1
|
Oh JH, Park J, Kang HK, Park HJ, Park Y. Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii. Biomed Pharmacother 2024; 181:117724. [PMID: 39612861 DOI: 10.1016/j.biopha.2024.117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Although the discovery of antibiotics has made significant positive contributions to public health and medicine, it now poses a serious threat due to the increasing antibiotic resistance in various bacteria. Carbapenem-resistant and multidrug-resistant (MDR) Acinetobacter baumannii is spreading globally, exacerbating respiratory diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Antimicrobial peptides (AMPs), with broad antibacterial activity, have emerged as promising alternatives for treating MDR A. baumannii infections. The AMP P5 exhibits strong antibacterial and anti-biofilm activities against MDR A. baumannii strains isolated from patients. Compared to colistin, a commonly used antibiotic for MDR A. baumannii infections, P5 has a lower potential for inducing drug resistance. Additionally, P5 displays stability in human serum and minimal cytotoxicity in human cell lines. P5 not only suppressed the overexpression of pro-inflammatory cytokines and inflammatory transcription factors in lung epithelial cells (A549) and in a mouse model of respiratory infection but also alleviated lung tissue damage caused by infection. Moreover, P5 effectively alleviated excessive mucin secretion in vitro and in vivo by inhibiting inflammatory transcription factors, epidermal growth factor receptor, and signal transducer and activator of transcription 3-key regulators of mucin expression, a hallmark of inflammatory respiratory diseases. These findings highlight the therapeutic potential of P5 in treating MDR A. baumannii infections and associated inflammatory respiratory conditions.
Collapse
Affiliation(s)
- Jun Hee Oh
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Republic of Korea
| | - Hee Kyoung Kang
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Hee Joo Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea; Research Center for Proteinaceous Materials (RCPM), Chosun University Gwangju 61452, Republic of Korea.
| |
Collapse
|
2
|
López-Aguilar KK, Vargas-Camaño ME, Lozano-Patiño F, Castrejón Vázquez MI. Recurrent respiratory papillomatosis: Immunological mechanisms involved in recurrence. Int Rev Immunol 2024:1-14. [PMID: 39509110 DOI: 10.1080/08830185.2024.2425428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Recurrent respiratory papillomatosis is a benign neoplastic pathology in children, young people, and adults. It causes a significant deterioration in the quality of life, with symptoms typically referred to as dysphonia and hoarseness. This disease, with variable clinical courses ranging from spontaneous resolution to dissemination of the lower airway or airway obstruction that puts the individual's life at risk, characteristically requires multiple surgical interventions. Therapy with adjuvant drugs does not yet prove the effectiveness necessary to limit the recurrence and need for surgical reoperation in this condition. The review aimed to synthesize the immunopathogenic mechanisms of relapse in recurrent respiratory papillomatosis published in the current literature and the immunological implication of risk factors and treatment.
Collapse
Affiliation(s)
- Katya Karen López-Aguilar
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - María Eugenia Vargas-Camaño
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Fernando Lozano-Patiño
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - María Isabel Castrejón Vázquez
- Centro Medico Nacional "20 de Noviembre" Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| |
Collapse
|
3
|
Raherison C, Aguilaniu B, Zysman M, Burgel PR, Hess D, Ouaalaya EH, Tran TC, Roche N. Influenza and pneumococcal vaccination in patients with COPD from 3 French cohorts: Insufficient coverage and associated factors. Respir Med Res 2024; 86:101112. [PMID: 38901323 DOI: 10.1016/j.resmer.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Low vaccination rates against influenza and Streptococcus (S.) pneumoniae infections in COPD could impair outcomes. Understanding underlying factors could help improving implementation. OBJECTIVES To describe vaccination rates at inclusion in COPD cohorts and analyze associated factors. METHODS Between 2012 and 2018, 5927 patients with sufficient data available were recruited in 3 French COPD cohorts (2566 in COLIBRI-COPD, 2653 in PALOMB and 708 in Initiatives BPCO). Data at inclusion were pooled to describe vaccination rates and analyze associated factors. RESULTS Mean age was 66 years, 34 % were women, 35 % were current smokers, mean FEV1 was 58 % predicted, 22 % reported ≥2 exacerbations in the year prior to inclusion, mMRC dyspnea grade was ≥2 in 59 %, 52 % had cardiovascular comorbidities and 9 % a history of asthma. Vaccinations rates in the year prior to study entry were 34.4 % for influenza + S. pneumoniae, 17.5 % for influenza alone and 8.9 % for S. pneumoniae alone. In multivariate analyses, influenza vaccination rate was greater in older age, smoking status, low FEV1, exacerbation history, mMRC dyspnea>2, asthma history, hypertension, diabetes mellitus, and the year of inclusion. SP vaccination was associated with type of practice of the respiratory physician, age, smoking status, FEV1, exacerbation history, dyspnea grade, asthma history and the year of inclusion. CONCLUSION Rates of vaccination against influenza and S. pneumoniae infection at inclusion in COPD cohorts remain insufficient and vaccination appears restricted to patients with specific features especially regarding severity and comorbidities, which is not consistent with current recommendations.
Collapse
Affiliation(s)
- Chantal Raherison
- Service de Pneumologie, CHU Guadeloupe Pointe-à-Pitre/Abymes - BP 465, 97159 Pointe-à-Pitre CEDEX, France; PALOMB cohort, ISPED, InsermU1219-Epicene, 146 rue Léo Saignat 33076 Bordeaux CEDEX, France
| | - Bernard Aguilaniu
- Service de Pneumologie, CHU Grenoble Alpes - CS 10217 - 38043 Grenoble CEDEX 9, France; COLIBRI-Pneumo platform, aCCPP, 19 Avenue Marcelin Berthelot, 38100 Grenoble, France
| | - Maeva Zysman
- Service de Pneumologie, CHU Bordeaux, INSERM U1045, CIC 1401, Centre François Magendie -Hôpital Haut-Lévêque - Groupe hospitalier Sud, Avenue de Magellan, 33604 PESSAC CEDEX, France
| | - Pierre-Régis Burgel
- Service de Pneumologie, Hôpital et Institut Cochin (INSERM UMR 1016), APHP, Université Paris-Cité, 27 rue du Fbg St Jacques, 75014 Paris, France; Initiatives BPCO group, 68 bd St Michel, 75006 Paris, France
| | - David Hess
- COLIBRI-Pneumo platform, aCCPP, 19 Avenue Marcelin Berthelot, 38100 Grenoble, France
| | - El Hassane Ouaalaya
- PALOMB cohort, ISPED, InsermU1219-Epicene, 146 rue Léo Saignat 33076 Bordeaux CEDEX, France; Effistat, 22 rue du Pont-Neuf - 75001 Paris, France
| | | | - Nicolas Roche
- Service de Pneumologie, Hôpital et Institut Cochin (INSERM UMR 1016), APHP, Université Paris-Cité, 27 rue du Fbg St Jacques, 75014 Paris, France; Initiatives BPCO group, 68 bd St Michel, 75006 Paris, France.
