1
|
Liu T, Zhou L, Li X, Song W, Liu Y, Wu S, Wang P, Dai X, Shi L. Polygonatum kingianum Polysaccharides Enhance the Preventive Efficacy of Heat-Inactivated Limosilactobacillus reuteri WX-94 against High-Fat-High-Sucrose-Induced Liver Injury and Gut Dysbacteriosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9880-9892. [PMID: 38646869 DOI: 10.1021/acs.jafc.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Limosilactobacillus reuteri (L. reuteri) is an efficacious probiotic that could reduce inflammation and prevent metabolic disorders. Here, we innovatively found that Polygonatum kingianum polysaccharides (PKP) promoted proliferation and increased stability of L. reuteri WX-94 (a probiotic strain showing anti-inflammation potentials) in simulated digestive fluids in vitro. PKP was composed of galactose, glucose, mannose, and arabinose. The cell-free supernatant extracted from L. reuteri cultured with PKP increased ABTS•+, DPPH•, and FRAP scavenging capacities compared with the supernatant of the medium without PKP and increased metabolites with health-promoting activities, e.g., 3-phenyllactic acid, indole-3-lactic acid, indole-3-carbinol, and propionic acid. Moreover, PKP enhanced alleviating effects of heat-inactivated L. reuteri on high-fat-high-sucrose-induced liver injury in rats via reducing inflammation and regulating expressions of protein and genes involved in fatty acid metabolism (such as HIF1-α, FAβO, CPT1, and AMPK) and fatty acid profiles in liver. Such benefits correlated with its prominent effects on enriching Lactobacillus and short-chain fatty acids while reducing Dubosiella, Fusicatenilacter, Helicobacter, and Oscillospira. Our work provides novel insights into the probiotic property of PKP and emphasizes the great potential of the inactivated L. reuteri cultured with PKP in contracting unhealthy diet-induced liver dysfunctions and gut dysbacteriosis.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong 518083, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Josephs-Spaulding J, Rajput A, Hefner Y, Szubin R, Balasubramanian A, Li G, Zielinski DC, Jahn L, Sommer M, Phaneuf P, Palsson BO. Reconstructing the transcriptional regulatory network of probiotic L. reuteri is enabled by transcriptomics and machine learning. mSystems 2024; 9:e0125723. [PMID: 38349131 PMCID: PMC10949432 DOI: 10.1128/msystems.01257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Limosilactobacillus reuteri, a probiotic microbe instrumental to human health and sustainable food production, adapts to diverse environmental shifts via dynamic gene expression. We applied the independent component analysis (ICA) to 117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA provides a qualitative advancement and captures nuanced relationships within gene clusters that other methods may miss. This study uncovers the fundamental properties of L. reuteri's TRN and deepens our understanding of its arginine metabolism and the co-regulation of riboflavin metabolism and fatty acid conversion. It also sheds light on conditions that regulate genes within a specific biosynthetic gene cluster and allows for the speculation of the potential role of isoprenoid biosynthesis in L. reuteri's adaptive response to environmental changes. By integrating transcriptomics and machine learning, we provide a system-level understanding of L. reuteri's response mechanism to environmental fluctuations, thus setting the stage for modeling the probiotic transcriptome for applications in microbial food production. IMPORTANCE We have studied Limosilactobacillus reuteri, a beneficial probiotic microbe that plays a significant role in our health and production of sustainable foods, a type of foods that are nutritionally dense and healthier and have low-carbon emissions compared to traditional foods. Similar to how humans adapt their lifestyles to different environments, this microbe adjusts its behavior by modulating the expression of genes. We applied machine learning to analyze large-scale data sets on how these genes behave across diverse conditions. From this, we identified 35 unique patterns demonstrating how L. reuteri adjusts its genes based on 50 unique environmental conditions (such as various sugars, salts, microbial cocultures, human milk, and fruit juice). This research helps us understand better how L. reuteri functions, especially in processes like breaking down certain nutrients and adapting to stressful changes. More importantly, with our findings, we become closer to using this knowledge to improve how we produce more sustainable and healthier foods with the help of microbes.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, California, USA
| | | | - Gaoyuan Li
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Leonie Jahn
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Morten Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Patrick Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Bernhard O. Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
- Department of Bioengineering, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr Pharm Biotechnol 2024; 25:962-980. [PMID: 37264621 DOI: 10.2174/1389201024666230601141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Department of Agricultural Research, Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Tehran. Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Chi-Ching Lee
- Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Turkey
| | - Azadeh Rashidimehr
- Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Lorestan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
In silico, in vitro and in vivo safety evaluation of Limosilactobacillus reuteri strains ATCC PTA-126787 & ATCC PTA-126788 for potential probiotic applications. PLoS One 2022; 17:e0262663. [PMID: 35081129 PMCID: PMC8791467 DOI: 10.1371/journal.pone.0262663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/02/2022] [Indexed: 11/19/2022] Open
Abstract
The last two decades have witnessed a tremendous growth in probiotics and in the numbers of publications on their potential health benefits. Owing to their distinguishing beneficial effects and long history of safe use, species belonging to the Lactobacillus genus are among the most widely used probiotic species in human food and dietary supplements and are finding increased use in animal feed. Here, we isolated, identified, and evaluated the safety of two novel Limosilactobacillus reuteri (L. reuteri) isolates, ATCC PTA-126787 & ATCC PTA-126788. More specifically, we sequenced the genomes of these two L. reuteri strains using the PacBio sequencing platform. Using a combination of biochemical and genetic methods, we identified the two strains as belonging to L. reuteri species. Detailed in silico analyses showed that the two strains do not encode for any known genetic sequences of concern for human or animal health. In vitro assays confirmed that the strains are susceptible to clinically relevant antibiotics and do not produce potentially harmful by-products such as biogenic amines. In vitro bile and acid tolerance studies demonstrated that the two strains have similar survival profiles as the commercial L. reuteri probiotic strain DSM 17938. Most importantly, daily administration of the two probiotic strains to broiler chickens in drinking water for 26 days did not induce any adverse effect, clinical disease, or histopathological lesions, supporting the safety of the strains in an in vivo avian model. All together, these data provide in silico, in vitro and in vivo evidence of the safety of the two novel candidates for potential probiotic applications in humans as well as animals.
