1
|
Tiwari U, Akhtar S, Mir SS, Khan MKA. Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations. Mol Divers 2025:10.1007/s11030-025-11122-9. [PMID: 39899124 DOI: 10.1007/s11030-025-11122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
In this study, we conducted an extensive analysis of 252 bioactive compounds derived from native spices and herbs for their potential anti-breast cancer activity against sterol regulatory element-binding protein (SREBP), using in silico techniques. To evaluate the oral bioavailability, overall pharmacokinetics, and safety profiles of these compounds, we employed Lipinski's rule of five and ADME descriptors, which depicted 66 lead molecules. These molecules were then docked with the SREBP using molecular docking tools, which revealed that diosgenin and smilagenin were the most promising hits compared to the reference inhibitor betulin, with average binding affinities of - 7.42 and - 7.37 kcal/mol and - 6.27 kcal/mol, respectively. To further assess the stability of these complexes along with betulin, we conducted molecular dynamics simulations over a 100 ns simulation period. We employed various parameters, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, free energy of solvation, and radius of gyration, followed by principal component analysis. Furthermore, we evaluated the toxicity of the selected compounds against various anticancer cell lines, as well as their metabolic activity related to CYP450 metabolism and biological activity spectrum. Based on these results, both molecules exhibited promising drug candidate potential and could be utilized for further experimental analysis to elucidate their anticancer potential.
Collapse
Affiliation(s)
- Urvashi Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | | |
Collapse
|
2
|
Cobre ADF, Maia Neto M, de Melo EB, Fachi MM, Ferreira LM, Tonin FS, Pontarolo R. Naringenin-4'-glucuronide as a new drug candidate against the COVID-19 Omicron variant: a study based on molecular docking, molecular dynamics, MM/PBSA and MM/GBSA. J Biomol Struct Dyn 2024; 42:5881-5894. [PMID: 37394802 DOI: 10.1080/07391102.2023.2229446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to identify natural bioactive compounds (NBCs) as potential inhibitors of the spike (S1) receptor binding domain (RBD) of the COVID-19 Omicron variant using computer simulations (in silico). NBCs with previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening, molecular docking, molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA), and molecular mechanics/generalized Born surface area (MM/GBSA). Remdesivir was used as a reference drug in docking and MD calculations. A total of 170,906 compounds were analyzed. Molecular docking screening revealed the top four NBCs with a high affinity with the spike (affinity energy <-7 kcal/mol) to be ZINC000045789238, ZINC000004098448, ZINC000008662732, and ZINC000003995616. In the MD analysis, the four ligands formed a complex with the highest dynamic equilibrium S1 (mean RMSD <0.3 nm), lowest fluctuation of the complex amino acid residues (RMSF <1.3), and solvent accessibility stability. However, the ZINC000045789238-spike complex (naringenin-4'-O glucuronide) was the only one that simultaneously had minus signal (-) MM/PBSA and MM/GBSA binding free energy values (-3.74 kcal/mol and -15.65 kcal/mol, respectively), indicating favorable binding. This ligand (naringenin-4'-O glucuronide) was also the one that produced the highest number of hydrogen bonds in the entire dynamic period (average = 4601 bonds per nanosecond). Six mutant amino acid residues formed these hydrogen bonds from the RBD region of S1 in the Omicron variant: Asn417, Ser494, Ser496, Arg403, Arg408, and His505. Naringenin-4'-O-glucuronide showed promising results as a potential drug candidate against COVID-19. In vitro and preclinical studies are needed to confirm these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Moisés Maia Neto
- Department of Pharmacy, Fametro University Centre (UNIFAMETRO), Fortaleza-Ceará, Brazil
| | - Eduardo Borges de Melo
- Department of Pharmacy, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel-PR, Brazil
| | - Mariana Millan Fachi
- Pharmaceutical Sciences Postgraduate Programme, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Fernanda Stumpf Tonin
- H&TRC - Health & Technology Research Centre, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Roberto Pontarolo
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
4
|
Panda SK, Karmakar S, Sen Gupta PS, Rana MK. Can Duvelisib and Eganelisib work for both cancer and COVID-19? Molecular-level insights from MD simulations and enhanced samplings. Phys Chem Chem Phys 2024; 26:10961-10973. [PMID: 38526354 DOI: 10.1039/d3cp05934k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
SARS-CoV-2 has caused severe illness and anxiety worldwide, evolving into more dreadful variants capable of evading the host's immunity. Cytokine storms, led by PI3Kγ, are common in cancer and SARS-CoV-2. Naturally, there is a yearning to see whether any drugs could alleviate cytokine storms for both. Upon investigation, we identified two anticancer drugs, Duvelisib and Eganelisib, that could also work against SARS-CoV-2. This report is the first to decipher their synergic therapeutic effectiveness against COVID-19 and cancer with molecular insights from atomistic simulations. In addition to PI3Kγ, these drugs exhibit specificity for the main protease among all SARS-CoV-2 targets, with significant negative binding free energies and small time-dependent conformational changes of the complexes. Complexation makes active sites and secondary structures highly mechanically stiff, with barely any deformation. Replica simulations estimated large pulling forces in enhanced sampling to dissociate the drugs from Mpro's active site. Furthermore, the radial distribution function (RDF) demonstrated that the therapeutic molecules were closest to the His41 and Cys145 catalytic dyad residues. Finally, analyses implied Duvelisib and Eganelisib as promising dual-purposed anti-COVID and anticancer drugs, potentially targeting Mpro and PI3Kγ to stop virus replication and cytokine storms concomitantly. We also distinguished hotspot residues imparting significant interactions.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Shaswata Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| |
Collapse
|
5
|
Hayward G, Yu LM, Little P, Gbinigie O, Shanyinde M, Harris V, Dorward J, Saville BR, Berry N, Evans PH, Thomas NPB, Patel MG, Richards D, Hecke OV, Detry MA, Saunders C, Fitzgerald M, Robinson J, Latimer-Bell C, Allen J, Ogburn E, Grabey J, de Lusignan S, Hobbs FR, Butler CC. Ivermectin for COVID-19 in adults in the community (PRINCIPLE): An open, randomised, controlled, adaptive platform trial of short- and longer-term outcomes. J Infect 2024; 88:106130. [PMID: 38431155 PMCID: PMC10981761 DOI: 10.1016/j.jinf.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The evidence for whether ivermectin impacts recovery, hospital admissions, and longer-term outcomes in COVID-19 is contested. The WHO recommends its use only in the context of clinical trials. METHODS In this multicentre, open-label, multi-arm, adaptive platform randomised controlled trial, we included participants aged ≥18 years in the community, with a positive SARS-CoV-2 test, and symptoms lasting ≤14 days. Participants were randomised to usual care, usual care plus ivermectin tablets (target 300-400 μg/kg per dose, once daily for 3 days), or usual care plus other interventions. Co-primary endpoints were time to first self-reported recovery, and COVID-19 related hospitalisation/death within 28 days, analysed using Bayesian models. Recovery at 6 months was the primary, longer term outcome. TRIAL REGISTRATION ISRCTN86534580. FINDINGS The primary analysis included 8811 SARS-CoV-2 positive participants (median symptom duration 5 days), randomised to ivermectin (n = 2157), usual care (n = 3256), and other treatments (n = 3398) from June 23, 2021 to July 1, 2022. Time to self-reported recovery was shorter in the ivermectin group compared with usual care (hazard ratio 1·15 [95% Bayesian credible interval, 1·07 to 1·23], median decrease 2.06 days [1·00 to 3·06]), probability of meaningful effect (pre-specified hazard ratio ≥1.2) 0·192). COVID-19-related hospitalisations/deaths (odds ratio 1·02 [0·63 to 1·62]; estimated percentage difference 0% [-1% to 0·6%]), serious adverse events (three and five respectively), and the proportion feeling fully recovered were similar in both groups at 6 months (74·3% and 71·2% respectively (RR = 1·05, [1·02 to 1·08]) and also at 3 and 12 months. INTERPRETATION Ivermectin for COVID-19 is unlikely to provide clinically meaningful improvement in recovery, hospital admissions, or longer-term outcomes. Further trials of ivermectin for SARS-Cov-2 infection in vaccinated community populations appear unwarranted. FUNDING UKRI/National Institute of Health Research (MC_PC_19079).