| |
Collapse
|
4
|
Della Sala F, Barretta M, di Gennaro M, Paradiso R, Borriello G, Borzacchiello A. Bio-Composite Nanogels Based on Chitosan and Hyaluronic Acid for the Treatment of Lung Infections. Gels 2024; 10:709. [PMID: 39590064 PMCID: PMC11594208 DOI: 10.3390/gels10110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Pathogen infections constitute a serious problem in the field of lung diseases, especially in severe conditions such as chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). Exacerbations of COPD and ARDS can be significantly influenced by bacterial infections from Pseudomonas aeruginosa and Staphylococcus aureus, which can hasten the decline of lung function. Moreover, the abuse of high-dose antibiotics used to treat obstinate infections is contributing to the growing issue of multidrug resistance (MDR) by microorganisms. Currently, new therapeutic strategies capable of surprising and fighting pathogens with new modalities are missing. In this framework, bio-composite nanogels (NGs) based on natural polymers with intrinsic antimicrobial properties such as chitosan (CS) and hyaluronic acid (HA) have been developed for the treatment of lung infections. The DLS and TEM results showed that NGs have a spherical shape with a size smaller than 100 nm, making it possible for them to potentially reach the lung site and evade the clearance of alveolar macrophages. FTIR spectra demonstrated that only electrostatic interactions, not chemical reactions, occur between NG precursors. Rheological analysis highlighted NGs' injectability and mucoadhesive capacity. Moreover, an MTT assay on human lung fibroblast cells for biocompatibility evaluation showed good viability up to 48 h. Finally, an antimicrobial test on P. aeruginosa and S. aureus showed an increase in antimicrobial activity as the NG concentration increases, with a reduction in bacterial growth of around 60% at 375 μg/mL.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.B.); (M.d.G.)
| | - Marco Barretta
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.B.); (M.d.G.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.B.); (M.d.G.)
| | - Rubina Paradiso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici, Italy; (R.P.); (G.B.)
| | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici, Italy; (R.P.); (G.B.)
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.B.); (M.d.G.)
| |
Collapse
|
5
|
Panda B, Momin A, Devabattula G, Shrilekha C, Sharma A, Godugu C. Peptidyl arginine deiminase-4 inhibitor ameliorates pulmonary fibrosis through positive regulation of developmental endothelial locus-1. Int Immunopharmacol 2024; 140:112861. [PMID: 39106716 DOI: 10.1016/j.intimp.2024.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Recurring lung injury, chronic inflammation, aberrant tissue repair and impaired tissue remodelling contribute to the pathogenesis of pulmonary fibrosis (PF). Neutrophil extracellular traps (NETs) are released by activated neutrophils to trap, immobilise and kill invading pathogen and is facilitated by peptidyl arginine deiminase-4 (PAD-4). Dysregulated NETs release and abnormal PAD-4 activation plays a crucial role in activating pro-fibrotic events in PF. Developmental endothelial locus-1 (Del-1), expressed by the endothelial cells of lungs and brain acts as an endogenous inhibitor of inflammation and fibrosis. We have hypothesised that PAD-4 inhibitor exerts anti-inflammatory and anti-fibrotic effects in mice model of PF. We have also hypothesised by PAD-4 regulated the transcription of Del-1 through co-repression and its inhibition potentiates anti-fibrotic effects of Del-1. In our study, the PAD-4 inhibitor chloro-amidine (CLA) demonstrated anti-NETotic and anti-inflammatory effects in vitro in differentiated HL-60 cells. In a bleomycin-induced PF mice model, CLA administration in two doses (3 mg/kg, I.P and 10 mg/kg, I.P) improved lung function, normalized bronchoalveolar lavage fluid parameters, and attenuated fibrotic events, including markers of extracellular matrix and epithelial-mesenchymal transition. Histological analyses confirmed the restoration of lung architecture and collagen deposition with CLA treatment. ELISA, IHC, IF, RT-PCR, and immunoblot analysis supported the anti-NETotic effects of CLA. Furthermore, BLM-induced PF reduced Del-1 and p53 expression, which was normalized by CLA treatment. These findings suggest that inhibition of PAD-4 results in amelioration of PF in animal model and may involve modulation of Del-1 and p53 pathways, warranting further investigation.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Geetanjali Devabattula
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chilvery Shrilekha
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Anamika Sharma
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
6
|
Du X, Chen Y, Zhang R, Shi L, Ren Y. Effects of Qingjin Huatan decoction on pulmonary function and inflammatory mediators in acute exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1466677. [PMID: 39494348 PMCID: PMC11528017 DOI: 10.3389/fphar.2024.1466677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Background The inflammatory response is the main pathophysiological basis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and is a key factor leading to frequent exacerbations and disease progression. Suppressing the inflammatory response can improve pulmonary function, prognosis, and quality of life in AECOPD patients. Purpose To evaluate the effect of Qingjin Huatan decoction (QHD) on pulmonary function and inflammatory mediators in AECOPD patients. Methods Randomized controlled trials (RCTs) on the treatment of AECOPD with QHD were retrieved from eight Chinese and English electronic databases up to 31 May 2024. The quality of the studies was assessed using the Cochrane Risk of Bias Tool and the modified Jadad scale. Statistical analysis, sensitivity analysis, and publication bias assessment were performed using Stata 17.0 software. Results A total of 40 RCTs involving 3,475 AECOPD patients were included. Compared to conventional treatment, QHD significantly improved pulmonary function, with increases in FEV1 (MD = 0.30, 95% CI: 0.26 to 0.34, p = 0.000), FVC (MD = 0.34, 95% CI: 0.27 to 0.41, p = 0.000), FEV1/FVC (MD = 6.07, 95% CI: 5.55 to 6.58, p = 0.000), and PaO2 (MD = 7.20, 95% CI: 4.94 to 9.47, p = 0.000), and a decrease in PaCO2 (MD = -5.37, 95% CI: 7.99 to -2.74, p = 0.000). QHD also significantly suppressed the expression of inflammatory mediators, including TNF-α (MD = -10.87, 95% CI: 12.51 to -9.23, p = 0.000), IL-1β (MD = -13.63, 95% CI: -16.31 to -10.95, p = 0.000), IL-6 (MD = -7.58, 95% CI: -10.10 to -5.06, p = 0.000), IL-8 (MD = -9.45, 95% CI: -12.05 to -6.85, p = 0.000), CRP (MD = -5.62, 95% CI: -6.60 to -4.65, p = 0.000), and PCT (MD = -0.84, 95% CI: -1.07 to -0.62, p = 0.000). Additionally, QHD improved clinical efficacy (RR = 4.16, 95% CI: 3.26 to 5.30, p = 0.000) without increasing the incidence of adverse reactions (RR = 1.04, 95% CI: 0.68 to 1.61, p = 0.000). Conclusion Existing evidence suggests that QHD can significantly improve pulmonary function, suppress the expression of inflammatory mediators, and enhance clinical efficacy in AECOPD patients, with a good safety profile. Given the limitations of this study, more high-quality studies are needed to provide reliable evidence. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=559436, identifier CRD42024559436.