Collapse
|
5
|
Dobreva L, Koprinarova M, Bratchkova A, Danova S. Antibiotic susceptibility of Lactobacillus plantarum strains, isolated from katak. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several Lactobacillus species are accepted as microorganisms with Qualified Presumption of Safety (QPS) in the EFSA’s list. One of them, Lactobacillus plantarum is a widely distributed species with a proven probiotic potential and technological relevance. In addition, every strain must complete several requirements, before implementation. Antibiotic susceptibility is one of EFSA’s important criteria regarding the safety of probiotics. The reason is to avoid any possibility of antibiotic resistance genes transfer to opportunistic pathogens in the gut. In the present study 14 Lactobacillus plantarum strains were assessed for susceptibility to 21 antibiotics from different groups. A high number of resistant strains was determined toward 12 antibiotics (penicillins – penicillin, piperacillin; IIIth generation cephalosporins – cefotaxime, ceftriaxone, ceftazidime; glycopeptides – vancomycin; tetracyclines – tetracycline; aminoglycosides – gentamicin; macrolides – clarithromycin; quinolones – nalidixic acid, ciprofloxacin, levofloxacin). Concerning the other tested antibiotics, strain-specific antibiotic-sensitivity patterns were observed. Antibiotic resistance was also discussed as an advantage in the selection of probiotic strains, however only when it is not transferable. Estimated susceptibility patterns of some of tested candidate probiotic strains are also important, considering the use of the latter as agents accompanying antibiotic therapy
Collapse
Affiliation(s)
- L. Dobreva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiolo-gy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - M. Koprinarova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - A. Bratchkova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiolo-gy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Danova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiolo-gy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
6
|
Guli M, Winarsih S, Barlianto W, Illiandri O, Sumarno SP. Mechanism of Lactobacillus reuteri Probiotic in Increasing Intestinal Mucosal Immune System. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Probiotics are defined as live microorganisms which, when consumed in adequate quantities as food ingredients, provide health benefits to the host. Lactobacillus, Bifidobacterium, and Saccharomyces, are three probiotics that are intensively used as probiotics in humans and animals. Probiotics have beneficial effects on health when given adequate amounts. The concept of probiotics on human health, namely modulating the gut microbiota and its effect on the host. Probiotics play an important role in maintaining intestinal integrity through a number of different interactions, including changes in cytokine expression in the mucosa. Probiotics compete with intestinal pathogens for mucosal receptors, thereby increasing interepithelial resistance. Probiotics such as Lactobacillus casei sp GG strain was used as a prophylaxis that could increase the expression of epithelial mucin, thereby reducing the translocation of pathogenic bacteria. Abnormal local immune response is characterized by decreased secretion of IgA, thus allowing enterocyte attachment and local translocation of bacterial antigens, which are the main stimulation of pathological events. Colonic stasis can promote the growth of pathogenic bacteria which allows malignant porin bacterial strains to thrive. The gut microbiota has a major influence on human health. The microbial population has an important role in the host, such as the metabolic activity of probiotics producing energy and nutrient absorption, developing the host immune system, and preventing colonization and infection of pathogens. Lactobacillus reuteri is a hetero-fermentative bacterium that lives in the digestive tract of humans. L. reuteri has been used to treat infant necrotizing pseudomembrane. In this paper, the mechanism of L reuteri to increase host immunological response will be reviewed.