Collapse
Affiliation(s)
- Gail Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Ly-Mee Yu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Oghenekome Gbinigie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Milensu Shanyinde
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Victoria Harris
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jienchi Dorward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Benjamin R Saville
- Berry Consultants, TX, USA; Department of Biostatistics, Vanderbilt University School of Medicine, TN, USA
| | | | - Philip H Evans
- College of Medicine and Health, University of Exeter, Exeter, UK; National Institute for Health Research (NIHR) Clinical Research Network, National Institute for Health Research, London, UK
| | - Nicholas P B Thomas
- National Institute for Health Research (NIHR) Clinical Research Network, National Institute for Health Research, London, UK
| | - Mahendra G Patel
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Duncan Richards
- Royal College of General Practitioners, London, UK; Oxford Clinical Trials Research Unit, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Oliver V Hecke
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Jared Robinson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Julie Allen
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Emma Ogburn
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jenna Grabey
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Fd Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Christopher C Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
González-Paz L, Lossada C, Hurtado-León ML, Vera-Villalobos J, Paz JL, Marrero-Ponce Y, Martinez-Rios F, Alvarado Y. Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data. ACS OMEGA 2024; 9:8923-8939. [PMID: 38434903 PMCID: PMC10905729 DOI: 10.1021/acsomega.3c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Collapse
Affiliation(s)
- Lenin González-Paz
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC). Departamento de Biología. Laboratorio
de Genética y Biología Molecular (LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad
de Ciencias Naturales y Matemáticas, Departamento de Química
y Ciencias Ambientales, Laboratorio de Análisis Químico
Instrumental (LAQUINS), Escuela Superior
Politécnica del Litoral, Guayaquil EC090112, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Cercado de Lima, Lima 15081, Perú
| | - Yovani Marrero-Ponce
- Grupo
de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias
de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades
Médicas; e Instituto de Simulación Computacional (ISC-USFQ),
Diego de Robles y vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador
| | - Felix Martinez-Rios
- Universidad
Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México 03920, México
| | - Ysaías.
J. Alvarado
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE),Instituto
Venezolano de Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana
de Venezuela
| |
Collapse
|
7
|
George RS, Goodey H, Russo MA, Tula R, Ghezzi P. Use of immunology in news and YouTube videos in the context of COVID-19: politicisation and information bubbles. Front Public Health 2024; 12:1327704. [PMID: 38435297 PMCID: PMC10906096 DOI: 10.3389/fpubh.2024.1327704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Background The COVID-19 pandemic propelled immunology into global news and social media, resulting in the potential for misinterpreting and misusing complex scientific concepts. Objective To study the extent to which immunology is discussed in news articles and YouTube videos in English and Italian, and if related scientific concepts are used to support specific political or ideological narratives in the context of COVID-19. Methods In English and Italian we searched the period 11/09/2019 to 11/09/2022 on YouTube, using the software Mozdeh, for videos mentioning COVID-19 and one of nine immunological concepts: antibody-dependent enhancement, anergy, cytokine storm, herd immunity, hygiene hypothesis, immunity debt, original antigenic sin, oxidative stress and viral interference. We repeated this using MediaCloud for news articles.Four samples of 200 articles/videos were obtained from the randomised data gathered and analysed for mentions of concepts, stance on vaccines, masks, lockdown, social distancing, and political signifiers. Results Vaccine-negative information was higher in videos than news (8-fold in English, 6-fold in Italian) and higher in Italian than English (4-fold in news, 3-fold in videos). We also observed the existence of information bubbles, where a negative stance towards one intervention was associated with a negative stance to other linked ideas. Some immunological concepts (immunity debt, viral interference, anergy and original antigenic sin) were associated with anti-vaccine or anti-NPI (non-pharmacological intervention) views. Videos in English mentioned politics more frequently than those in Italian and, in all media and languages, politics was more frequently mentioned in anti-guidelines and anti-vaccine media by a factor of 3 in video and of 3-5 in news. Conclusion There is evidence that some immunological concepts are used to provide credibility to specific narratives and ideological views. The existence of information bubbles supports the concept of the "rabbit hole" effect, where interest in unconventional views/media leads to ever more extreme algorithmic recommendations.
Collapse
Affiliation(s)
| | - Hannah Goodey
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Rovena Tula
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, United Kingdom
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| |
Collapse
|
8
|
Srivastava R, Panda SK, Sen Gupta PS, Chaudhary A, Naaz F, Yadav AK, Ram NK, Rana MK, Singh RK, Srivastava R. In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies. J Biomol Struct Dyn 2023:1-18. [PMID: 38147408 DOI: 10.1080/07391102.2023.2297005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
A series of S-adenosyl-L-homosysteine (SAH) analogs, with modification in the base and sugar moiety, have been designed, synthesized and screened as nsp14 and PLpro inhibitors of severe acute respiratory syndrome corona virus (SARS-CoV-2). The outcomes of ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) studies demonstrated that the physicochemical properties of all analogs were permissible for development of these SAH analogs as antiviral agents. All molecules were screened against different SARS-CoV-2 targets using molecular docking. The docking results revealed that the SAH analogs interacted well in the active site of nsp14 protein having H-bond interactions with the amino acid residues Arg289, Val290, Asn388, Arg400, Phe401 and π-alkyl interactions with Arg289, Val290 and Phe426 of Nsp14-MTase site. These analogs also formed stable H-bonds with Leu163, Asp165, Arg167, Ser246, Gln270, Tyr274 and Asp303 residues of PLpro proteins and found to be quite stable complexes therefore behaved as probable nsp14 and PLpro inhibitors. Interestingly, analog 3 showed significant in silico activity against the nsp14 N7 methyltransferase of SARS-CoV-2. The molecular dynamics (MD) and post-MD results of analog 3 unambiguously established the higher stability of the nsp14 (N7 MTase):3 complex and also indicated its behavior as probable nsp14 inhibitor like the reference sinefungin. The docking and MD simulations studies also suggested that sinefungin did act as SARS-CoV-2 PLpro inhibitor as well. This study's findings not only underscore the efficacy of the designed SAH analogs as potent inhibitors against crucial SARS-CoV-2 proteins but also pinpoint analog 3 as a particularly promising candidate. All the study provides valuable insights, paving the way for potential advancements in antiviral drug development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, India
| | - Anvita Chaudhary
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Nand Kumar Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Richa Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
9
|
Panda SK, Sen Gupta PS, Karmakar S, Biswal S, Mahanandia NC, Rana MK. Unmasking an Allosteric Binding Site of the Papain-like Protease in SARS-CoV-2: Molecular Dynamics Simulations of Corticosteroids. J Phys Chem Lett 2023; 14:10278-10284. [PMID: 37942913 DOI: 10.1021/acs.jpclett.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University (DYPIU), Akurdi, Pune 411044, Maharashtra, India
| | - Shaswata Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Nimai Charan Mahanandia