Collapse
Affiliation(s)
- Xuqin Du
- School of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, China
| | - Yong Chen
- Department of Classic Traditional Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ruodai Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Lipeng Shi
- Department of Classic Traditional Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yi Ren
- Department of Classic Traditional Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
7
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
8
|
Caselli L, Rodrigues GR, Franco OL, Malmsten M. Pulmonary delivery systems for antimicrobial peptides. Crit Rev Biotechnol 2024; 44:963-980. [PMID: 37731338 DOI: 10.1080/07388551.2023.2254932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Bacterial infections of the respiratory tract cause millions of deaths annually. Several diseases exist wherein (1) bacterial infection is the main cause of disease (e.g., tuberculosis and bacterial pneumonia), (2) bacterial infection is a consequence of disease and worsens the disease prognosis (e.g., cystic fibrosis), and (3) bacteria-triggered inflammation propagates the disease (e.g., chronic obstructive pulmonary disease). Current approaches to combat infections generally include long and aggressive antibiotic treatments, which challenge patient compliance, thereby making relapses common and contributing to the development of antibiotic resistance. Consequently, the proportion of infections that cannot be treated with conventional antibiotics is rapidly increasing, and novel therapies are urgently needed. In this context, antimicrobial peptides (AMPs) have received considerable attention as they may exhibit potent antimicrobial effects against antibiotic-resistant bacterial strains but with modest toxicity. In addition, some AMPs suppress inflammation and provide other host defense functions (motivating the alternative term host defense peptides (HDPs)). However, the delivery of AMPs is complicated because they are large, positively charged, and amphiphilic. As a result of this, AMP delivery systems have recently attracted attention. For airway infections, the currently investigated delivery approaches range from aerosols and dry powders to various self-assembly and nanoparticle carrier systems, as well as their combinations. In this paper, we discuss recent developments in the field, ranging from mechanistic mode-of-action studies to the application of these systems for combating bacterial infections in the airways.
Collapse
Affiliation(s)
| | - Gisele R Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Martin Malmsten
- Physical Chemistry 1, University of Lund, Lund, Sweden
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. ERJ Open Res 2024; 10:00177-2024. [PMID: 39319045 PMCID: PMC11417604 DOI: 10.1183/23120541.00177-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation drives COPD pathogenesis and exacerbations. Although the conceptual framework and major players in the inflammatory milieu of COPD have been long established, the nuances of cellular interactions and the etiological differences that create heterogeneity in inflammatory profiles and treatment response continue to be revealed. This wealth of data and understanding is not only a boon to the researcher but also provides guidance to the clinician, moving the field closer to precision medicine. It is through this lens that this review seeks to describe the inflammatory processes at play in COPD, relating inflammation to pathological and functional changes, identifying patient-specific and disease-related factors that may influence clinical observations, and providing current insights on existing and emerging anti-inflammatory treatments and treatment targets, including biological therapies and phosphodiesterase (PDE) inhibitors.
Collapse
Affiliation(s)
- Michael E. Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Liu Y, Wu W, Xiao Y, Zou H, Hao S, Jiang Y. Application of metagenomic next-generation sequencing and targeted metagenomic next-generation sequencing in diagnosing pulmonary infections in immunocompetent and immunocompromised patients. Front Cell Infect Microbiol 2024; 14:1439472. [PMID: 39165919 PMCID: PMC11333343 DOI: 10.3389/fcimb.2024.1439472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) technology has been widely used to diagnose various infections. Based on the most common pathogen profiles, targeted mNGS (tNGS) using multiplex PCR has been developed to detect pathogens with predesigned primers in the panel, significantly improving sensitivity and reducing economic burden on patients. However, there are few studies on summarizing pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China on large scale. Methods From January 2021 to December 2023, bronchoalveolar lavage fluid (BALF) or sputum samples from 546 immunocompetent and immunocompromised patients with suspected community-acquired pneumonia were collected. Pathogen profiles in those patients on whom mNGS was performed were summarized. Additionally, we also evaluated the performance of tNGS in diagnosing pulmonary infections. Results Combined with results of mNGS and culture, we found that the most common bacterial pathogens were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii in both immunocompromised and immunocompetent patients with high detection rates of Staphylococcus aureus and Enterococcus faecium, respectively. For fungal pathogens, Pneumocystis jirovecii was commonly detected in patients, while fungal infections in immunocompetent patients were mainly caused by Candida albicans. Most of viral infections in patients were caused by Human betaherpesvirus 5 and Human gammaherpesvirus 4. It is worth noting that, compared with immunocompetent patients (34.9%, 76/218), more mixed infections were found in immunocompromised patients (37.8%, 14/37). Additionally, taking final comprehensive clinical diagnoses as reference standard, total coincidence rate of BALF tNGS (81.4%, 48/59) was much higher than that of BALF mNGS (40.0%, 112/280). Conclusions Our findings supplemented and classified the pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China. Most importantly, our findings can accelerate the development and design of tNGS specifically used for regional pulmonary infections.
Collapse
Affiliation(s)
- Yong Liu
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Wencai Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunping Xiao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyan Zou
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Sijia Hao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Deng W, Liu C, Cheng Q, Yang J, Chen W, Huang Y, Hu Y, Guan J, Weng J, Wang Z, Chen C. Predicting the risk of pulmonary infection in patients with chronic kidney failure: A-C 2GH 2S risk score-a retrospective study. Int Urol Nephrol 2024; 56:2391-2402. [PMID: 38436825 DOI: 10.1007/s11255-024-03953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE The objective of this study is to investigate the associated risk factors of pulmonary infection in individuals diagnosed with chronic kidney disease (CKD). The primary goal is to develop a predictive model that can anticipate the likelihood of pulmonary infection during hospitalization among CKD patients. METHODS This retrospective cohort study was conducted at two prominent tertiary teaching hospitals. Three distinct models were formulated employing three different approaches: (1) the statistics-driven model, (2) the clinical knowledge-driven model, and (3) the decision tree model. The simplest and most efficient model was obtained by comparing their predictive power, stability, and practicability. RESULTS This study involved a total of 971 patients, with 388 individuals comprising the modeling group and 583 individuals comprising the validation group. Three different models, namely Models A, B, and C, were utilized, resulting in the identification of seven, four, and eleven predictors, respectively. Ultimately, a statistical knowledge-driven model was selected, which exhibited a C-statistic of 0.891 (0.855-0.927) and a Brier score of 0.012. Furthermore, the Hosmer-Lemeshow test indicated that the model demonstrated good calibration. Additionally, Model A displayed a satisfactory C-statistic of 0.883 (0.856-0.911) during external validation. The statistical-driven model, known as the A-C2GH2S risk score (which incorporates factors such as albumin, C2 [previous COPD history, blood calcium], random venous blood glucose, H2 [hemoglobin, high-density lipoprotein], and smoking), was utilized to determine the risk score for the incidence rate of lung infection in patients with CKD. The findings revealed a gradual increase in the occurrence of pulmonary infections, ranging from 1.84% for individuals with an A-C2GH2S Risk Score ≤ 6, to 93.96% for those with an A-C2GH2S Risk Score ≥ 18.5. CONCLUSION A predictive model comprising seven predictors was developed to forecast pulmonary infection in patients with CKD. This model is characterized by its simplicity, practicality, and it also has good specificity and sensitivity after verification.