Collapse
|
7
|
Castellani C, Obermüller B, Kienesberger B, Singer G, Peterbauer C, Grabherr R, Mayrhofer S, Klymiuk I, Horvath A, Stadlbauer V, Russmayer H, Miekisch W, Fuchs P, Till H, Heinl S. Production, Storage Stability, and Susceptibility Testing of Reuterin and Its Impact on the Murine Fecal Microbiome and Volatile Organic Compound Profile. Front Microbiol 2021; 12:699858. [PMID: 34394042 PMCID: PMC8361477 DOI: 10.3389/fmicb.2021.699858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases. Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at −20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing. Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at −20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group. Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at −20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.
Collapse
Affiliation(s)
- Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Clemens Peterbauer
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sigrid Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ingeborg Klymiuk
- Core Facility of Molecular Biology, Medical University of Graz, Graz, Austria.,Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Hannes Russmayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,CD Laboratory for Biotechnology of Glycerol, Vienna, Austria
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Experimental Research Center, University of Rostock, Rostock, Germany
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Experimental Research Center, University of Rostock, Rostock, Germany
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Stefan Heinl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Chessa L, Paba A, Daga E, Dupré I, Comunian R. Biodiversity and Safety Assessment of Half-Century Preserved Natural Starter Cultures for Pecorino Romano PDO Cheese. Microorganisms 2021; 9:1363. [PMID: 34201694 PMCID: PMC8305336 DOI: 10.3390/microorganisms9071363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
The use of biodiverse autochthonous natural starter cultures to produce typical and PDO cheeses contributes to establishing a link between products and territory of production, which commercial starters, constituted by few species and strains, are not able to. The purpose of this work was the assessment of biodiversity, at strain level, and safety of natural scotta-innesto cultures whose use is mandatory for the Pecorino Romano PDO cheese manufacturing, according to its product specification. The biodiversity of three scotta-innesto, collected in the 1960s and preserved in lyophilised form, was assessed by molecular biotyping using both PFGE and (GTG)5 rep-PCR profiling on 209 isolates belonging to Streptococcus thermophilus (30), Lactobacillus delbrueckii subsp. lactis (72), Enterococcus faecium (87), and Limosilactobacillus reuteri (20), revealing high biodiversity, at the strain level, in the cultures. The cultures' safety was proved through a new approach assessing phenotypic and molecular antibiotic resistance of the cultures in toto, instead of single strains, while the safety of Enterococcus faecium isolates was investigated according to EFSA guidelines. The use of natural biodiverse cultures for the production of microbial starters for typical and PDO cheeses, such as Pecorino Romano, could be an opportunity for recovering the cheese microbiota biodiversity lost during years of commercial starters use.
Collapse
Affiliation(s)
- Luigi Chessa
- Agris Sardegna, Agenzia Regionale per la Ricerca in Agricoltura, Associated Member of the JRU MIRRI-IT, Loc. Bonassai, SS291 km 18.600, 07100 Sassari, Italy; (A.P.); (E.D.); (I.D.); (R.C.)
| | | | | | | | | |
Collapse
|
9
|
Singh TP, Tehri N, Kaur G, Malik RK. Cell surface and extracellular proteins of potentially probiotic Lactobacillus reuteri as an effective mediator to regulate intestinal epithelial barrier function. Arch Microbiol 2021; 203:3219-3228. [PMID: 33830286 DOI: 10.1007/s00203-021-02318-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to evaluate the potential of cell surface and extracellular proteins in regulation of intestinal epithelial barrier (IEB) function. Eight potentially probiotic L. reuteri strains were evaluated for presence of mapA gene and its expression on co-culturing with the Caco-2 cells. The ability of untreated (Viable), heat-inactivated, 5 M LiCL treated L. reuteri strains as well as their cell-free supernatant (CFS) to modulate expression of IEB function genes (hBD-2, hBD-3, claudin-1 and occludin) was also evaluated. Caco-2 cells were treated with cell surface and extracellular protein extracts and investigated for change in expression of targeted IEB function genes. The results showed that mapA gene is present in all the tested L. reuteri strains and expression of mapA and its receptors (anxA13 and palm) increase significantly on co-culturing of L. reuteri and Caco-2 cells. Also, up-regulated expression of IEB function genes was observed on co-culturing of L. reuteri (viable, heat-inactivated and CFS) and their protein extracts with Caco-2 cells in contrast to down-regulation observed with the pathogenic strain of Salmonella typhi. Therefore, this study concludes that the cell surface and extracellular protein from L. reuteri act as an effective mediator molecules to regulate IEB function.
