HLA alleles and TLR receptors; however, further studies are needed to assess its efficacy in-vivo. In this way, we have designed a multi-subunit vaccine candidate to potentially combat and control the spread of N. gonorrhoeae.
Collapse
Affiliation(s)
- Iqra Mahnoor
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Hamna Shabbir
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Shabana Nawaz
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Kinza Aziz
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Ubair Aziz
- School of Interdisciplinary Engineering & Sciences National University of Science and Technology, Islamabad, Pakistan.
| | - Kashaf Khalid
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Sidra Irum
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| | - Saadia Andleeb
- Atta-ur-Rehman School of Biosciences, National University of Science and Technology, Islamabad, Pakistan.
| |
Collapse
|
6
|
Srivastava S, Kolbe M. Novel "GaEl Antigenic Patches" Identified by a "Reverse Epitomics" Approach to Design Multipatch Vaccines against NIPAH Infection, a Silent Threat to Global Human Health. ACS OMEGA 2023; 8:31698-31713. [PMID: 37692250 PMCID: PMC10483669 DOI: 10.1021/acsomega.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. Several NiV outbreaks have been reported since 1999 with nearly annual occurrences in Bangladesh. The outbreaks had high mortality rates ranging from 40 to 90%. No specific vaccine has yet been reported against NiV. Recently, several vaccine candidates and different designs of vaccines composed of epitopes against NiV were proposed. Most of the vaccines target single protein or protein complex subunits of the pathogen. The multiepitope vaccines proposed also cover a largely limited number of epitopes, and hence, their efficiency is still uncertain. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have utilized the "reverse epitomics" approach ("overlapping-epitope-clusters-to-patches" method) to identify "antigenic patches" (Ag-Patches) and utilize them as immunogenic composition for multipatch vaccine (MPV) design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties, and interaction with Toll-like receptor 3 ectodomain. In total, 30 CTL (cytotoxic T lymphocyte) and 27 HTL (helper T lymphocyte) antigenic patches were identified from the entire NiV proteome based on the clusters of overlapping epitopes. These identified Ag-Patches cover a total of discrete 362 CTL and 414 HTL epitopes from the entire proteome of NiV. The antigenic patches were utilized as immunogenic composition for the design of two CTL and two HTL multipatch vaccines. The 57 antigenic patches utilized here cover 776 overlapping epitopes targeting 52 different HLA class I and II alleles, providing a global ethnically distributed human population coverage of 99.71%. Such large number of epitope coverage resulting in large human population coverage cannot be reached with single-protein/subunit or multiepitope based vaccines. The reported antigenic patches also provide potential immunogenic composition for early detection diagnostic kits for NiV infection. Further, all the MPVs and Toll-like receptor ectodomain complexes show a stable nature of molecular interaction with numerous hydrogen bonds, salt bridges, and nonbounded contact formation and acceptable root mean square deviation and fluctuation. The cDNA analysis shows a favorable large-scale expression of the MPV constructs in a human cell line. By utilizing the novel "reverse epitomics" approach, highly immunogenic novel "GaEl antigenic patches" (GaEl Ag-Patches), a synonym term for "antigenic patches", were identified and utilized as immunogenic composition to design four MPVs against NiV. We conclude that the novel multipatch vaccines are potential candidates to combat NiV, with greater effectiveness, high specificity, and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection
Biology Group, Indian Foundation for Fundamental
Research Trust, Raebareli, Uttar Pradesh 229316, India
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Kolbe
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
- Faculty
of Mathematics, Informatics and Natural Sciences, University of Hamburg, Rothenbaumchaussee 19, 20148 Hamburg, Germany
| |
Collapse
|
7
|
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir Ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023; 18:e0286224. [PMID: 37220125 DOI: 10.1371/journal.pone.0286224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide; however, there is no specific vaccine against MPXV. In this study, therefore, we employed computational approaches to design a multi-epitope vaccine against MPXV. Initially, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes were predicted from the cell surface-binding protein and envelope protein A28 homolog, both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine. The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide population. The designed vaccine construct was found to be highly antigenic, non-allergenic, soluble, and to have acceptable physicochemical properties. The 3D structure of the vaccine and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular dynamics (MD) simulation confirmed the vaccine's high stability in complex with TLR4. Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vaccine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encouraging; however, in vitro and animal studies are needed to ensure the potency and safety of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Elham Raeisi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Srivastava S, Verma S, Kamthania M, Saxena AK, Pandey KC, Pande V, Kolbe M. Exploring the structural basis to develop efficient multi-epitope vaccines displaying interaction with HLA and TAP and TLR3 molecules to prevent NIPAH infection, a global threat to human health. PLoS One 2023; 18:e0282580. [PMID: 36920996 PMCID: PMC10016716 DOI: 10.1371/journal.pone.0282580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed and in silico validated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
| | - Sonia Verma
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mohit Kamthania
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
| | - Ajay Kumar Saxena
- Molecular Medicine Lab., School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Kailash C. Pandey
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Kumaun University, Bheemtal, Nainital, Uttarakhand, India
| | - Michael Kolbe
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS OMEGA 2023; 8:190-207. [PMID: 36643547 PMCID: PMC9835168 DOI: 10.1021/acsomega.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/06/2023]
Abstract
Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.