Collapse
Affiliation(s)
- Wenqian Deng
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chen Liu
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qianhui Cheng
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jingwen Yang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenwen Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yao Huang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Hu
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiangan Guan
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jie Weng
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiyi Wang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
12
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
13
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Gress C, Vogel-Claussen J, Badorrek P, Müller M, Hohl K, Konietzke M, Litzenburger T, Seibold W, Gupta A, Hohlfeld JM. The effect of bradykinin 1 receptor antagonist BI 1026706 on pulmonary inflammation after segmental lipopolysaccharide challenge in healthy smokers. Pulm Pharmacol Ther 2023; 82:102246. [PMID: 37562641 DOI: 10.1016/j.pupt.2023.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Bradykinin 1 receptor (B1R) signalling pathways may be involved in the inflammatory pathophysiology of chronic obstructive pulmonary disease (COPD). B1R signalling is induced by inflammatory stimuli or tissue injury and leads to activation and increased migration of pro-inflammatory cells. Lipopolysaccharide (LPS) lung challenge in man is an experimental method of exploring inflammation in the lung whereby interference in these pathways can help to assess pharmacologic interventions in COPD. BI 1026706, a potent B1R antagonist, was hypothesized to reduce the inflammatory activity after segmental lipopolysaccharide (LPS) challenge in humans due to decreased pulmonary cell influx. METHODS In a monocentric, randomized, double-blind, placebo-controlled, parallel-group, phase I trial, 57 healthy, smoking subjects were treated for 28 days with either oral BI 1026706 100 mg bid or placebo. At day 21, turbo-inversion recovery magnitude magnetic resonance imaging (TIRM MRI) was performed. On the last day of treatment, pre-challenge bronchoalveolar lavage fluid (BAL) and biopsies were sampled, followed by segmental LPS challenge (40 endotoxin units/kg body weight) and saline control instillation in different lung lobes. Twenty-four hours later, TIRM MRI was performed, then BAL and biopsies were collected from the challenged segments. In BAL samples, cells were differentiated for neutrophil numbers as the primary endpoint. Other endpoints included assessment of safety, biomarkers in BAL (e.g. interleukin-8 [IL-8], albumin and total protein), B1R expression in lung biopsies and TIRM score by MRI as a measure for the extent of pulmonary oedema. RESULTS After LPS, but not after saline, high numbers of inflammatory cells, predominantly neutrophils were observed in the airways. IL-8, albumin and total protein were also increased in BAL samples after LPS challenge as compared with saline control. There were no significant differences in cells or other biomarkers from BAL in volunteers treated with BI 1026706 compared with those treated with placebo. Unexpectedly, neutrophil numbers in BAL were 30% higher and MRI-derived extent of oedema was significantly higher with BI 1026706 treatment compared with placebo, 24 h after LPS challenge. Adverse events were mainly mild to moderate and not different between treatment groups. CONCLUSIONS Treatment with BI 1026706 for four weeks was safe and well-tolerated in healthy smoking subjects. BI 1026706 100 mg bid did not provide evidence for anti-inflammatory effects in the human bronchial LPS challenge model. TRIAL REGISTRATION The study was registered on January 14, 2016 at ClinicalTrials.gov (NCT02657408).
Collapse
Affiliation(s)
- Christina Gress
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens Vogel-Claussen
- German Center for Lung Research (BREATH), Hannover, Germany; Department of Diagnostic and Interventional Radiology, Hannover Medical School, Germany
| | - Philipp Badorrek
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Meike Müller
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany
| | - Kathrin Hohl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Germany.
| |
Collapse
|
15
|
Colvin KL, Nguyen K, Boncella KL, Goodman DM, Elliott RJ, Harral JW, Bilodeaux J, Smith BJ, Yeager ME. Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease. Genes (Basel) 2023; 14:1819. [PMID: 37761959 PMCID: PMC10530394 DOI: 10.3390/genes14091819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: We sought to investigate the baseline lung and heart biology of the Dp16 mouse model of Down syndrome (DS) as a prelude to the investigation of recurrent respiratory tract infection. (2) Methods: In controls vs. Dp16 mice, we compared peripheral blood cell and plasma analytes. We examined baseline gene expression in lungs and hearts for key parameters related to susceptibility of lung infection. We investigated lung and heart protein expression and performed lung morphometry. Finally, and for the first time each in a model of DS, we performed pulmonary function testing and a hemodynamic assessment of cardiac function. (3) Results: Dp16 mice circulate unique blood plasma cytokines and chemokines. Dp16 mouse lungs over-express the mRNA of triplicated genes, but not necessarily corresponding proteins. We found a sex-specific decrease in the protein expression of interferon α receptors, yet an increased signal transducer and activator of transcription (STAT)-3 and phospho-STAT3. Platelet-activating factor receptor protein was not elevated in Dp16 mice. The lungs of Dp16 mice showed increased stiffness and mean linear intercept and contained bronchus-associated lymphoid tissue. The heart ventricles of Dp16 mice displayed hypotonicity. Finally, Dp16 mice required more ketamine to achieve an anesthetized state. (4) Conclusions: The Dp16 mouse model of DS displays key aspects of lung heart biology akin to people with DS. As such, it has the potential to be an extremely valuable model of recurrent severe respiratory tract infection in DS.
Collapse
Affiliation(s)
- Kelley L. Colvin
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO 80045, USA (D.M.G.)
| | - Kathleen Nguyen
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
| | - Katie L. Boncella
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
| | - Desiree M. Goodman
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO 80045, USA (D.M.G.)
| | - Robert J. Elliott
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
| | - Julie W. Harral
- Department of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Jill Bilodeaux
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
- Section of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Michael E. Yeager
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO 80045, USA (D.M.G.)
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (K.N.); (K.L.B.); (R.J.E.); (J.B.); (B.J.S.)
| |
Collapse
|
16
|
Wang Y, He R, Dong F, Liu D, Ren X, Yang T, Wang C. Re-exacerbation within 30 days of discharge is associated with poor prognosis in the following year among patients hospitalised with exacerbation of chronic obstructive pulmonary disease: a clinical cohort study. BMJ Open Respir Res 2023; 10:e001759. [PMID: 37640511 PMCID: PMC10462968 DOI: 10.1136/bmjresp-2023-001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Exacerbation of chronic obstructive pulmonary disease (ECOPD) is a complex phenomenon, with marked heterogeneity in the aetiology, pathophysiology and clinical manifestations. This study aimed to evaluate the clinical characteristics and long-term outcomes of patients with 30-day exacerbation among those hospitalised with ECOPD in China. METHODS Data from the Acute Exacerbations of Chronic Obstructive Pulmonary Disease Inpatient Registry were used in this study. The patients were divided into re-event and non-event groups based on the incidence of re-exacerbation within 30 days of discharge. Exacerbation, severe exacerbation and all-cause readmissions in the following 12 months were the outcomes of interest. The cumulative incidence rates and incidence densities were calculated. Multivariate hazard function models were used to determine the association between 30-day re-exacerbation and the long-term outcomes after accounting for the competing risk of death. RESULTS Re-exacerbation within 30 days of discharge was observed in 4.9% (n=242) of the patients (n=4963). The cumulative incidence rates and incidence densities of exacerbation, severe exacerbation and all-cause readmissions in the event group were significantly higher than those in the non-event group. After adjustment, re-exacerbation within 30 days of discharge was associated with increased risks of exacerbation, severe exacerbation and all-cause readmissions in the following 12 months (adjusted HR: 3.85 (95% CI: 3.09 to 4.80), 3.46 (2.66 to 4.50) and 3.28 (2.52 to 4.25) accordingly). CONCLUSION Re-exacerbation of COPD within 30 days of discharge is a significant predictor of long-term prognosis. In clinical practice, short-term re-exacerbation is a significant clinical phenotype of ECOPD that requires careful management at the earliest.