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa 110012, New Delhi, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| |
Collapse
|
10
|
Guo C, Li Q, Xiao J, Ma F, Xia X, Shi M. Identification of defactinib derivatives targeting focal adhesion kinase using ensemble docking, molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 41:8654-8670. [PMID: 36281703 DOI: 10.1080/07391102.2022.2135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Focal adhesion kinase (FAK) belongs to the nonreceptor tyrosine kinases, which selectively phosphorylate tyrosine residues on substrate proteins. FAK is associated with bladder, esophageal, gastric, neck, breast, ovarian and lung cancers. Thus, FAK has been considered as a potential target for tumor treatment. Currently, there are six adenosine triphosphate (ATP)-competitive FAK inhibitors tested in clinical trials but no approved inhibitors targeting FAK. Defactinib (VS-6063) is a second-generation FAK inhibitor with an IC50 of 0.6 nM. The binding model of VS-6063 with FAK may provide a reference model for developing new antitumor FAK-targeting drugs. In this study, the VS-6063/FAK binding model was constructed using ensemble docking and molecular dynamics simulations. Furthermore, the molecular mechanics/generalized Born (GB) surface area (MM/GBSA) method was employed to estimate the binding free energy between VS-6063 and FAK. The key residues involved in VS-6063/FAK binding were also determined using per-residue energy decomposition analysis. Based on the binding model, VS-6063 could be separated into seven regions to enhance its binding affinity with FAK. Meanwhile, 60 novel defactinib-based compounds were designed and verified using ensemble docking. Overall, the present study improves our understanding of the binding mechanism of human FAK with VS-6063 and provides new insights into future drug designs targeting FAK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chuan Guo
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qinxuan Li
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiujia Xiao
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Ma
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xun Xia
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Singh S, Gupta A, Singh N, Sengupta PS, Panda SK, Sharma S. Genotyping, in silico screening and molecular dynamics simulation of SNPs of MGMT and ERCC1 gene in lung cancer patients treated with platinum-based doublet chemotherapy. J Biomol Struct Dyn 2023; 42:11231-11250. [PMID: 37771161 DOI: 10.1080/07391102.2023.2261052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023]
Abstract
Lung cancer, the leading cause of death worldwide, arises from an intricate combination of genetic and environmental factors. Genetic variations can influence the chemotherapeutic response of lung cancer patients in DNA repair genes. This study examines the response to platinum-based drugs among lung cancer patients of North Indian descent who possess genetic variations in the MGMT and ERCC1 genes. P CR-RFLP method was used for genotypic analysis. MedCalc statistical software was used to calculate odds ratios and Median Survival Time (MST). GROMACS software was used to perform Molecular dynamic simulation. ADCC Patients revealed a significant association with MGMT in the heterozygous genotype (HR= 1.56, p=0.02) and also with ERCC1 in both mutant and combined variants (HR= 1.25, p=0.01; HR=0.78, p=0.03). SQCC subjects harbouring ERCC1 polymorphism also reported a 2-fold increase in hazard ratio and a corresponding decrease in survival time for heterozygous and combined variants (HR= 2.55, p=0.02; HR 2.33, p=0.01, respectively). MD simulation results demonstrate a lower RMSD, stable radius of gyration, and lower RMSF, indicating the mutated MGMT protein is more stable than the wild. Further, the docking score for DNA-Wild and DNA-L84F mutants are -201.6 and -131.8, respectively. MD Simulation of the complexes further validated the results. Our study concludes that MGMT and ERCC1 polymorphisms are associated with decreased overall survival. Further, computational analysis of MGMT (rs12917) polymorphism revealed that mutated MGMT cannot bind properly to the DNA and hence cannot properly repair DNA, resulting in lower overall survival.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sidhartha Singh
- Department of Biosciences and Bioengineering, DY Patil International University, Akurdi, Maharashtra, India
| | - Anu Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Parth Sarthi Sengupta
- Department of Biosciences and Bioengineering, DY Patil International University, Akurdi, Maharashtra, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
12
|
Yadav M, Srivastava R, Naaz F, Sen Gupta PS, Panda SK, Rana MK, Singh RK. Hydroxyalkynyl uracil derivatives as NNRTIs against HIV-1: in silico predictions, synthesis, docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 41:8068-8080. [PMID: 36229234 DOI: 10.1080/07391102.2022.2130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
To improve rationally the efficacy of the non-nucleoside human immunodeficiency virus (HIV-1) inhibitors, it is important to have a precise and detailed understanding of the HIV-1 reverse transcriptase (RT) and inhibitor interactions. For the 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) type of nucleoside reverse transcriptase inhibitors (NNRTIs), the H-bond between the N-3H of the inhibitor and the backbone carbonyl group of K101 represents the major hydrophilic interaction. This H-bond contributes to the NNRTI binding affinity. The descriptor analyses of different uracil derivatives proved their good cell internalization. The bioactivity score reflected higher drug likeness score and the ligands showed interesting docking results. All molecules were deeply buried and stabilized into the allosteric site of HIV-1 RT. For majority of molecules, residues Lys101, Lys103, Tyr181 and Tyr188 were identified as key protein residues responsible for generation of H-bond and major interactions were similar to all known NNRTIs while very few molecules interacted with residues Phe227 and Tyr318. The TOPKAT protocol available in Discovery Studio 3.0 was used to predict the pharmacokinetics of the designed uracil derivatives in the human body. The molecular dynamics (MD) and post-MD analyses results reflected that the complex HIVRT:5 appeared to be more stable than the complex HIVRT:HEPT, where HEPT was used as reference. Different uracil derivatives have been synthesized by using uracil as starting material and commercially available propargyl bromide. The N-1 derivative of uracil was further reacted with sodamide and different aldehydes/ketones bearing alkyl and phenyl ring to obtain hydroxyalkynyl uracil derivatives as NNRTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
13
|
Ragó Z, Tóth B, Szalenko-Tőkés Á, Bella Z, Dembrovszky F, Farkas N, Kiss S, Hegyi P, Matuz M, Tóth N, Hegedüs I, Máthé D, Csupor D. Results of a systematic review and meta-analysis of early studies on ivermectin in SARS-CoV-2 infection. GeroScience 2023; 45:2179-2193. [PMID: 36879183 PMCID: PMC9988599 DOI: 10.1007/s11357-023-00756-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Ivermectin, an antiparasitic drug, has been repurposed for COVID-19 treatment during the SARS-CoV-2 pandemic. Although its antiviral efficacy was confirmed early in vitro and in preclinical studies, its clinical efficacy remained ambiguous. Our purpose was to assess the efficacy of ivermectin in terms of time to viral clearance based on the meta-analysis of available clinical trials at the closing date of the data search period, one year after the start of the pandemic. This meta-analysis was reported by following the PRISMA guidelines and by using the PICO format for formulating the question. The study protocol was registered on PROSPERO. Embase, MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), bioRvix, and medRvix were searched for human studies of patients receiving ivermectin therapy with control groups. No language or publication status restrictions were applied. The search ended on 1/31/2021 exactly one year after WHO declared the public health emergency on novel coronavirus. The meta-analysis of three trials involving 382 patients revealed that the mean time to viral clearance was 5.74 days shorter in case of ivermectin treatment compared to the control groups [WMD = -5.74, 95% CI (-11.1, -0.39), p = 0.036]. Ivermectin has significantly reduced the time to viral clearance in mild to moderate COVID-19 diseases compared to control groups. However, more eligible studies are needed for analysis to increase the quality of evidence of ivermectin use in COVID-19.