Collapse
|
10
|
Vivekanandam R, Rajagopalan K, Jeevanandam M, Ganesan H, Jagannathan V, Selvan Christyraj JD, Kalimuthu K, Selvan Christyraj JRS, Mohan M. Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. J Biomol Struct Dyn 2022; 40:13711-13726. [PMID: 34696708 DOI: 10.1080/07391102.2021.1993338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SARS-CoV2 is a single-stranded RNA virus, gaining much attention after it out broke in China in December 2019. The virus rapidly spread to several countries around the world and caused severe respiratory illness to humans. Since the outbreak, researchers around the world have devoted maximum resources and effort to develop a potent vaccine that would offer protection to uninfected individuals against SARS-CoV2. Reverse vaccinology is a relatively new approach that thrives faster in vaccine research. In this study, we constructed Cytotoxic T Lymphocytes (CTL)-based multi-epitope vaccine using hybrid epitope prediction methods. A total of 121 immunogenic CTL epitopes were screened by various sequence-based prediction methods and docked with their respective HLA alleles using the AutoDock Vina v1.1.2. In all, 17 epitopes were selected based on their binding affinity, followed by the construction of multi-epitope vaccine by placing the appropriate linkers between the epitopes and tuberculosis heparin-binding hemagglutinin (HBHA) adjuvant. The final vaccine construct was modeled by the I-TASSER server and the best model was further validated by ERRAT, ProSA, and PROCHECK servers. Furthermore, the molecular interaction of the constructed vaccine with TLR4 was assessed by ClusPro 2.0 and PROtein binDIng enerGY prediction (PRODIGY) server. The immune simulation analysis confirms that the constructed vaccine was capable of inducing long-lasting memory T helper (Th) and CTL responses. Finally, the nucleotide sequence was codon-optimized by the JCAT tool and cloned into the pET21a (+) vector. The current results reveal that the candidate vaccine is capable of provoking robust CTL response against the SARS-CoV2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamilnadu, India
| | - Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Madesh Jeevanandam
- Department of Biochemistry, PSG college of Arts and Science, Coimbatore, Tamilnadu, India
| | - Harsha Ganesan
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamilnadu, India
| | - Vaishnavi Jagannathan
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Manikandan Mohan
- Vaxigen International Research Center Private Limited, Coimbatore, Tamilnadu, India.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation. J CHEM SCI 2022; 134:114. [DOI: 10.1007/s12039-022-02110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022]
|
12
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
13
|
Pathak RK, Lim B, Kim DY, Kim JM. Designing multi-epitope-based vaccine targeting surface immunogenic protein of Streptococcus agalactiae using immunoinformatics to control mastitis in dairy cattle. BMC Vet Res 2022; 18:337. [PMID: 36071517 PMCID: PMC9449294 DOI: 10.1186/s12917-022-03432-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background Milk provides energy as well as the basic nutrients required by the body. In particular, milk is beneficial for bone growth and development in children. Based on scientific evidence, cattle milk is an excellent and highly nutritious dietary component that is abundant in vitamins, calcium, potassium, and protein, among other minerals. However, the commercial productivity of cattle milk is markedly affected by mastitis. Mastitis is an economically important disease that is characterized by inflammation of the mammary gland. This disease is frequently caused by microorganisms and is detected as abnormalities in the udder and milk. Streptococcus agalactiae is a prominent cause of mastitis. Antibiotics are rarely used to treat this infection, and other available treatments take a long time to exhibit a therapeutic effect. Vaccination is recommended to protect cattle from mastitis. Accordingly, the present study sought to design a multi-epitope