Collapse
Affiliation(s)
- Ye Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoxi He
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Fen Dong
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dongyan Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoxia Ren
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ting Yang
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
17
|
D'Anna SE, Dossena F, Gnemmi I, Brun P, Spanevello A, Carriero V, Bertolini F, Maniscalco M, Ricciardolo FL, Balbi B, Di Stefano A. Bacterial load and related innate immune response in the bronchi of rapid decliners with chronic obstructive pulmonary disease. Respir Med 2023:107297. [PMID: 37245650 DOI: 10.1016/j.rmed.2023.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Characterization of COPD patients with rapid lung functional decline is of interest for prognostic and therapeutic reasons. We recently reported an impaired humoral immune response in rapid decliners. OBJECTIVE To determine the microbiota associated to markers of innate immune host response in COPD patients with rapid lung functional decline. METHODS In COPD patients monitored for at least 3 years (mean ± SD: 5.8 ± 3 years) for lung functional decline, the microbiota and related markers of immune response was measured in bronchial biopsies of patients with different lung functional decline (rate of FEV1% lung functional decline: no decline FEV1%, ≤20 ml/year n = 21, slow decline FEV1%, >20 ≤ 70 ml/year, n = 14 and rapid decline FEV1%, >70 ml/year, n = 15) using qPCR for microbiota and immunohistochemistry for cell-receptors and inflammatory markers. MAIN RESULTS Pseudomonas aeruginosa and Streptococcus pneumoniae were increased in rapid decliners vs slow decliners, S. pneumoniae was also increased compared to non decliners. In all patients, S. pneumoniae (copies/ml) positively correlated with pack-years consumption, lung function decline, TLR4, NOD1, NOD2 scored in bronchial epithelium and NOD1/mm2 in lamina propria. CONCLUSION These data show an imbalance of microbiota components in rapid decliners which is associated to the expression of the related cell-receptors in all COPD patients. These findings may help in the prognostic stratification and treatment of patients.
Collapse
Affiliation(s)
- Silvestro Ennio D'Anna
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, BN, Italy.
| | - Francesca Dossena
- Divisione di Pneumologia and Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, NO, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia and Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, NO, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Antonio Spanevello
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, VA, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, BN, Italy; Department of Clinical Medicine and Surgery, Section of Respiratory Disease, University of Naples Federico II, 80131, Naples, Italy
| | - Fabio Lm Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Bruno Balbi
- Divisione di Pneumologia and Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, NO, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia and Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, NO, Italy
| |
Collapse
|
18
|
Liang Z, Zheng X, Wang Y, Chu K, Gao Y. Using system biology and bioinformatics to identify the influences of COVID-19 co-infection with influenza virus on COPD. Funct Integr Genomics 2023; 23:175. [PMID: 37221323 DOI: 10.1007/s10142-023-01091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has speedily increased mortality globally. Although they are risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), less is known about the common molecular mechanisms behind COVID-19, influenza virus A (IAV), and chronic obstructive pulmonary disease (COPD). This research used bioinformatics and systems biology to find possible medications for treating COVID-19, IAV, and COPD via identifying differentially expressed genes (DEGs) from gene expression datasets (GSE171110, GSE76925, GSE106986, and GSE185576). A total of 78 DEGs were subjected to functional enrichment, pathway analysis, protein-protein interaction (PPI) network construct, hub gene extraction, and other potentially relevant disorders. Then, DEGs were discovered in networks including transcription factor (TF)-gene connections, protein-drug interactions, and DEG-microRNA (miRNA) coregulatory networks by using NetworkAnalyst. The top 12 hub genes were MPO, MMP9, CD8A, HP, ELANE, CD5, CR2, PLA2G7, PIK3R1, SLAMF1, PEX3, and TNFRSF17. We found that 44 TFs-genes, as well as 118 miRNAs, are directly linked to hub genes. Additionally, we searched the Drug Signatures Database (DSigDB) and identified 10 drugs that could potentially treat COVID-19, IAV, and COPD. Therefore, we evaluated the top 12 hub genes that could be promising DEGs for targeted therapy for SARS-CoV-2 and identified several prospective medications that may benefit COPD patients with COVID-19 and IAV co-infection.
Collapse
Affiliation(s)
- Zihao Liang
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Wang
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai Chu
- Department of Vaccine Clinical Evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Shpagina LA, Kotova OS, Shpagin IS, Karmanovskaya SA, Loktin EM, Rukavitsyna AA, Kuznetsova GV, Gerasimenko DA, Anikina EV. [Clinic and functional features of chronic obstructive pulmonary disease after virus-induced acute exacerbations.]. TERAPEVT ARKH 2023; 95:217-222. [PMID: 37167142 DOI: 10.26442/00403660.2023.03.202086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/12/2022] [Indexed: 05/13/2023]
Abstract
AIM To establish symptoms, lung function and to evaluate subsequent exacerbations of chronic obstructive pulmonary disease (COPD) during a year after virus-induced COPD exacerbations. MATERIALS AND METHODS Patients hospitalized with viral (n=60), bacterial (n=60) and viral-bacterial (n=60) COPD exacerbations were enrolled to single-center prospective observational study. COPD was diagnosed according spirography criteria. Viral infection was established in bronchoalveolar lavage fluid or sputum by real-time reverse transcription-polymerase chain reaction for RNA of influenza A and B virus, rhinovirus, respiratory syncytial virus and SARS-CoV-2. Symptoms, lung function, COPD exacerbations were assessed. Patients were investigated at the hospitalization onset and then 4 and 52 weeks following the discharge from the hospital. RESULTS After 52 weeks in viral and viral-bacterial COPD exacerbations groups the rate of forced expiratory volume in one second (FEV1) decline were maximal - 71 (68; 73) ml/year and 69 (67; 72) ml/year versus 59 (55; 62) ml/year after bacterial exacerbations. Low levels of diffusion lung capacity for carbon monoxide (DLco/Va) - 52.5% (45.1%; 55.8%), 50.2% (44.9%; 56.0%) and 75.3% (72.2%; 80.1%) respectively, of 6-minute walk distance; p<0.001 in relation to bacterial exacerbations. In Cox proportional hazards regression analyses viral and viral-bacterial exacerbations were associated with increased risk of subsequent COPD exacerbations by 2.4 times independent of exacerbations rate before index event and FEV1. In linear regression models the relationships between airflow limitation and respiratory syncytial virus, rhinovirus and influenza virus infection, between low DLco/Va and rhinovirus, influenza virus and SARS-CoV-2 infection. CONCLUSION COPD after virus-induced exacerbations were characterized by progression of airflow limitation, low DLco/Va, low 6-minute walking test distance, subsequent COPD exacerbations risk.