Collapse
Affiliation(s)
- Zsuzsanna Ragó
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Barbara Tóth
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenko-Tőkés
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- NOÉ Health Care Centre, Szeged, Hungary
| | - Zsolt Bella
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- NOÉ Health Care Centre, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mária Matuz
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Imre Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- In Vivo Imaging ACF, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
| | - Dezső Csupor
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Desai N, Jadeja D, Monapara J, Panda SK, Rana MK, Dave B. Design, synthesis, antimicrobial activity, DFT, and molecular docking studies of pyridine-pyrazole-based dihydro-1,3,4-oxadiazoles against various bacterial and fungal targets. J Biochem Mol Toxicol 2023; 37:e23377. [PMID: 37098749 DOI: 10.1002/jbt.23377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones (6a-6o) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1 H NMR, 13 C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l, and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 μg/mL while compounds 6d, 6e, and 6h showed MIC value of 200 μg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.
Collapse
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Dharmpalsinh Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Jahnvi Monapara
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Bharti Dave
- School of Science, Indrashil University, Kadi, Gujarat, India
| |
Collapse
|
15
|
Biswal S, Gupta PSS, Panda SK, Bhat HR, Rana MK. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes. PHOTOSYNTHESIS RESEARCH 2023; 156:337-354. [PMID: 36847893 DOI: 10.1007/s11120-023-01006-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/11/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light-dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen), Violaxanthin De-Epoxidase (VDE), in the presence of violaxanthin (Vio) and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE), present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates compared to VDE. The structure of CVDE was determined by homology modeling and validated. In silico docking (of first-principles optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes is performed by computing free energies and their decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt bridge, and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to a similar extent as that of VDE. Hence, its role is expected to be the same for both enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. Given these interactions drive epoxidation or de-epoxidation in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not participate in de-epoxidation or a different cofactor is necessary as CVDE has a weaker interaction with ascorbic acid than VDE.
Collapse
Affiliation(s)
- Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, Maharashtra-411044, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Haamid Rasool Bhat
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India.
| |
Collapse
|
16
|
Sen Gupta PS, Panda SK, Nayak AK, Rana MK. Identification and Investigation of a Cryptic Binding Pocket of the P37 Envelope Protein of Monkeypox Virus by Molecular Dynamics Simulations. J Phys Chem Lett 2023; 14:3230-3235. [PMID: 36972468 DOI: 10.1021/acs.jpclett.3c00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The spread of the monkeypox virus has surged during the unchecked COVID-19 epidemic. The most crucial target is the viral envelope protein, p37. However, lacking p37's crystal structure is a significant hurdle to rapid therapeutic discovery and mechanism elucidation. Structural modeling and molecular dynamics (MD) of the enzyme with inhibitors reveal a cryptic pocket occluded in the unbound structure. For the first time, the inhibitor's dynamic flip from the active to the cryptic site enlightens p37's allosteric site, which squeezes the active site, impairing its function. A large force is needed for inhibitor dissociation from the allosteric site, ushering in its biological importance. In addition, hot spot residues identified at both locations and discovered drugs more potent than tecovirimat may enable even more robust inhibitor designs against p37 and accelerate the development of monkeypox therapies.
Collapse
Affiliation(s)
- Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University (DYPIU), Akurdi, Pune 411044, Maharashtra, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India
| | - Abhijit Kumar Nayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India
| |
Collapse
|
17
|
González-Paz L, Lossada C, Hurtado-León ML, Fernández-Materán FV, Paz JL, Parvizi S, Cardenas Castillo RE, Romero F, Alvarado YJ. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models. ACS OMEGA 2023; 8:7302-7318. [PMID: 36873006 PMCID: PMC9979342 DOI: 10.1021/acsomega.2c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.
Collapse
Affiliation(s)
- Lenin González-Paz
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Maria Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
| | - Francelys V. Fernández-Materán
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - José Luis Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, 15081 Lima, Perú
| | - Shayan Parvizi
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Freddy Romero
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Ysaias J. Alvarado
- Centro
de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE), Instituto
Venezolano de Investigaciones Cientificas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| |
Collapse
|
18
|
Bello M. Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets. J Biomol Struct Dyn 2022; 40:8375-8383. [PMID: 33843474 PMCID: PMC8054936 DOI: 10.1080/07391102.2021.1911857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
Ivermectin (IVM) is an FDA-approved drug that has shown antiviral activity against a wide variety of viruses in recent years. IVM inhibits the formation of the importin-α/β1 heterodimeric complex responsible for the translocation and replication of various viral species proteins. Also, IVM hampers SARS-CoV-2 replication in vitro; however, the molecular mechanism through which IVM inhibits SARS-CoV-2 is not well understood. Previous studies have explored the molecular mechanism through which IVM inhibits importin-α and several potential targets associated with COVID-19 by using docking approaches and MD simulations to corroborate the docked complexes. This study explores the energetic and structural properties through which IVM inhibits importin-α and five targets associated with COVID-19 by using docking and MD simulations combined with the molecular mechanics generalized Born surface area (MMGBSA) approach. Energetic and structural analysis showed that the main protease 3CLpro reached the most favorable affinity, followed by importin-α and Nsp9, which shared a similar relationship. Therefore, in vitro activity of IVM can be explained by acting as an inhibitor of importin-α, dimeric 3CLpro, and Nsp9, but mainly over dimeric 3CLpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
19
|
Dasgupta A, Bakshi A, Mukherjee S, Das K, Talukdar S, Chatterjee P, Mondal S, Das P, Ghosh S, Som A, Roy P, Kundu R, Sarkar A, Biswas A, Paul K, Basak S, Manna K, Saha C, Mukhopadhyay S, Bhattacharyya NP, De RK. Epidemiological challenges in pandemic coronavirus disease (COVID-19): Role of artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12:e1462. [PMID: 35942397 PMCID: PMC9350133 DOI: 10.1002/widm.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 05/02/2023]
Abstract
World is now experiencing a major health calamity due to the coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus clade 2. The foremost challenge facing the scientific community is to explore the growth and transmission capability of the virus. Use of artificial intelligence (AI), such as deep learning, in (i) rapid disease detection from x-ray or computed tomography (CT) or high-resolution CT (HRCT) images, (ii) accurate prediction of the epidemic patterns and their saturation throughout the globe, (iii) forecasting the disease and psychological impact on the population from social networking data, and (iv) prediction of drug-protein interactions for repurposing the drugs, has attracted much attention. In the present study, we describe the role of various AI-based technologies for rapid and efficient detection from CT images complementing quantitative real-time polymerase chain reaction and immunodiagnostic assays. AI-based technologies to anticipate the current pandemic pattern, prevent the spread of disease, and face mask detection are also discussed. We inspect how the virus transmits depending on different factors. We investigate the deep learning technique to assess the affinity of the most probable drugs to treat COVID-19. This article is categorized under:Application Areas > Health CareAlgorithmic Development > Biological Data MiningTechnologies > Machine Learning.