vaccine using immunoinformatics. Results The vaccine was designed to be antigenic, immunogenic, non-toxic, and non-allergic, and had a binding affinity with Toll-like receptor 2 (TLR2) and TLR4 based on structural modeling, docking, and molecular dynamics simulation studies. Besides, the designed vaccine was successfully expressed in E. coli. expression vector (pET28a) depicts its easy purification for production on a larger scale, which was determined through in silico cloning. Further, immune simulation analysis revealed the effectiveness of the vaccine with an increase in the population of B and T cells in response to vaccination. Conclusion This multi-epitope vaccine is expected to be effective at generating an immune response, thereby paving the way for further experimental studies to combat mastitis.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea.
| |
Collapse
|
14
|
Attar R, Alatawi EA, Aba Alkhayl FF, Alharbi KN, Allemailem KS, Almatroudi A. Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines (Basel) 2022; 10:vaccines10050637. [PMID: 35632394 PMCID: PMC9146471 DOI: 10.3390/vaccines10050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the misuse of antibiotics in our daily lives, antimicrobial resistance (AMR) has become a major health problem. Penicillin, the first antibiotic, was used in the 1930s and led to the emergence of AMR. Due to alterations in the microbe’s genome and the evolution of new resistance mechanisms, antibiotics are losing efficacy against microbes. There are high rates of mortality and morbidity due to antibiotic resistance, so addressing this major health issue requires new approaches. Staphylococcus auricularis is a Gram-positive cocci and is capable of causing opportunistic infections and sepsis. S. auricularis is resistant to several antibiotics and does not currently have a licensed vaccine. In this study, we used bacterial pan-genome analysis (BPGA) to study S. auricularis pan-genome and applied a reverse immunology approach to prioritize vaccine targets against S. auricularis. A total of 15,444 core proteins were identified by BPGA analysis, which were then used to identify good vaccine candidates considering potential vaccine filters. Two vaccine candidates were evaluated for epitope prediction including the superoxide dismutase and gamma-glutamyl transferase protein. The epitope prediction phase involved the prediction of a variety of B-Cell and T-cell epitopes, and the epitopes that met certain criteria, such as antigenicity, immunogenicity, non-allergenicity, and non-toxicity were chosen. A multi-epitopes vaccine construct was then constructed from all the predicted epitopes, and a cholera toxin B-subunit adjuvant was also added to increase vaccine antigenicity. Three-dimensional models of the vaccine were used for downward analyses. Using the best-modeled structure, binding potency was tested with MHC-I, MHC-II and TLR-4 immune cells receptors, proving that the vaccine binds strongly with the receptors. Further, molecular dynamics simulations interpreted strong intermolecular binding between the vaccine and receptors and confirmed the vaccine epitopes exposed to the host immune system. The results support that the vaccine candidate may be capable of eliciting a protective immune response against S. auricularis and may be a promising candidate for experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Roba Attar
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Correspondence:
| |
Collapse
|
15
|