Collapse
Affiliation(s)
- Tejinder P Singh
- Dairy Microbiology Department, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, 125004, India.
| | - Nimisha Tehri
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Gurpreet Kaur
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Ravinder K Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
10
|
Assis JM, Abreu F, Villela HMD, Barno A, Valle RF, Vieira R, Taveira I, Duarte G, Bourne DG, Høj L, Peixoto RS. Delivering Beneficial Microorganisms for Corals: Rotifers as Carriers of Probiotic Bacteria. Front Microbiol 2021; 11:608506. [PMID: 33384676 PMCID: PMC7769773 DOI: 10.3389/fmicb.2020.608506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023] Open
Abstract
The use of Beneficial Microorganisms for Corals (BMCs) to increase the resistance of corals to environmental stress has proven to be effective in laboratory trials. Because direct inoculation of BMCs in larger tanks or in the field can be challenging, a delivery mechanism is needed for efficient transmission of the BMC consortium. Packaged delivery mechanisms have been successfully used to transmit probiotics to other organisms, including humans, lobsters, and fish. Here, we tested a method for utilizing rotifers of the species Brachionus plicatilis for delivery of BMCs to corals of the species Pocillopora damicornis. Epifluorescence microscopy combined with a live/dead cell staining assay was used to evaluate the viability of the BMCs and monitor their in vivo uptake by the rotifers. The rotifers efficiently ingested BMCs, which accumulated in the digestive system and on the body surface after 10 min of interaction. Scanning electron microscopy confirmed the adherence of BMCs to the rotifer surfaces. BMC-enriched rotifers were actively ingested by P. damicornis corals, indicating that this is a promising technique for administering coral probiotics in situ. Studies to track the delivery of probiotics through carriers such as B. plicatilis, and the provision or establishment of beneficial traits in corals are the next proof-of-concept research priorities.
Collapse
Affiliation(s)
- Juliana M Assis
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Laboratory of Cellular Biology and Magnetotaxis, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena M D Villela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adam Barno
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael F Valle
- IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Rayssa Vieira
- IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Igor Taveira
- Laboratory of Cellular Biology and Magnetotaxis, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Duarte
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, WA, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, WA, Australia
| | - Raquel S Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Wang G, Zhai Z, Ren F, Li Z, Zhang B, Hao Y. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren. Food Res Int 2020; 137:109331. [PMID: 33233046 DOI: 10.1016/j.foodres.2020.109331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/24/2023]
Abstract
Tolerance to bile stress is a crucial property for probiotics to survive in the gastrointestinal tract and exert their beneficial effects. In this work, transcriptomic analysis combined with two-dimensional electrophoresis revealed that the transcript levels of 129 genes and the abundance of 34 proteins were significantly changed in Lactobacillus salivarius Ren when exposed to 0.75 g/L ox-bile. Notably, carbohydrate metabolism shifted to the utilization of maltose and glycerol for energy production, suggesting that L. salivarius Ren expanded carbon sources profile for gut adaptation in response to bile. Moreover, the enzymes involved in cell surface charge modification and the cell envelope-located hemolysin-like protein were overproduced, which was supposed to hinder the penetration of bile. Then, the up-regulated ABC transporters could contribute to the extrusion of bile accumulated in the cytoplasm. Additionally, proteolytic system was activated to provide more amino acids for the synthesis and repair of proteins damaged by bile. Finally, γ-glutamylcysteine with antioxidant activity and oxidoreductases for redox homeostasis were increased to cope with the bile-induced oxidative stress. These findings provide new insights into the molecular mechanisms involved in bile stress response and adaptation in L. salivarius.
Collapse
Affiliation(s)
- Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China
| | - Zaigui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China.
| |
Collapse
|
12
|
Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton RA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 2020; 12:1788898. [PMID: 32804011 PMCID: PMC7524292 DOI: 10.1080/19490976.2020.1795388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Mahmoud A. Mohammad
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Naimi S, Zirah S, Taher MB, Theolier J, Fernandez B, Rebuffat SF, Fliss I. Microcin J25 Exhibits Inhibitory Activity Against Salmonella Newport in Continuous Fermentation Model Mimicking Swine Colonic Conditions. Front Microbiol 2020; 11:988. [PMID: 32528437 PMCID: PMC7262971 DOI: 10.3389/fmicb.2020.00988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Microcin J25 (MccJ25), a 21-amino acid bacteriocin produced by Escherichia coli (E. coli), is a potent inhibitor of Enterobacteriaceae, including pathogenic E. coli, Salmonella, and Shigella. Its lasso structure makes it highly stable and therefore of interest as a possible antimicrobial agent in foods or as an alternative to antibiotics in livestock production. In the present study, we aimed to evaluate in vitro the inhibitory activity of MccJ25 against Salmonella enterica subsp. enterica serovar Newport ATCC 6962 (Salmonella Newport) used as a model pathogen under conditions simulating those of the swine proximal colon. The growth inhibition activity of MccJ25 against Salmonella Newport was examined in lysogeny broth (LB) and in modified MacFarlane medium that allows miming the swine colonic conditions. The MccJ25 activity was further determined using the Polyfermentor intestinal model (PolyFermS), an in vitro continuous fermentation model that permits deciphering the activity of any antimicrobial molecule in real colon fermentation conditions using selected microbiota. It was set up here to simulate the porcine proximal colon fermentation. In these conditions, the inhibition activity of MccJ25 was compared to those of two antimicrobial agents, reuterin and rifampicin. The minimal inhibitory concentration (MIC) of MccJ25 was determined at 0.03 μM in LB medium, compared to 1,079 and 38 μM for reuterin and rifampicin, respectively, showing a significantly higher potency of MccJ25. Total inhibition of Salmonella Newport was observed in LB medium over 24 h of incubation at concentrations starting from the MIC. In the PolyFermS model, MccJ25 induced a significantly stronger inhibition of Salmonella Newport growth than reuterin or rifampicin. A specific and sensitive LC-MS method allowed to detect and quantify MccJ25 in the PolyFermS fermentation system, showing that MccJ25 remains stable and active against Salmonella in conditions mimicking those found in swine colon. This study paves the way for further exploring the potential of this bacteriocin as an alternative to antibiotics in livestock.