Collapse
|
20
|
Rojas DA, Ponce CA, Bustos A, Cortés V, Olivares D, Vargas SL. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J Fungi (Basel) 2023; 9:jof9040452. [PMID: 37108906 PMCID: PMC10142929 DOI: 10.3390/jof9040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and mucus hypersecretion are frequent pathology features of chronic respiratory diseases such as asthma and COPD. Selected bacteria, viruses and fungi may synergize as co-factors in aggravating disease by activating pathways that are able to induce airway pathology. Pneumocystis infection induces inflammation and mucus hypersecretion in immune competent and compromised humans and animals. This fungus is a frequent colonizer in patients with COPD. Therefore, it becomes essential to identify whether it has a role in aggravating COPD severity. This work used an elastase-induced COPD model to evaluate the role of Pneumocystis in the exacerbation of pathology, including COPD-like lung lesions, inflammation and mucus hypersecretion. Animals infected with Pneumocystis developed increased histology features of COPD, inflammatory cuffs around airways and lung vasculature plus mucus hypersecretion. Pneumocystis induced a synergic increment in levels of inflammation markers (Cxcl2, IL6, IL8 and IL10) and mucins (Muc5ac/Muc5b). Levels of STAT6-dependent transcription factors Gata3, FoxA3 and Spdef were also synergically increased in Pneumocystis infected animals and elastase-induced COPD, while the levels of the mucous cell-hyperplasia transcription factor FoxA2 were decreased compared to the other groups. Results document that Pneumocystis is a co-factor for disease severity in this elastase-induced-COPD model and highlight the relevance of STAT6 pathway in Pneumocystis pathogenesis.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Adriel Bustos
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Vicente Cortés
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Daniela Olivares
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
21
|
Wang D, Rao L, Lei H, Li W, Yu Q, Li W, Wei J, Xu S, Mo B. Clinical significance of serum levels of 14-3-3β protein in patients with stable chronic obstructive pulmonary disease. Sci Rep 2023; 13:4861. [PMID: 36964173 PMCID: PMC10039013 DOI: 10.1038/s41598-023-32096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Nowadays, the diagnosis and treatment of COPD are often based on the results of lung function tests. Certain individuals, however, are not candidates for lung function testing due to pulmonary bullae, cardiac failure, low lung function, and other factors. Therefore, we evaluated whether serum tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein β (14-3-3β) could be a biomarker for the diagnosis of stable COPD patients. The expression of serum 14-3-3β protein was evaluated by an enzyme-linked immunosorbent assay. The association between its concentrations and clinical parameters of stable COPD patients were analyzed by correlation analysis and ROC curve. The results before propensity score matching (PSM) showed that serum 14-3-3β protein concentrations (ng/ml) in stable COPD patients were significantly higher than in healthy controls (P < 0.001). Furthermore, serum 14-3-3β protein concentrations were higher in GOLD 3&4 COPD patients compared with healthy participants, GOLD 1 and GOLD 2 COPD patients (P < 0.05), which shows that the concentration of 14-3-3β protein correlates with disease severity in stable COPD patients. After 1:1 PSM, there was also a statistically significant rise in 14-3-3 protein levels in stable COPD patients compared to healthy controls (P < 0.01). Serum 14-3-3β protein levels were positively correlated with blood neutrophil levels (P < 0.05), and negatively related to lung function parameters in stable COPD patients (P < 0.01). When the cutoff value was set at 29.53 ng/ml, the ROC curve yielded a sensitivity of 84.9% and a specificity of 68.3% for diagnosing stable COPD. The 14-3-3β protein may be a potential serum biomarker for the diagnosis of stable COPD patients, which is associated with disease severity, systemic inflammation, and small airway obstruction.
Collapse
Affiliation(s)
- Decai Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lizong Rao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huiren Lei
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Wencui Li
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Qiufang Yu
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jianghong Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Guangxi Zhuang Autonomous Region Education Department Key Laboratory of Respiratory Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Second Affiliated Hospital of Guilin Medical University, Guilin, 541004, Guangxi, China.
| |
Collapse
|
22
|
Yang N, Zhang L, Tian D, Wang P, Men K, Ge Y, Zhang C. Tanshinone increases Hemopexin expression in lung cells and macrophages to protect against cigarette smoke-induced COPD and enhance antiviral responses. Cell Cycle 2023; 22:645-665. [PMID: 36218263 PMCID: PMC9980497 DOI: 10.1080/15384101.2022.2129933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, while respiratory infections can elicit exacerbations in COPD patients to mediate increased mortality. Administration of Tanshinones (TS) derivatives has been demonstrated to protect against cigarette smoking (CS) and lipopolysaccharide (LPS)-induced COPD progression. However, the underlying molecular mechanisms and the roles of TS in mitigating the severity of viral-mediated exacerbations of COPD have not been elucidated. Here, we found that TS treatments significantly attenuated lung function decline, inflammatory responses and oxidative stress in CS and LPS-induced COPD mice. Subsequent RNA-seq analysis revealed significantly upregulated Hemopexin expression and enriched interferons (IFNs) signaling pathways in lung tissues of COPD mice upon TS treatments. Moreover, TS administration demonstrated Hemopexin-dependent beneficial roles in BEAS-2B lung cells and RAW264.7 macrophages, which was associated with the suppression of oxidative stress and ERK, NF-κB, and NLRP3 inflammasome signaling pathways-mediated inflammation. Furthermore, TS promoted IFN signaling and rescued impaired antiviral responses in CS and LPS-exposed lung cells that were infected by influenza virus. Notably, hemopexin over-expression in lung cells and macrophages recapitulated the pharmacological activities of TS. Taken together, these results indicate that TS administration is a promising and potential therapeutic strategy for treating COPD and preventing COPD exacerbations.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Liang Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Dongdong Tian
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Ping Wang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Kai Men
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| | - Yiliang Ge
- Hengyang Medical School, University of South China, Hunan
| | - Cailian Zhang
- Department of Respiratory, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|
23
|
Zhou J, Qiu J, Song Y, Liang T, Liu S, Ren C, Song X, Cui L, Sun Y. Pyroptosis and degenerative diseases of the elderly. Cell Death Dis 2023; 14:94. [PMID: 36755014 PMCID: PMC9908978 DOI: 10.1038/s41419-023-05634-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Pyroptosis is a recently described mechanism of programmed cell death mediated by proteins of the gasdermin family. Widely recognized signaling cascades include the classical, non-classical, caspase-3-dependent gasdermin E and caspase-8-dependent gasdermin D pathways. Additional pyroptotic pathways have been subsequently reported. With the rising prevalence of advanced age, the role of pyroptosis in the degenerative diseases of the elderly has attracted increased research attention. This article reviews the primary mechanisms of pyroptosis and summarizes progress in the research of degenerative diseases of the elderly such as presbycusis, age-related macular degeneration, Alzheimer's disease, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Jingjing Qiu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Yuwan Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Tiantian Liang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Sha Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China
| | - Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China.
| | - Yan Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, PR China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, PR China.
| |
Collapse
|
24
|
Astaxanthin Prevents Tuberculosis-Associated Inflammatory Injury by Inhibiting the Caspase 4/11-Gasdermin-Pyroptosis Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4778976. [DOI: 10.1155/2022/4778976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
Pyroptosis is a programmed cell death caused by inflammation. Multiple studies have suggested that Mycobacterium tuberculosis infection causes tissue pyroptosis. However, there are currently no protective drugs against the inflammatory damage caused by pyroptosis. In this study, anti-pyroptotic effects of the natural compound astaxanthin (ASTA) were explored in a simulated pulmonary tuberculosis-associated inflammatory environment. The results showed that ASTA maintained the stability of MLE-12 lung epithelial cell numbers in the inflammatory environment established by lipopolysaccharide. The reason is not to promote cell proliferation but to inhibit lipopolysaccharide-induced pyroptosis. The results showed that ASTA significantly inhibited the expression of key proteins in the caspase 4/11-gasdermin D pathway and the release of pyroptosis-related inflammatory mediators. Therefore, ASTA inhibits inflammation-induced pyroptosis by inhibiting the caspase 4/11-gasdermin D pathway and has the potential to protect lung tissue from tuberculosis-related inflammatory injury. ASTA, a functional food component, is a promising candidate for protection against tuberculosis-associated inflammatory lung injury.