M S, A V, L T. Data processing algorithms for the in silico SARS-CoV-2 epitope prediction and vaccine development. ARTIF INTELL 2021. [DOI: 10.15407/jai2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Based on literature analysis and own bioinformatics and virology research experience, authors propose multistep data processing algorithms, designed for the objectives of assisting the SARS-CoV-2 epitope vaccine production. Epitope vaccines are expected to provoke a weaker but safer response of the vaccinated person. Methodologies of reverse bioengineering, vaccinology and synthetic peptide manufacturing have a promising future to combat COVID-19 brutal disease. The significant mutational variability and evolution of the SARS-CoV-2, which is more typical for natural animal-borne viruses, are the hurdle for the effective and robust vaccine application and therefore require multidisciplinary research and prevention measures on the international level of cooperation. However, we can expect that other viruses with different nature and content may be labelled as SARS-CoV-2. In this case metagenomics is an important discipline for COVID-19 discovery. High quality reliable virus detection is still an unresolved question for improvement and optimization. It is of upmost importance to develop the in silico and in vitro methods for the vaccine recipient reaction prediction and monitoring as techniques of the so-called modern personalized medicine. Many questions can`t be solved applying exclusively in silico techniques and only can be discovered in vitro and in vivo, demanding significant time and money investments. Future experiments also should be directed at the discovery of optimal vaccine adjuvants, vectors and epitope ensembles, as well as the personal characteristics of citizens of a certain region. This research would require several more years of meticulous large-scale laboratory and clinical work in various centers of biomedical institutions worldwide
Collapse
|
16
|
Designing of a Chimeric Vaccine Using EIS (Rv2416c) Protein Against Mycobacterium tuberculosis H37Rv: an Immunoinformatics Approach. Appl Biochem Biotechnol 2021; 194:187-214. [PMID: 34817805 DOI: 10.1007/s12010-021-03760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a respiratory pathogen that causes tuberculosis (TB). There are a large number of proteins that are involved in the pathogenesis of TB. Stimulating the immune response against TB is very important to clear the pathogens from host. In the present study, an immunoinformatics conduit is used for designing an epitope based chimeric vaccine against TB. Enhanced intracellular survival (EIS) protein from Mtb is used for designing the chimeric vaccine. One B cell epitope, 8 cytotoxic T lymphocyte (CTL), and 6 helper T lymphocyte (HTL) epitopes were predicted based on the MHC allele binding, immunogenicity, antigenicity, allergenicity, toxicity and IFN epitopes. The selected epitopes were used for chimeric vaccine designing. Furthermore, 3D structure elucidation, structural refinement and validation of the designed chimeric vaccine were carried out. The 3D structure was used for protein-protein docking studies with Toll-like receptor 4 (TLR-4), followed by molecular dynamic simulation (MDS) and the interaction between the chimeric vaccine and TLR-4 complex was verified.
Collapse
|
17
|
Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100768. [PMID: 34722851 PMCID: PMC8536498 DOI: 10.1016/j.imu.2021.100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
RNA viruses have high rate of replication and mutation that help them adapt and change according to their environmental conditions. Many viral mutants are the cause of various severe and lethal diseases. Vaccines, on the other hand have the capacity to protect us from infectious diseases by eliciting antibody or cell-mediated immune responses that are pathogen-specific. While there are a few reviews pertaining to the use of artificial intelligence (AI) for SARS-COV-2 vaccine development, none focus on peptide vaccination for RNA viruses and the important role played by AI in it. Peptide vaccine which is slowly coming to be recognized as a safe and effective vaccination strategy has the capacity to overcome the mutant escape problem which is also being currently faced by SARS-COV-2 vaccines in circulation.Here we review the present scenario of peptide vaccines which are developed using mathematical and computational statistics methods to prevent the spread of disease caused by RNA viruses. We also focus on the importance and current stage of AI and mathematical evolutionary modeling using machine learning tools in the establishment of these new peptide vaccines for the control of viral disease.