Collapse
Affiliation(s)
- Sabrine Naimi
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Menel Ben Taher
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Jérémie Theolier
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Benoît Fernandez
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Françoise Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Sagheddu V, Uggeri F, Belogi L, Remollino L, Brun P, Bernabè G, Moretti G, Porzionato A, Morelli L, Castagliuolo I, Elli M. The Biotherapeutic Potential of Lactobacillus reuteri Characterized Using a Target-Specific Selection Process. Front Microbiol 2020; 11:532. [PMID: 32351460 PMCID: PMC7176361 DOI: 10.3389/fmicb.2020.00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
A growing body of clinical and experimental data supports the view that the efficacy of probiotics is strain-specific and restricted to particular pathological conditions, which means that newly isolated probiotic strains need to be targeted to a specific disease. Following national and international guidelines, we used a conventional in vitro experimental approach to characterize a novel strain of Lactobacillus reuteri, LMG P-27481, for safety (sensitivity to antibiotics and genome analysis) and putative efficacy (resistance to gastro-intestinal transit, adhesiveness, induction of cytokines, and release of antimicrobial metabolites). In vitro assays, which were carried out to examine the probiotic's effect on diarrhea (lactose utilization, inhibition of pathogens such as bacteria and Rotavirus), showed that it was more efficacious with respect to well-known reference strains in antagonizing Clostridioides difficile (CD). Data confirming that the probiotic can effectively treat CD colitis was gained from in vivo trials involving mice conditioned with large spectrum antibiotics before they were subjected to CD challenge. Two out of the three antibiotic-treated groups received daily LMG P-27481 for different time durations in order to simulate a preventive approach (LMG P-27481 administered prior to CD challenge) or an antagonistic one (LMG P-27481 administered after CD challenge). Both approaches significantly reduced, with respect to the untreated controls, CD DNA concentrations in caecum and C. difficile toxin titers in the gut lumen. In addition, LMG P-27481 supplementation significantly mitigated body weight loss and the extent of inflammatory infiltrate and tissue damage. The study results, which need to be confirmed by in vivo clinical trials, have demonstrated that the L. reuteri LMG P-27481 strain is a promising probiotic candidate for the treatment of CD infection.
Collapse
Affiliation(s)
- Valeria Sagheddu
- AAT-Advanced Analytical Technologies S.r.l., Fiorenzuola d’Arda, Italy
| | - Francesca Uggeri
- AAT-Advanced Analytical Technologies S.r.l., Fiorenzuola d’Arda, Italy
| | | | | | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | | - Lorenzo Morelli
- Department for Sustainable Food Process – DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Marina Elli
- AAT-Advanced Analytical Technologies S.r.l., Fiorenzuola d’Arda, Italy
| |
Collapse
|
15
|
Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019; 11:E635. [PMID: 30875987 PMCID: PMC6470608 DOI: 10.3390/nu11030635] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic complex to treat due to its multifactorial pathogenesis-an unhealthy lifestyle, neuronal and hormonal mechanisms, and genetic and epigenetic factors are involved. Scientific evidence supports the idea that obesity and metabolic consequences are strongly related to changes in both the function and composition of gut microbiota, which exert an essential role in modulating energy metabolism. Modifications of gut microbiota composition have been associated with variations in body weight and body mass index. Lifestyle modifications remain as primary therapy for obesity and related metabolic disorders. New therapeutic strategies to treat/prevent obesity have been proposed, based on pre- and/or probiotic modulation of gut microbiota to mimic that found in healthy non-obese subjects. Based on human and animal studies, this review aimed to discuss mechanisms through which gut microbiota could act as a key modifier of obesity and related metabolic complications. Evidence from animal studies and human clinical trials suggesting potential beneficial effects of prebiotic and various probiotic strains on those physical, biochemical, and metabolic parameters related to obesity is presented. As a conclusion, a deeper knowledge about pre-/probiotic mechanisms of action, in combination with adequately powered, randomized controlled follow-up studies, will facilitate the clinical application and development of personalized healthcare strategies.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - José Antonio García-Santos
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Mercedes G Bermúdez
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Oliveira AP, Souza LKM, Araújo TSL, Araújo SD, Nogueira KM, Sousa FBM, Silva RO, Pacífico DM, Martins CS, Brito GADC, Souza MHLP, Medeiros JVR. Lactobacillus reuteri DSM 17938 Protects against Gastric Damage Induced by Ethanol Administration in Mice: Role of TRPV1/Substance P Axis. Nutrients 2019; 11:nu11010208. [PMID: 30669695 PMCID: PMC6356937 DOI: 10.3390/nu11010208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the effect of Lactobacillus reuteri DSM 17938 (DSM) on ethanol-induced gastric injury, and if its possible mechanism of action is related to inhibiting the transient receptor potential vanilloid type 1 (TRPV1). We evaluated the effect of supplementing 10⁸ CFU•g body wt-1•day-1 of DSM on ethanol-induced gastric injury. DSM significantly reduced the ulcer area (1.940 ± 1.121 mm²) with 3 days of pretreatment. The effects of DSM supplementation were reversed by Resiniferatoxin (RTX), TRPV1 agonist (3 nmol/kg p.o.). Substance P (SP) (1 μmol/L per 20 g) plus 50% ethanol resulted in hemorrhagic lesions, and DSM supplementation did not reverse the lesion area induced by administering SP. TRPV1 staining intensity was lower, SP, malondialdehyde (MDA) and nitrite levels were reduced, and restored normal levels of antioxidant parameters (glutathione and superoxide dismutase) in the gastric mucosa in mice treated with DSM. In conclusion, DSM exhibited gastroprotective activity through decreased expression of TRPV1 receptor and decreasing SP levels, with a consequent reduction of oxidative stress.