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Abhisek Bakshi
- Department of Information TechnologyBengal Institute of TechnologyKolkataWest BengalIndia
| | - Srijani Mukherjee
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Kuntal Das
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Soumyajeet Talukdar
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Pratyayee Chatterjee
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Sagnik Mondal
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Puspita Das
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Subhrojit Ghosh
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Archisman Som
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Pritha Roy
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Rima Kundu
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Akash Sarkar
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Arnab Biswas
- Department of Data Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Karnelia Paul
- Department of BiotechnologyUniversity of CalcuttaKolkataWest BengalIndia
| | - Sujit Basak
- Department of Physiology and BiophysicsStony Brook UniversityStony BrookNew YorkUSA
| | - Krishnendu Manna
- Department of Food and NutritionUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Chinmay Saha
- Department of Genome Science, School of Interdisciplinary StudiesUniversity of Kalyani, KalyaniNadiaWest BengalIndia
| | - Satinath Mukhopadhyay
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial HospitalKolkataWest BengalIndia
| | - Nitai P. Bhattacharyya
- Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial HospitalKolkataWest BengalIndia
| | - Rajat K. De
- Machine Intelligence UnitIndian Statistical InstituteKolkataWest BengalIndia
| |
Collapse
|
20
|
Gharaibeh L, Alameri MA, Sibai OA, Alfreahat S, Saeed F, Badran MA, Al-Qaisi A. Practices, knowledge, and attitudes of community pharmacists towards dispensing drugs during the COVID-19 pandemic: A cross sectional study from Jordan. Pharm Pract (Granada) 2022; 20:2692. [PMID: 36733512 PMCID: PMC9851824 DOI: 10.18549/pharmpract.2022.3.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background Pharmacists have an important role in providing correct information, education, and counseling to the public during the COVID-19 pandemic and other health crisis. In order to perform their duties in a correct manner, they must receive adequate and evidence-based information from official resources. Objectives The objectives of the study were to examine the practices of community pharmacists towards dispensing drugs during the COVI-19 pandemic and assess their knowledge concerning the safety and efficacy of these drugs in managing the COVID-19 infection. Methods This was a web-based cross-sectional study conducted through the distribution of the questionnaire via the social media through a google form. The drugs examined were azithromycin, hydroxychloroquine, dexamethasone, and certain antiviral drugs. Results A total of 485 community pharmacists responded to the questionnaire. Pharmacists dispensed these medications based on the physician's orders, 420 (86.6%), according to the pharmacist´s recommendations 327 (67.4%), or upon patient´s request 278 (57.3%). Azithromycin was the most dispensed drug and two thirds of the pharmacists dispensed drugs more than 10 times. Community pharmacists did not possess adequate knowledge concerning the effectiveness and safety of the drugs in the management of COVID-19 infection. In the multivariate linear regression analysis; education, type of university, and the average number of daily customers were statistically significant, p values: 0.004, 0.002, and 0.016, respectively. Pharmacists did not have a positive attitude towards dispensing drugs based on their own recommendations. More than half of the pharmacists agreed that they thought it was a correct decision to give these drugs based on their own judgment. Conclusion Community pharmacists should not receive information from non-official sources. Strict regulations and implementation of disciplinary actions against pharmacists that dispense prescription only drugs based on their medical judgment are necessary to stop this illegal behavior. A proactive role demonstrated by the pharmacists and based on scientific facts will reduce misconceptions and hazardous behavior of self-medication using prescription only drugs based on rumors and fictitious news.
Collapse
Affiliation(s)
- Lobna Gharaibeh
- PhD. Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Mariam Ahmad Alameri
- PhD. Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Obada A Sibai
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Shirin Alfreahat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Fadi Saeed
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | | | - Ahmed Al-Qaisi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| |
Collapse
|
21
|
Duverger E, Herlem G, Picaud F. Nanovectorization of Ivermectin to avoid overdose of drugs. J Biomol Struct Dyn 2022:1-14. [PMID: 35470771 DOI: 10.1080/07391102.2022.2066020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ivermectin is an antiparasitic drug that results in the death of the targeted parasites using several mechanical actions. While very well supported, it can induce in rare cases, adverse effects including coma and respiratory failure in case of overdose. This problem should be solved especially in an emergency situation. For instance, the first pandemic of the 21th century was officially declared in early 2020, and while several vaccines around the worlds have been used, an effective treatment against this new strain of coronavirus, better known as SARS-CoV-2, should also be considered, especially given the massive appearance of variants. From all the tested therapies, Ivermectin showed a potential reduction of the viral portability, but sparked significant debate around the dose needed to achieve these positive results. To answer this general question, we propose, using simulations, to show that the nanovectorization of Ivermectin on BN oxide nanosheets can increase the transfer of the drug to its target and thus decrease the quantity of drug necessary to cope with the disease. This first application could help science to develop such nanocargo to avoid adverse effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eric Duverger
- FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS, Besanco̧n, Cedex, France
| | - Guillaume Herlem
- Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne-Franche-Comté, UFR Sciences & Techniques, Besançon Cedex, France
| | - Fabien Picaud
- Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne-Franche-Comté, UFR Sciences & Techniques, Besançon Cedex, France
| |
Collapse
|
22
|
Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
24
|
Ray AK, Sen Gupta PS, Panda SK, Biswal S, Bhattacharya U, Rana MK. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Comput Biol Med 2022; 142:105183. [PMID: 34986429 PMCID: PMC8714248 DOI: 10.1016/j.compbiomed.2021.105183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022]
Abstract
With numerous infections and fatalities, COVID-19 has wreaked havoc around the globe. The main protease (Mpro), which cleaves the polyprotein to form non-structural proteins, thereby helping in the replication of SARS-CoV-2, appears as an attractive target for antiviral therapeutics. As FDA-approved drugs have shown effectiveness in targeting Mpro in previous SARS-CoV(s), molecular docking and virtual screening of existing antiviral, antimalarial, and protease inhibitor drugs were carried out against SARS-CoV-2 Mpro. Among 53 shortlisted drugs with binding energies lower than that of the crystal-bound inhibitor α-ketoamide 13 b (-6.7 kcal/mol), velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir (-9.1 to -7.5 kcal/mol) were the most significant on the list (hereafter referred to as the 53-list). Molecular dynamics (MD) simulations confirmed the stability of their Mpro complexes, with the MMPBSA binding free energy (ΔGbind) ranging between -124 kJ/mol (glecaprevir) and -28.2 kJ/mol (velpatasvir). Despite having the lowest initial binding energy, velpatasvir exhibited the highest ΔGbind value for escaping the catalytic site during the MD simulations, indicating its reduced efficacy, as observed experimentally. Available inhibition assay data adequately substantiated the computational forecast. Glecaprevir and nelfinavir (ΔGbind = -95.4 kJ/mol) appear to be the most effective antiviral drugs against Mpro. Furthermore, the remaining FDA drugs on the 53-list can be worth considering, since some have already demonstrated antiviral activity against SARS-CoV-2. Hence, theoretical pKi (Ki = inhibitor constant) values for all 53 drugs were provided. Notably, ΔGbind directly correlates with the average distance of the drugs from the His41-Cys145 catalytic dyad of Mpro, providing a roadmap for rapid screening and improving the inhibitor design against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Abhik Kumar Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Uddipan Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India.