Collapse
Affiliation(s)
- Eileena Mohanty
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Anima Mohanty
- School of Biotechnology (KSBT), KIIT University-2, Bhubaneswar, 751024, India
| |
Collapse
|
18
|
Palma M. Perspectives on passive antibody therapy and peptide-based vaccines against emerging pathogens like SARS-CoV-2. Germs 2021; 11:287-305. [PMID: 34422699 DOI: 10.18683/germs.2021.1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The current epidemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is raising awareness of the need to act faster when dealing with new pathogens. Exposure to an emerging pathogen generates an antibody response that can be used for preventing and treating the infection. These antibodies might have a high specificity to a target, few side effects, and are useful in the absence of an effective vaccine for treating immunocompromised individuals. The approved antibodies against the receptor-binding domain (RBD) of the viral spike protein of SARS-CoV-2 (e.g., regdanvimab, bamlanivimab, etesevimab, and casirivimab/imdevimab) have been selected from the antibody repertoire of B cells from convalescent patients using flow cytometry, next-generation sequencing, and phage display. This encourages use of these techniques especially phage display, because it does not require expensive types of equipment and can be performed on the lab bench, thereby making it suitable for labs with limited resources. Also, the antibodies in blood samples from convalescent patients can be used to screen pre-made peptide libraries to identify epitopes for vaccine development. Different types of vaccines against SARS-CoV-2 have been developed, including inactivated virus vaccines, mRNA-based vaccines, non-replicating vector vaccines, and protein subunits. mRNA vaccines have numerous advantages over existing vaccines, such as efficacy, ease of manufacture, safety, and cost-effectiveness. Additionally, epitope vaccination may constitute an attractive strategy to induce high levels of antibodies against a pathogen and phages might be used as immunogenic carriers of such peptides. This is a point worth considering further, as phage-based vaccines have been shown to be safe in clinical trials and phages are easy to produce and tolerate high temperatures. In conclusion, identification of the antibody repertoire of recovering patients, and the epitopes they recognize, should be an attractive alternative option for developing therapeutic and prophylactic antibodies and vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Marco Palma
- PhD, Independent researcher, Calle San Jose, Torrevieja, 03181, Spain
| |
Collapse
|
19
|
Immunoinformatics Approach to Design Multi-Epitope- Subunit Vaccine against Bovine Ephemeral Fever Disease. Vaccines (Basel) 2021; 9:vaccines9080925. [PMID: 34452050 PMCID: PMC8402647 DOI: 10.3390/vaccines9080925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Bovine ephemeral fever virus (BEFV) is an overlooked pathogen, recently gaining widespread attention owing to its associated enormous economic impacts affecting the global livestock industries. High endemicity with rapid spread and morbidity greatly impacts bovine species, demanding adequate attention towards BEFV prophylaxis. Currently, a few suboptimum vaccines are prevailing, but were confined to local strains with limited protection. Therefore, we designed a highly efficacious multi-epitope vaccine candidate targeted against the geographically distributed BEFV population. By utilizing immunoinformatics technology, all structural proteins were targeted for B- and T-cell epitope prediction against the entire allele population of BoLA molecules. Prioritized epitopes were adjoined by linkers and adjuvants to effectively induce both cellular and humoral immune responses in bovine. Subsequently, the in silico construct was characterized for its physicochemical parameters, high immunogenicity, least allergenicity, and non-toxicity. The 3D modeling, refinement, and validation of ligand (vaccine construct) and receptor (bovine TLR7) then followed molecular docking and molecular dynamic simulation to validate their stable interactions. Moreover, in silico cloning of codon-optimized vaccine construct in the prokaryotic expression vector (pET28a) was explored. This is the first time HTL epitopes have been predicted using bovine datasets. We anticipate that the designed construct could be an effective prophylactic remedy for the BEF disease that may pave the way for future laboratory experiments.