Collapse
Affiliation(s)
- Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Luan K M Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Thiago S L Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Simone de Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Kerolayne M Nogueira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Francisca Beatriz M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Renan O Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60430-270, Fortaleza, Ceará, Brazil.
| | - Dvison M Pacífico
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Conceição S Martins
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Gerly Anne de C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60430-270, Fortaleza, Ceará, Brazil.
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| |
Collapse
|
17
|
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Liu Y, Tran DQ, Rhoads JM. Probiotics in Disease Prevention and Treatment. J Clin Pharmacol 2018; 58 Suppl 10:S164-S179. [PMID: 30248200 PMCID: PMC6656559 DOI: 10.1002/jcph.1121] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
Abstract
Few treatments for human diseases have received as much investigation in the past 20 years as probiotics. In 2017, English-language meta-analyses totaling 52 studies determined the effect of probiotics on conditions ranging from necrotizing enterocolitis and colic in infants to constipation, irritable bowel syndrome, and hepatic encephalopathy in adults. The strongest evidence in favor of probiotics lies in the prevention or treatment of 5 disorders: necrotizing enterocolitis, acute infectious diarrhea, acute respiratory tract infections, antibiotic-associated diarrhea, and infant colic. Probiotic mechanisms of action include the inhibition of bacterial adhesion; enhanced mucosal barrier function; modulation of the innate and adaptive immune systems (including induction of tolerogenic dendritic cells and regulatory T cells); secretion of bioactive metabolites; and regulation of the enteric and central nervous systems. Future research is needed to identify the optimal probiotic and dose for specific diseases, to address whether the addition of prebiotics (to form synbiotics) would enhance activity, and to determine if defined microbial communities would provide benefit exceeding that of single-species probiotics.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Dat Q Tran
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| |
Collapse
|
19
|
Abstract
The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Aline Corado Gomes
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Goiânia, Goiás, Brazil,CONTACT Dra. Aline Corado Gomes Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Setor Leste Universitário, Goiânia, St. 227, Block 68, Goiânia GO, Brazil
| | - Christian Hoffmann
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory (LABINCE), Faculty of Nutrition, Goiás Federal University, Goiânia, Goiás, Brazil
| |
Collapse
|
20
|
Zhou Y, Ni X, Wen B, Duan L, Sun H, Yang M, Zou F, Lin Y, Liu Q, Zeng Y, Fu X, Pan K, Jing B, Wang P, Zeng D. Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Benef Microbes 2018; 9:401-416. [DOI: 10.3920/bm2017.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined the effects on intestinal microbiota and diarrhoea of Lactobacillus buchneri supplementation to the diet of weaning Rex rabbits. To this end, rabbits were treated with L. buchneri at two different doses (LC: 104 cfu/g diet and HC: 105 cfu/g diet) for 4 weeks. PCR-DGGE was used to determine the diversity of the intestinal microbiota, while real-time PCR permitted the detection of individual bacterial species. ELISA and real-time PCR allowed the identification of numerous cytokines in the intestinal tissues. Zonula occludens-1, polymeric immunoglobulin receptor and immunoglobulin A genes were examined to evaluate intestinal barriers. Results showed that the biodiversity of the intestinal microbiota of weaning Rex rabbits improved in the whole tract of the treated groups. The abundance of most detected bacterial species was highly increased in the duodenum, jejunum and ileum after L. buchneri administration. The species abundance in the HC group was more increased than in the LC group when compared to the control. Although the abundance of Enterobacteriaceae exhibited a different pattern, Escherichia coli was inhibited in all treatment groups. Toll-like receptor (TLR)2 and TLR4 genes were down-regulated in all intestinal tissues as the microbiota changed. In the LC group, the secretion of the inflammatory cytokine tumour necrosis factor-α was reduced, the gene expression of the anti-inflammatory cytokine interleukin (IL)-4 was up-regulated and the expression of intestinal-barrier-related genes was enhanced. Conversely, IL-4 expression was increased and the expression of other tested genes did not change in the HC group. The beneficial effects of LC were greater than those of HC or the control in terms of improving the daily weight gain and survival rate of weaning Rex rabbits and reducing their diarrhoea rate. Therefore, 104 cfu/g L. buchneri treatment improved the microbiota of weaning Rex rabbits and prevented diarrhoea in these animals.