| |
Collapse
|
25
|
Singh P, Khan A, Kumar R, Ojha KK, Singh VK, Srivastava A. In silico analysis of comparative affinity of phytosiderophore and bacillibactin for iron uptake by YSL15 and YSL18 receptors of Oryza sativa. J Biomol Struct Dyn 2022; 41:2733-2746. [PMID: 35139756 DOI: 10.1080/07391102.2022.2037464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Iron is an important micronutrient for plant growth and development. In the case of Oryza sativa, iron is made available primarily with the help of iron chelators called phytosiderophores i.e. variants of deoxymugineic acid (DMA). They bind with ferric ions and get internalized through Yellow Stripe Like transporters viz. YSL15 and YSL18. However, due to low amount of secretion of phytosiderophores, rice suffers from iron deficiency. Alternatively, siderophores of plant growth promoting rhizobacteria may support iron uptake and make it available to plants via transporting ferric ions possibly through the same transporters. Present study aims to assess comparative binding of DMA and a xenosiderophore (siderophores used by organisms other than the ones producing them) of rhizobacteria i.e. bacillibactin with Fe3+ ion and subsequent transporters of rice. Protein-protein interaction and gene expression analysis predicts uptake of Fe3+ by YSL15 from the rhizosphere region and further distribution through YSL18 with the help of various predicted functional partners. Docking studies confirm the thermodynamically more favourable structure of bacillibactin-Fe3+ complex than DMA-Fe3+ complex. Molecular modelling of YSL15 and YSL18 was done through ab initio method and their evaluation by Ramachandran plot, ProSA, ERRAT value and verify 3 D score revealed a good quality models. Comparative binding assessment through docking and molecular dynamics simulation suggests better binding energies of YSL transporters with bacillibactin-Fe3+ complex as compared to DMA-Fe3+ complex. The current study suggests possible application of xenosiderophores of PGPR origin in supporting plant growth via iron uptake and distribution in rice.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Rakesh Kumar
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Krishna Kumar Ojha
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
26
|
Malek RJ, Bill CA, Vines CM. Clinical drug therapies and biologicals currently used or in clinical trial to treat COVID-19. Biomed Pharmacother 2021; 144:112276. [PMID: 34624681 PMCID: PMC8486678 DOI: 10.1016/j.biopha.2021.112276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The potential emergence of SARS-CoV-2 variants capable of escaping vaccine-generated immune responses poses a looming threat to vaccination efforts and will likely prolong the duration of the COVID-19 pandemic. Additionally, the prevalence of beta coronaviruses circulating in animals and the precedent they have set in jumping into human populations indicates that they pose a continuous threat for future pandemics. Currently, only one therapeutic is approved by the U.S. Food and Drug Administration (FDA) for use in treating COVID-19, remdesivir, although other therapies are authorized for emergency use due to this pandemic being a public health emergency. In this review, twenty-four different treatments are discussed regarding their use against COVID-19 and any potential future coronavirus-associated illnesses. Their traditional use, mechanism of action against COVID-19, and efficacy in clinical trials are assessed. Six treatments evaluated are shown to significantly decrease mortality in clinical trials, and ten treatments have shown some form of clinical efficacy.
Collapse
Affiliation(s)
- Rory J. Malek
- University of Texas at Austin, Austin TX 78705, United States
| | - Colin A. Bill
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso TX 79968, United States
| | - Charlotte M. Vines
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso TX 79968, United States,Corresponding author
| |
Collapse
|
27
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. Biophys Chem 2021; 278:106677. [PMID: 34428682 PMCID: PMC8373590 DOI: 10.1016/j.bpc.2021.106677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Venezuela.
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Laura Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
| |
Collapse
|
28
|
Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166294. [PMID: 34687900 PMCID: PMC8526435 DOI: 10.1016/j.bbadis.2021.166294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/β1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia; Tropical Medicine and Biology Platform, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia.
| |
Collapse
|
29
|
Mohanty L, Mishra C, Pradhan SK, Mishra SR, Nayak G. Identification of novel polymorphism and in silico analysis of caprine DNAJB3 gene. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
COVID-19: potential therapeutics for pediatric patients. Pharmacol Rep 2021; 73:1520-1538. [PMID: 34458951 PMCID: PMC8403523 DOI: 10.1007/s43440-021-00316-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The global spread of COVID-19 has imparted significant economic, medical, and social burdens. Like adults, children are affected by this pandemic. However, milder clinical symptoms are often experienced by them. Only a minimal proportion of the affected patients may develop severe and complicated COVID-19. Supportive treatment is recommended in all patients. Antiviral and immunomodulatory medications are spared for hospitalized children with respiratory distress or severe to critical disease. Up till now, remdesivir is the only USFDA-approved anti-COVID-19 medication indicated in the majority of symptomatic patients with moderate to severe disease. Dexamethasone is solely recommended in patients with respiratory distress maintained on oxygen or ventilatory support. The use of these medications in pediatric patients is founded on evidence deriving from adult studies. No randomized controlled trials (RCTs) involving pediatric COVID-19 patients have assessed these medications' efficacy and safety, among others. Similarly, three novel monoclonal anti-SARS-CoV-2 spike protein antibodies, bamlanivimab, casirivimab and imdevimab, have been recently authorized by the USFDA. Nonetheless, their efficacy has not been demonstrated by multiple RCTs. In this review, we aim to dissect the various potential therapeutics used in children with COVID-19. We aspire to provide a comprehensive review of the available evidence and display the mechanisms of action and the pharmacokinetic properties of the studied therapeutics. Our review offers an efficient and practical guide for treating children with COVID-19.
Collapse
|
31
|
M Mansour S, N Shamma R, A Ahmed K, A Sabry N, Esmat G, A Mahmoud A, Maged A. Safety of inhaled ivermectin as a repurposed direct drug for treatment of COVID-19: A preclinical tolerance study. Int Immunopharmacol 2021; 99:108004. [PMID: 34333358 PMCID: PMC8299187 DOI: 10.1016/j.intimp.2021.108004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Introduction SARS-CoV-2 replication in cell cultures has been shown to be inhibited by ivermectin. However, ivermectin's low aqueous solubility and bioavailability hinders its application in COVID-19 treatment. Also, it has been suggested that best outcomes for this medication can be achieved via direct administration to the lung. Objectives This study aimed at evaluating the safety of a novel ivermectin inhalable formulation in rats as a pre-clinical step. Methods Hydroxy propyl-β-cyclodextrin (HP-β-CD) was used to formulate readily soluble ivermectin lyophilized powder. Adult male rats were used to test lung toxicity for ivermectin-HP-β-CD formulations in doses of 0.05, 0.1, 0.2, 0.4 and 0.8 mg/kg for 3 successive days. Results The X-ray diffraction for lyophilized ivermectin-HP-β-CD revealed its amorphous structure that increased drug aqueous solubility 127-fold and was rapidly dissolved within 5 s in saline. Pulmonary administration of ivermectin-HP-β-CD in doses of 0.2, 0.4 and 0.8 mg/kg showed dose-dependent increase in levels of TNF-α, IL-6, IL-13 and ICAM-1 as well as gene expression of MCP-1, protein expression of PIII-NP and serum levels of SP-D paralleled by reduction in IL-10. Moreover, lungs treated with ivermectin (0.2 mg/kg) revealed mild histopathological alterations, while severe pulmonary damage was seen in rats treated with ivermectin at doses of 0.4 and 0.8 mg/kg. However, ivermectin-HP-β-CD formulation administered in doses of 0.05 and 0.1 mg/kg revealed safety profiles. Conclusion The safety of inhaled ivermectin-HP-β-CD formulation is dose-dependent. Nevertheless, use of low doses (0.05 and 0.1 mg/kg) could be considered as a possible therapeutic regimen in COVID-19 cases.