Collapse
|
25
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
26
|
Wang D, Chen B, Bai S, Zhao L. Screening and identification of tissue-infiltrating immune cells and genes for patients with emphysema phenotype of COPD. Front Immunol 2022; 13:967357. [PMID: 36248880 PMCID: PMC9563378 DOI: 10.3389/fimmu.2022.967357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo study the tissue-infiltrating immune cells of the emphysema phenotype of chronic obstructive pulmonary disease (COPD) and find the molecular mechanism related to the development of emphysema to offer potential targets for more precise treatment of patients with COPD.MethodsCombined analyses of COPD emphysema phenotype lung tissue-related datasets, GSE47460 and GSE1122, were performed. CIBERSORT was used to assess the distribution of tissue-infiltrating immune cells. Weighted gene co-expression network analysis (WGCNA) was used to select immune key genes closely related to clinical features. Rt-qPCR experiments were used for the validation of key genes. Emphysema risk prediction models were constructed by logistic regression analysis and a nomogram was developed.ResultsIn this study, three immune cells significantly associated with clinical features of emphysema (FEV1 post-bronchodilator % predicted, GOLD Stage, and DLCO) were found. The proportion of neutrophils (p=0.025) infiltrating in the emphysema phenotype was significantly increased compared with the non-emphysema phenotype, while the proportions of M2 macrophages (p=0.004) and resting mast cells (p=0.01) were significantly decreased. Five immune-related differentially expressed genes (DEGs) were found. WGCNA and clinical lung tissue validation of patients with emphysema phenotype were performed to further screen immune-related genes closely related to clinical features. A key gene (SERPINA3) was selected and included in the emphysema risk prediction model. Compared with the traditional clinical prediction model (AUC=0.923), the combined prediction model, including SERPINA3 and resting mast cells (AUC=0.941), had better discrimination power and higher net benefit.ConclusionThis study comprehensively analyzed the tissue-infiltrating immune cells significantly associated with emphysema phenotype, including M2 macrophages, neutrophils, and resting mast cells, and identified SERPINA3 as a key immune-related gene.
Collapse
Affiliation(s)
- Di Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bingnan Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
28
|
Taddei L, Malvisi L, Hui DS, Malvaux L, Samoro RZ, Haak Lee S, Cheong Yeung Y, Liu YC, Kumar Arora A. Airway pathogens detected in stable and exacerbated COPD in patients in Asia-Pacific. ERJ Open Res 2022; 8:00057-2022. [PMID: 36171985 PMCID: PMC9511156 DOI: 10.1183/23120541.00057-2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background The burden of chronic obstructive pulmonary disease (COPD) in the Asia-Pacific region is projected to increase. Data from other regions show bacterial and viral infections can trigger acute exacerbations of COPD (AECOPD). Methods This 1-year prospective epidemiological study (ClinicalTrials.gov identifier: NCT03151395) of patients with moderate to very severe COPD in Hong Kong, the Philippines, South Korea and Taiwan assessed the prevalence in sputum samples (by culture and PCR) of bacterial and viral pathogens during stable COPD and AECOPD. The odds of experiencing an exacerbation was evaluated for pathogen presence, acquisition and apparition. Health-related quality of life (HRQOL) was assessed. Results 197 patients provided 983 sputum samples, with 226 provided during exacerbation episodes. The mean yearly AECOPD incidence rate was 1.27 per patient. The most prevalent bacteria by PCR at exacerbation were Haemophilus influenzae (Hi) and Moraxella catarrhalis (Mcat); Mcat prevalence was higher at exacerbation than at stable state. Virus prevalence was low, other than for human rhinovirus (HRV) (8.1%, stable state; 16.6%, exacerbation). The odds ratio (95% CI) for an exacerbation (versus stable state) was statistically significant for the presence, acquisition and apparition of Hi (2.20, 1.26–3.89; 2.43, 1.11–5.35; 2.32, 1.20–4.46, respectively), Mcat (2.24, 1.30–3.88; 5.47, 2.16–13.86; 3.45, 1.71–6.98, respectively) and HRV (2.12, 1.15–3.91; 2.22, 1.09–4.54; 2.09, 1.11–3.91, respectively). HRQOL deteriorated according to the number of exacerbations experienced. Conclusion In patients with COPD in the Asia-Pacific region, the presence of Hi, Mcat or HRV in sputum samples significantly increased the odds of an exacerbation, providing further evidence of potential roles in triggering AECOPD. The presence of Haemophilus influenzae, Moraxella catarrhalis or human rhinovirus in sputum samples significantly increases the odds of an exacerbation, as opposed to being in stable state, in COPDhttps://bit.ly/39vI3XU
Collapse
|
29
|
Yang J, Zhang Q, Zhang J, Ouyang Y, Sun Z, Liu X, Qaio F, Xu LQ, Niu Y, Li J. Exploring the Change of Host and Microorganism in Chronic Obstructive Pulmonary Disease Patients Based on Metagenomic and Metatranscriptomic Sequencing. Front Microbiol 2022; 13:818281. [PMID: 35369515 PMCID: PMC8966909 DOI: 10.3389/fmicb.2022.818281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a universal respiratory disease resulting from the complex interactions between genes and environmental conditions. The process of COPD is deteriorated by repeated episodes of exacerbations, which are the primary reason for COPD-related morbidity and mortality. Bacterial pathogens are commonly identified in patients’ respiratory tracts both in the stable state and during acute exacerbations, with significant changes in the prevalence of airway bacteria occurring during acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Therefore, the changes in microbial composition and host inflammatory responses will be necessary to investigate the mechanistic link between the airway microbiome and chronic pulmonary inflammation in COPD patients. Methods We performed metatranscriptomic and metagenomic sequencing on sputum samples for twelve AECOPD patients before treatment and for four of them stable COPD (stabilization of AECOPD patients after treatment). Sequencing reads were classified by Kraken2, and the host gene expression was analyzed by Hisat2 and HTseq. The correlation between genes was obtained by the Spearman correlation coefficient. Mann–Whitney U-test was applied to identify microbes that exhibit significantly different distribution in two groups. Results At the phyla level, the top 5 dominant phyla were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria. The proportion of dominant gates in metagenomic data was similar in metatranscriptomic data. There were significant differences in the abundance of specific microorganisms at the class level between the two methods. No significant difference between AECOPD and stable COPD was found. However, the different expression levels of 5 host genes were significantly increased in stable COPD and were involved in immune response and inflammatory pathways, which were associated with macrophages. Conclusion Our study may provide a clue to investigate the mechanism of COPD and potential biomarkers in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Yang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Qiang Zhang
- Department of Respirology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Respirology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Feng Qaio
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | | | - Jian Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Nicchi S, Giusti F, Carello S, Utrio Lanfaloni S, Tavarini S, Frigimelica E, Ferlenghi I, Rossi Paccani S, Merola M, Delany I, Scarlato V, Maione D, Brettoni C. Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. iScience 2022; 25:103931. [PMID: 35265810 PMCID: PMC8899411 DOI: 10.1016/j.isci.2022.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist. Mcat induces ROS and NET production to a lesser extent than NTHi in dHL-60 cells Mcat interferes with ROS-related responses in chemically-activated cells Mcat subverts the autophagic pathway surviving intracellularly while NTHi does not Intracellular survival of NTHi is enhanced by the co-infecting bacterium Mcat
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, Siena, 53100, Italy.,University of Bologna, Bologna, 40141, Italy
| | | | - Stefano Carello
- GSK, Siena, 53100, Italy.,University of Turin, Turin, 10100, Italy
| | | | | | | | | | | | - Marcello Merola
- GSK, Siena, 53100, Italy.,University of Naples Federico II, Naples, 80133, Italy
| | | | | | | | | |
Collapse
|
31
|
Mitzel H, Brown D, Thomas M, Curl B, Wild M, Kelsch A, Muskrat J, Hossain A, Ryan K, Babalola O, Burgard M, Mehedi M. Patient-Centered Discussion on End-of-Life Care for Patients with Advanced COPD. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:254. [PMID: 35208578 PMCID: PMC8878082 DOI: 10.3390/medicina58020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) may lead to a rapid decline in health and subsequent death, an unfortunate tyranny of having COPD-an irreversible health condition of 16 million individuals in the USA totaling 60 million in the world. While COPD is the third largest leading cause of death, causing 3.23 million deaths worldwide in 2019 (according to the WHO), most patients with COPD do not receive adequate treatment at the end stages of life. Although death is inevitable, the trajectory towards end-of-life is less predictable in severe COPD. Thus, clinician-patient discussion for end-of-life and palliative care could bring a meaningful life-prospective to patients with advanced COPD. Here, we summarized the current understanding and treatment of COPD. This review also highlights the importance of patient-centered discussion and summarizes current status of managing patients with advanced COPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (H.M.); (D.B.); (M.T.); (B.C.); (M.W.); (A.K.); (J.M.); (A.H.); (K.R.); (O.B.); (M.B.)