Collapse
Affiliation(s)
- Y. Zhou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Ni
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Wen
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - L. Duan
- Qu Country Extension Station for Husbandry Technology, Dazhou, Sichuan 635299, China P.R
| | - H. Sun
- Ya’an City Bureau of Agriculture, Ya’an, Sichuan 625099, China P.R
| | - M. Yang
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - F. Zou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Lin
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Q. Liu
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Fu
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - K. Pan
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Jing
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - P. Wang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - D. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| |
Collapse
|
21
|
Tomato-antioxidants enhance viability of L. reuteri under gastrointestinal conditions while the probiotic negatively affects bioaccessibility of lycopene and phenols. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Aleksandrzak-Piekarczyk T, Puzia W, Żylińska J, Cieśla J, Gulewicz KA, Bardowski JK, Górecki RK. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery. Microbiologyopen 2018; 8:e00620. [PMID: 29575743 PMCID: PMC6341040 DOI: 10.1002/mbo3.620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to characterize and compare selected Lactobacillus strains originating from different environments (cow milk and hen feces) with respect to their applicative potential to colonize gastrointestinal track of chickens before hatching from an egg. In vitro phenotypic characterization of lactobacilli strains included the investigation of the important prerequisites for persistence in gastrointestinal tract, such as a capability to survive in the presence of bile salts and at low pH, enzymatic and sugar metabolic profiles, adhesion abilities, and resistance to osmolytes, temperature, and antibiotics. Regarding the resistance of lactobacilli to most of the various stress factors tested, the milk isolate Lactobacillus plantarum IBB3036 showed better abilities than the chicken feces isolate Lactobacillus salivarius IBB3154. However, regarding the acidification tolerance and adherence ability, L. salivarius IBB3154 revealed better characteristics. Use of these two selected lactobacilli isolates together with proper prebiotics resulted in the preparation of two S1 and S2 bioformulations, which were injected in ovo into hen Cobb500 FF fertilized eggs. Furthermore, in vivo tests assessing the persistence of L. plantarum IBB3036 and L. salivarius IBB3154 in the chicken gastrointestinal tract was monitored by PCR‐based classical and quantitative techniques and revealed the presence of both strains in fecal samples collected 3 days after hatching. Subsequently, the number of L. salivarius IBB3154 increased significantly in the chicken intestine, whereas the presence of L. plantarum IBB3036 was gradually decreased.
Collapse
Affiliation(s)
| | - Weronika Puzia
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Żylińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jacek K Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roman K Górecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Almeida LR, Costa PS, Nascimento AMA, Reis MDP, Barros KO, Alvim LB, Nunes ÁC, Queiroz DMM, Rocha GA, Nicoli JR, de Moura SB. Porcine stomachs with and without gastric ulcer differ in Lactobacillus load and strain characteristics. Can J Microbiol 2018; 64:493-499. [PMID: 29554439 DOI: 10.1139/cjm-2017-0758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Lactobacillus species are recognized as normal inhabitants of porcine gastric mucosa, the association of these bacteria with health status or gastric ulcer disease has never been considered. We investigated the bacterial load of Lactobacillus isolated from the antrum, corpus, and pars esophagea of stomachs with (n = 13) and without (n = 10) ulcer of the pars esophagea of slaughtered pigs. We also evaluated in vitro antagonistic properties against typical pathogens of strains isolated from stomachs without ulcer. To quantify Lactobacillus, gastric mucosa samples obtained with 5 mm biopsy punches were smeared on MRS agar and colonies were counted after 48 h of incubation under anaerobic conditions. The score of Lactobacillus was significantly greater in the antrum and corpus of stomachs without ulcer (P < 0.001 for both) when compared with stomachs with ulcer. Fingerprint profiles, obtained by repetitive sequence-based PCR using (GTG)5 primers, showed that the isolates were highly diverse. The reduction of Lactobacillus load in porcine stomachs may be a contributing factor for gastric ulcer. Strains isolated from healthy stomachs, which showed a wide spectrum of antagonistic activity against pathogens, may be viewed as an untapped source of bacteria with potential beneficial properties that deserve to be further investigated.