Collapse
Affiliation(s)
- Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Amr Maged
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
32
|
Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021; 26:3526. [PMID: 34207756 PMCID: PMC8228528 DOI: 10.3390/molecules26123526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, humanity has faced an important global threat. Many studies have been published on the origin, structure, and mechanism of action of the SARS-CoV-2 virus and the treatment of its disease. The priority of scientists all over the world has been to direct their time to research this subject. In this review, we highlight chemical studies and therapeutic approaches to overcome COVID-19 with seven different sections. These sections are the structure and mechanism of action of SARS-CoV-2, immunotherapy and vaccine, computer-aided drug design, repurposing therapeutics for COVID-19, synthesis of new molecular structures against COVID-19, food safety/security and functional food components, and potential natural products against COVID-19. In this work, we aimed to screen all the newly synthesized compounds, repurposing chemicals covering antiviral, anti-inflammatory, antibacterial, antiparasitic, anticancer, antipsychotic, and antihistamine compounds against COVID-19. We also highlight computer-aided approaches to develop an anti-COVID-19 molecule. We explain that some phytochemicals and dietary supplements have been identified as antiviral bioproducts, which have almost been successfully tested against COVID-19. In addition, we present immunotherapy types, targets, immunotherapy and inflammation/mutations of the virus, immune response, and vaccine issues.
Collapse
Affiliation(s)
- Aliye Gediz Erturk
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Arzu Sahin
- Department of Basic Medical Sciences—Physiology, Faculty of Medicine, Uşak University, 1-EylulUşak 64000, Turkey;
| | - Ebru Bati Ay
- Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Emel Pelit
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey;
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Irem Kulu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey;
| | - Melek Gul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey;
| | - Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| | - Sirin Oba Ilter
- Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Tuba Yildirim
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| |
Collapse
|
33
|
Chemotherapy vs. Immunotherapy in combating nCOVID19: An update. Hum Immunol 2021; 82:649-658. [PMID: 34020832 PMCID: PMC8130497 DOI: 10.1016/j.humimm.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
The nCOVID-19 pandemic initiated its course of contagion from the city of Wuhan and now it has spread all over the globe. SARS-CoV-2 is the causative virus and the infection as well as its symptoms are distributed across the multi-organ perimeters. Interactions between the host and virus governs the induction of ‘cytokine storm’ resulting various immunopathological consequences leading to death. Till now it has caused tens of millions of casualties and yet no credible cure has emerged to vision. This article presents a comprehensive overview on the two most promising remedial approaches that are being attempted for the management, treatment, and plausible cure of nCOVID-19. In this context, chemotherapeutic approach primarily aims to interrupt the interactions between the host and the virus causing inhibition of its entry into the host cell and/or its proliferation and suppressing the inflammatory milieu in the infected patients. On the other side, immunotherapeutic approaches aim to modulate the host immunity by fine tuning the inflammatory signaling cascades to achieve phylaxis from the virus and restoring immune-homeostasis. Considering most of the path-breaking findings, combinatorial therapy involving of chemotherapeutics as well as vaccine could usher to be a hope for all of us to eradicate the crisis
Collapse
|
34
|
Galvez J, Zanni R, Galvez-Llompart M, Benlloch JM. Macrolides May Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Entry into Cells: A Quantitative Structure Activity Relationship Study and Experimental Validation. J Chem Inf Model 2021; 61:2016-2025. [PMID: 33734704 PMCID: PMC7986980 DOI: 10.1021/acs.jcim.0c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The global pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening the health and economic systems worldwide. Despite the enormous efforts of scientists and clinicians around the world, there is still no drug or vaccine available worldwide for the treatment and prevention of the infection. A rapid strategy for the identification of new treatments is based on repurposing existing clinically approved drugs that show antiviral activity against SARS-CoV-2 infection. In this study, after developing a quantitative structure activity relationship analysis based on molecular topology, several macrolide antibiotics are identified as promising SARS-CoV-2 spike protein inhibitors. To confirm the in silico results, the best candidates were tested against two human coronaviruses (i.e., 229E-GFP and SARS-CoV-2) in cell culture. Time-of-addition experiments and a surrogate model of viral cell entry were used to identify the steps in the virus life cycle inhibited by the compounds. Infection experiments demonstrated that azithromycin, clarithromycin, and lexithromycin reduce the intracellular accumulation of viral RNA and virus spread as well as prevent virus-induced cell death, by inhibiting the SARS-CoV-2 entry into cells. Even though the three macrolide antibiotics display a narrow antiviral activity window against SARS-CoV-2, it may be of interest to further investigate their effect on the viral spike protein and their potential in combination therapies for the coronavirus disease 19 early stage of infection.
Collapse
Affiliation(s)
- Jorge Galvez
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Riccardo Zanni
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
- Instituto de Tecnología
Química, UPV-CSIC, Universidad Politícnica
de Valencia, Valencia 46022,
Spain
| | - Jose Maria Benlloch
- Instituto de Instrumentación para
Imagen Molecular, Centro Mixto CSIC—Universitat
Politècnica de València, Valencia
46022, Spain
| |
Collapse
|
35
|
Kory P, Meduri GU, Varon J, Iglesias J, Marik PE. Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19. Am J Ther 2021; 28:e299-e318. [PMID: 34375047 PMCID: PMC8088823 DOI: 10.1097/mjt.0000000000001377] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND After COVID-19 emerged on U.S shores, providers began reviewing the emerging basic science, translational, and clinical data to identify potentially effective treatment options. In addition, a multitude of both novel and repurposed therapeutic agents were used empirically and studied within clinical trials. AREAS OF UNCERTAINTY The majority of trialed agents have failed to provide reproducible, definitive proof of efficacy in reducing the mortality of COVID-19 with the exception of corticosteroids in moderate to severe disease. Recently, evidence has emerged that the oral antiparasitic agent ivermectin exhibits numerous antiviral and anti-inflammatory mechanisms with trial results reporting significant outcome benefits. Given some have not passed peer review, several expert groups including Unitaid/World Health Organization have undertaken a systematic global effort to contact all active trial investigators to rapidly gather the data needed to grade and perform meta-analyses. DATA SOURCES Data were sourced from published peer-reviewed studies, manuscripts posted to preprint servers, expert meta-analyses, and numerous epidemiological analyses of regions with ivermectin distribution campaigns. THERAPEUTIC ADVANCES A large majority of randomized and observational controlled trials of ivermectin are reporting repeated, large magnitude improvements in clinical outcomes. Numerous prophylaxis trials demonstrate that regular ivermectin use leads to large reductions in transmission. Multiple, large "natural experiments" occurred in regions that initiated "ivermectin distribution" campaigns followed by tight, reproducible, temporally associated decreases in case counts and case fatality rates compared with nearby regions without such campaigns. CONCLUSIONS Meta-analyses based on 18 randomized controlled treatment trials of ivermectin in COVID-19 have found large, statistically significant reductions in mortality, time to clinical recovery, and time to viral clearance. Furthermore, results from numerous controlled prophylaxis trials report significantly reduced risks of contracting COVID-19 with the regular use of ivermectin. Finally, the many examples of ivermectin distribution campaigns leading to rapid population-wide decreases in morbidity and mortality indicate that an oral agent effective in all phases of COVID-19 has been identified.