| |
Collapse
|
32
|
Yang M, Liu X, Hu Q, Li J, Fu S, Chen D, Wu Y, Luo A, Zhang X, Feng R, Xu G, Liu C, Jiang H, Liu W. Eosinopenia as a biomarker for antibiotic use in COPD exacerbations: protocol for a retrospective hospital-based cohort study. BMJ Open 2022; 12:e051939. [PMID: 35058259 PMCID: PMC8783821 DOI: 10.1136/bmjopen-2021-051939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has a seriously negative impact on patients' healths condition and disease progression. Bacterial infection is closely related to AECOPD, and antibiotics are frequently used in clinical practice. The lack of specific biomarkers for rational antibiotics use always leads to antibiotics abuse in chronic obstructive pulmonary disease (COPD) flare-ups. Eosinopenia has been considered to be related to increased bacterial load of potentially pathogenic organisms at the onset of COPD exacerbations. Therefore, this study aims to investigate whether eosinopenia could be used as a reference for the use of antibiotics in AECOPD. METHODS AND ANALYSIS In this study, a hospital-based retrospective cohort design will be adopted to analyse the clinical data of inpatients who are primarily diagnosed with AECOPD in West China Hospital of Sichuan University from 1 January 2010 to 31 December 2020. Relevant data will be extracted from the Clinical Big Data Platform for Scientific Research in West China Hospital, including demographic characteristics, blood eosinophil count, procalcitonin, C reactive protein, microbial cultivation, antibiotics use, length of hospital stay, non-invasive ventilation use, intensive care unit transfer and mortality, etc. The collected data will be described and inferred by corresponding statistical methods according to the data type and their distributions. Multiple binary logistic regression models will be used to analyse the relationship between blood eosinophil count and bacterial infection. The antibiotics use, and patient morbidity and mortality will be compared between patients with or without eosinopenia. ETHICS AND DISSEMINATION This study has been approved by the Biomedical Ethics Review Board of West China Hospital of Sichuan University (Approval No. 2020-1056). And the research results will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ChiCTR2000039379.
Collapse
Affiliation(s)
- Mei Yang
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xuemei Liu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Qiongqiong Hu
- West China School of Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Junjie Li
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Sijia Fu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Daohong Chen
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yanqing Wu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ai Luo
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xiawei Zhang
- Respiratory Medicine Unit and National Institute for Health Research, Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ruizhi Feng
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Guo Xu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Can Liu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Hongli Jiang
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Wei Liu
- Division of Pulmonary Diseases, Department of Integrated Traditional and Western Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Dodi G, Attanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms 2021; 9:microorganisms9071357. [PMID: 34201449 PMCID: PMC8307813 DOI: 10.3390/microorganisms9071357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
More recently, increasing attention has been directed to exploring the function of the global virome in health and disease. Currently, by new molecular techniques, such as metagenomic DNA sequencing, the virome has been better unveiled. By investigating the human lung virome, we could provide novel insights into respiratory diseases. The virome, as a part of the microbiome, is characterized by a constant change in composition related to the type of diet, environment, and our genetic code, and other incalculable factors. The virome plays a substantial role in modulating human immune defenses and contributing to the inflammatory processes. Anelloviruses (AVs) are new components of the virome. AVs are already present during early life and reproduce without apparently causing harm to the host. The role of AVs is still unknown, but several reports have shown that AVs could activate the inflammasomes, intracellular multiprotein oligomers of the innate immune system, which show a crucial role in the host defense to several pathogens. In this narrative revision, we summarize the epidemiological data related to the possible link between microbial alterations and chronic respiratory diseases in children. Briefly, we also describe the characteristics of the most frequent viral family present in the lung virome, Anelloviridae. Furthermore, we discuss how AVs could modulate the immune system in children, affecting the development of chronic respiratory diseases, particularly asthma, the most common chronic inflammatory disease in childhood.
Collapse
|
34
|
Li LC, Han YY, Zhang ZH, Zhou WC, Fang HM, Qu J, Kan LD. Chronic Obstructive Pulmonary Disease Treatment and Pharmacist-Led Medication Management. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:111-124. [PMID: 33469264 PMCID: PMC7811374 DOI: 10.2147/dddt.s286315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death across the globe. Its repeated exacerbation will seriously worsen the quality of life, aggravate the patients’ symptoms, and bring a heavy burden on the patients and the society. Understanding the current status of drug therapy and the role of pharmaceutical care is essential for the management of COPD. In addition to the drugs already on the market, recent clinical trials also show that emerging novel drugs for treating COPD are being developed to prevent the symptoms, reduce the frequency of acute exacerbation, and improve the quality of life. Recent progress in new drug research should lead to novel treatment options for COPD patients in future clinical practice. The pharmaceutical care has shown significantly favourable impacts on addressing drug-related problems, supporting its vital role in the management of COPD, especially when there are a wide range of therapeutic agents. This review not only provides an overview of current treatment strategies but also further underlines the importance of new drug development and pharmaceutical care for patients with COPD.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Yong-Yue Han
- School of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Zhi-Hui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, People's Republic of China.,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai 200082, People's Republic of China
| | - Wen-Cheng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, People's Republic of China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, People's Republic of China
| | - Hong-Mei Fang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|