Collapse
|
20
|
Shankar U, Jain N, Mishra SK, Sk MF, Kar P, Kumar A. Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. J Biomol Struct Dyn 2021; 40:4815-4831. [PMID: 33463407 DOI: 10.1080/07391102.2021.1874529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ebola virus is the primary causative agent of viral hemorrhagic fever that is an epidemic disease and responsible for the massive premature deaths in humans. Despite knowing the molecular mechanism of its pathogenesis, to date, no commercial or FDA approved multiepitope vaccine is available against Ebola infection. The current study focuses on designing a multi-epitope subunit vaccine for Ebola using a novel immunoinformatic approach. The best predicted antigenic epitopes of Cytotoxic-T cell (CTL), Helper-T cells (HTL), and B-cell epitopes (BCL) joined by various linkers were selected for the multi-epitope vaccine designing. For the enhanced immune response, two adjuvants were also added to the construct. Further analysis showed the vaccine to be immunogenic and non-allergenic, forming a stable and energetically favorable structure. The stability of the unbound vaccine construct and vaccine/TLR4 was elucidated via atomistic molecular dynamics simulations. The binding free energy analysis (ΔGBind = -194.2 ± 0.5 kcal/mol) via the molecular mechanics Poisson-Boltzmann docking scheme revealed a strong association and thus can initiate the maximal immune response. Next, for the optimal expression of the vaccine construct, its gene construct was cloned in the pET28a + vector system. In summary, the Ebola viral proteome was screened to identify the most potential HTLs, CTLs, and BCL epitopes. Along with various linkers and adjuvants, a multi-epitope vaccine is constructed that showed a high binding affinity with the immune receptor, TLR4. Thus, the current study provides a highly immunogenic multi-epitope subunit vaccine construct that may induce humoral and cellular immune responses against the Ebola infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
21
|
Jain N, Shankar U, Majee P, Kumar A. Scrutinizing the SARS-CoV-2 protein information for designing an effective vaccine encompassing both the T-cell and B-cell epitopes. INFECTION GENETICS AND EVOLUTION 2020; 87:104648. [PMID: 33264668 PMCID: PMC7700730 DOI: 10.1016/j.meegid.2020.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Novel SARS coronavirus (SARS-CoV-2) has caused a pandemic condition worldwide. It has been declared as a public health emergency of international concern by WHO in a very short span of time. The community transmission of this highly infectious virus has severely affected various parts of China, Italy, Spain, India, and USA, among others. The prophylactic solution against SARS-CoV-2 infection is challenging due to the high mutation rate of its RNA genome. Herein, we exploited a next-generation vaccinology approach to construct a multi-epitope vaccine candidate against SARS-CoV-2 that is predicted to have high antigenicity, safety, and efficacy to combat this deadly infectious agent. The whole proteome was scrutinized for the screening of highly conserved, antigenic, non-allergen, and non-toxic epitopes having high population coverage that can elicit both humoral and cellular mediated immune response against COVID-19 infection. These epitopes along with four different adjuvants, were utilized to construct a multi-epitope-vaccine candidate that can generate strong immunological memory response having high efficacy in humans. Various physiochemical analyses revealed the formation of a stable vaccine product having a high propensity to form a protective solution against the detrimental SARS-CoV-2 strain with high efficacy. The vaccine candidate interacted with immunological receptor TLR3 with a high affinity depicting the generation of innate immunity. Further, the codon optimization and in silico expression show the plausibility of the high expression and easy purification of the vaccine product. Thus, this present study provides an initial platform for the rapid generation of an efficacious protective vaccine for combating COVID-19.
Collapse
Affiliation(s)
- Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
22
|
Sun J, Ren C, Huang Y, Chao W, Xie F. The effects of synonymous codon usages on genotypic formation of open reading frames in hepatitis E virus. INFECTION GENETICS AND EVOLUTION 2020; 85:104450. [PMID: 32629045 DOI: 10.1016/j.meegid.2020.104450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) infection has emerged as an important public health issue. As a zoonotic RNA virus, new strains are continuously discovered from human or various animal species. However, the capability of cross-species infection varies largely among different strains. Because the classical nucleotide-based genotyping system provides little functional insight, this study aimed to comprehensively investigate codon usage of the HEV coding regions for better understanding the evolutional orientation, virus-host interaction and cross-species transmission. We observed significant differences of the four nucleotide usages in the three open reading frames, indicating that the evolutional tendency of HEV caused by mutation pressure is modified by the evolutional dynamic related to positive selection. Furthermore, significant differences of nucleotide usages were found among HEV isolated from different host species, suggesting an important role of natural selection related to the host. Analysis of effective number of codons revealed distinct degrees of biased codon usage caused by mutation pressure or the host. Finally, we have mapped the similarity levels of the overall codon usage between the virus and the host to assess the potential of cross-species infection. Thus, this study has provided a novel aspect for better understanding the HEV genetic orientation and the zoonotic nature.
Collapse
Affiliation(s)
- Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Caiqin Ren
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Ying Huang
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Wenhan Chao
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Fuqiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cuiying Men, Chengguan District, Lanzhou City, Gansu Province 730000, China.
| |
Collapse
|