Collapse
Affiliation(s)
- Pierre Kory
- Front-Line Covid-19 Critical Care Alliance, Madison, WI
| | - Gianfranco Umberto Meduri
- Memphis VA Medical Center—University of Tennessee Health Science Center, Pulmonary, Critical Care, and Research Services, Memphis, TN
| | - Joseph Varon
- University of Texas Health Science Center, Critical Care Service, Houston, TX
| | - Jose Iglesias
- Department of Medicine, Hackensack School of Medicine, Seton Hall, NJ; and
| | - Paul E. Marik
- Eastern Virginia Medical School, Division of Pulmonary and Critical Care, Norfolk, VA
| |
Collapse
|
36
|
Wehbe Z, Wehbe M, Iratni R, Pintus G, Zaraket H, Yassine HM, Eid AH. Repurposing Ivermectin for COVID-19: Molecular Aspects and Therapeutic Possibilities. Front Immunol 2021; 12:663586. [PMID: 33859652 PMCID: PMC8043070 DOI: 10.3389/fimmu.2021.663586] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
As of January 2021, SARS-CoV-2 has killed over 2 million individuals across the world. As such, there is an urgent need for vaccines and therapeutics to reduce the burden of COVID-19. Several vaccines, including mRNA, vector-based vaccines, and inactivated vaccines, have been approved for emergency use in various countries. However, the slow roll-out of vaccines and insufficient global supply remains a challenge to turn the tide of the pandemic. Moreover, vaccines are important tools for preventing the disease but therapeutic tools to treat patients are also needed. As such, since the beginning of the pandemic, repurposed FDA-approved drugs have been sought as potential therapeutic options for COVID-19 due to their known safety profiles and potential anti-viral effects. One of these drugs is ivermectin (IVM), an antiparasitic drug created in the 1970s. IVM later exerted antiviral activity against various viruses including SARS-CoV-2. In this review, we delineate the story of how this antiparasitic drug was eventually identified as a potential treatment option for COVID-19. We review SARS-CoV-2 lifecycle, the role of the nucleocapsid protein, the turning points in past research that provided initial 'hints' for IVM's antiviral activity and its molecular mechanism of action- and finally, we culminate with the current clinical findings.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Maya Wehbe
- Department of Internal Medicine, Basingstoke & North Hampshire Hospital, Basingstoke, United Kingdom
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research (CIDR), Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi M. Yassine
- Biomedical Research Center, Q.U. Health, Qatar University, Doha, Qatar
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Q.U. Health, Qatar University, Doha, Qatar
| |
Collapse
|
37
|
Use of ivermectin in the treatment of Covid-19: A pilot trial. Toxicol Rep 2021; 8:505-510. [PMID: 33723507 PMCID: PMC7942165 DOI: 10.1016/j.toxrep.2021.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/12/2023] Open
Abstract
Ivermectin has an antiviral effect on DNA and RNA viral families. This pilot clinical trial demonstrated the antiviral effects and safety of ivermectin in patients with mild COVID-19. The antiviral effect of ivermectin appears to be dose-dependent. Larger clinical trials should be carried out to confirm its clinical efficacy for COVID-19.
Objectives In this randomized open-label trial pilot study we assessed the antiviral effects and safety of various doses of ivermectin in patients with mild clinical symptoms of COVID-19. Methods Patients were randomly assigned to receive standard of care (SOC) treatment at hospital admission; SOC plus ivermectin 100 mcg/kg; SOC plus ivermectin 200 mcg/kg; or SOC plus ivermectin 400 mcg/kg. The primary assessed endpoint was the proportion of patients who achieved two consecutive negative SARS-CoV-2 RT PCR tests within 7 days of the start of the dosing period. This study was registered at ClinicalTrials.gov (NCT04431466). Results A total of 32 patients were enrolled and randomized to treatment. SOC treatment together with ivermectin did not result in any serious adverse events. All patients exhibited a reduction in SARS-CoV-2 viral load within 7 days; however, those who received ivermectin had a more consistent decrease as compared to the SOC alone group, characterized by a shorter time for obtaining two consecutive negative SARS-CoV-2 RT PCR tests. Conclusions Ivermectin is safe in patients with SARS-CoV-2, reducing symptomatology and the SARS-CoV-2 viral load. This antiviral effect appears to depend on the dose used, and if confirmed in future studies, it suggests that ivermectin may be a useful adjuvant to the SOC treatment in patients with mild COVID-19 symptoms.
Collapse
|
38
|
Khan MSI, Khan MSI, Debnath CR, Nath PN, Mahtab MA, Nabeka H, Matsuda S, Akbar SMF. Reply to "Ivermectin Treatment May Improve the Prognosis of Patients With COVID-19". Arch Bronconeumol 2020; 57:65-66. [PMID: 34629660 PMCID: PMC7774457 DOI: 10.1016/j.arbres.2020.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md Saiful Islam Khan
- COVID-19 Management Team, Mymensingh Medical College and Hospital, Mymensingh 2207, Bangladesh
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Chitto Ranjan Debnath
- Department of Hepatology, Mymensingh Medical College and Hospital, Mymensingh 2207, Bangladesh
| | - Progga Nanda Nath
- COVID-19 Management Team, Mymensingh Medical College and Hospital, Mymensingh 2207, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
39
|
Issa M, Elaziz MA. Analyzing COVID-19 virus based on enhanced fragmented biological Local Aligner using improved Ions Motion Optimization algorithm. Appl Soft Comput 2020; 96:106683. [PMID: 32901204 PMCID: PMC7467904 DOI: 10.1016/j.asoc.2020.106683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 (COVID-19) virus is a havoc pandemic that infects millions of people over the world and thousands of infected cases dead. So, it is vital to propose new intelligent data analysis tools and enhance the existed ones to aid scientists in analyzing the COVID-19 virus. Fragmented Local Aligner Technique (FLAT) is a data analysis tool that is used for detecting the longest common consecutive subsequence (LCCS) between a pair of biological data sequences. FLAT is an aligner tool that can be used to find the LCCS between COVID-19 virus and other viruses to help in other biochemistry and biological operations. In this study, the enhancement of FLAT based on modified Ions Motion Optimization (IMO) is developed to produce acceptable LCCS with efficient performance in a reasonable time. The proposed method was tested to find the LCCS between Orflab poly-protein and surface glycoprotein of COVID-19 and other viruses. The experimental results demonstrate that the proposed model succeeded in producing the best LCCS against other algorithms using real LCCS measured by the SW algorithm as a reference.
Collapse
Affiliation(s)
- Mohamed Issa
- Computer and Systems Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Abd Elaziz
- Hubei Engineering Research Center on Big Data Security, School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.,Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
40
|
Sen Gupta PS, Biswal S, Singha D, Rana MK. Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2. J Biomol Struct Dyn 2020; 39:5327-5333. [DOI: 10.1080/07391102.2020.1784795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, India
| | - Dipankar Singha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, India
| |
Collapse
|