Collapse
Affiliation(s)
- Luciana Ramos Almeida
- a Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Patrícia Silva Costa
- b Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Andréa Maria Amaral Nascimento
- b Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mariana de Paula Reis
- b Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Katharina Oliveira Barros
- a Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luige Biciati Alvim
- b Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Álvaro Cantini Nunes
- b Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Dulciene Maria Magalhães Queiroz
- c Laboratório de Pesquisa em Bacteriologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - Gifone Aguiar Rocha
- c Laboratório de Pesquisa em Bacteriologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - Jacques Robert Nicoli
- a Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sílvia Beleza de Moura
- a Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
24
|
Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R, Major A, Haag A, Esparza M, Lugo M, Venable S, Whary M, Fox JG, Versalovic J. Diacylglycerol kinase synthesized by commensal Lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol 2018; 11:380-393. [PMID: 28745328 PMCID: PMC5785580 DOI: 10.1038/mi.2017.58] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/21/2017] [Indexed: 02/04/2023]
Abstract
Lactobacillus reuteri 6475 (Lr) of the human microbiome synthesizes histamine and can suppress inflammation via type 2 histamine receptor (H2R) activation in the mammalian intestine. Gut microbes such as Lr promote H2R signaling and may suppress H1R proinflammatory signaling pathways in parallel by unknown mechanisms. In this study, we identified a soluble bacterial enzyme known as diacylglycerol kinase (Dgk) from Lr that is secreted into the extracellular milieu and presumably into the intestinal lumen. DgK diminishes diacylglycerol (DAG) quantities in mammalian cells by promoting its metabolic conversion and causing reduced protein kinase C phosphorylation (pPKC) as a net effect in mammalian cells. We demonstrated that histamine synthesized by gut microbes (Lr) activates both mammalian H1R and H2R, but Lr-derived Dgk suppresses the H1R signaling pathway. Phospho-PKC and IκBα were diminished within the intestinal epithelium of mice and humans treated by wild-type (WT) Lr, but pPKC and IκBα were not decreased in treatment with ΔdgkA Lr. Mucosal IL-6 and systemic interleukin (IL)-1α, eotaxin, and granulocyte colony-stimulating factor (G-CSF) were suppressed in WT Lr, but not in ΔdgkA Lr colonized mice. Collectively, the commensal microbe Lr may act as a "microbial antihistamine" by suppressing intestinal H1R-mediated proinflammatory responses via diminished pPKC-mediated mammalian cell signaling.
Collapse
Affiliation(s)
- Bhanu Priya Ganesh
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne Hall
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sriram Ayyaswamy
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - James Willard Nelson
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Robert Fultz
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Anthony Haag
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Magdalena Esparza
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Monica Lugo
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Susan Venable
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Mark Whary
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G. Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Versalovic
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Probiotics and antibiotic-associated diarrhea in children: A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol Res 2018; 128:63-72. [DOI: 10.1016/j.phrs.2017.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
|
27
|
Sánchez-Moya T, López-Nicolás R, Planes D, González-Bermúdez CA, Ros-Berruezo G, Frontela-Saseta C. In vitro modulation of gut microbiota by whey protein to preserve intestinal health. Food Funct 2018. [PMID: 28636003 DOI: 10.1039/c7fo00197e] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of several types of whey milk - cow, sheep, goat and a mixture of them (60 : 20 : 20, respectively) - was assessed in the human gut microbiota. The prebiotic potential of these substrates was evaluated through in vitro gastrointestinal digestion following faecal batch culture fermentations (mimicking colonic fermentation) for 48 hours, using faeces from normal-weight (NW) and obese (OB) donors. Throughout the fermentation process, pH, gas production, short chain and branched fatty acids (SCFA-BCFA) were measured, as well as the changes of microbiota using qPCR. The pH decreased in all whey samples during the fermentation process. Gas production was higher in all whey samples than in controls, especially at 12 hours (p < 0.05). The diversity of SCFA and BCFA production was significantly different between the donors, in particular cow and mixed whey. Whey milk had a strong prebiotic effect on the gut microbiota of NW and OB donors, showing a significant increase of Bifidobacterium (p < 0.05) with cow, sheep and mixed whey and increase in the Lactobacillus group, particularly in OB donors. Bacteria associated with obesity did not show an increase in any of the groups of donors. Therefore, supplementing a diet with these types of whey can selectively stimulate the growth of probiotic bacteria, enhancing SCFA production, which could improve intestinal disorders. In addition, it may be an interesting approach to the prevention of overweight and obesity and related diseases. Whey milk has a potent prebiotic effect. It can selectively stimulate desirable bacteria and SCFA profile, in both OB and NW donors, contributing to improved intestinal health and reducing obesity.
Collapse
Affiliation(s)
- T Sánchez-Moya
- Department of Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
29
|
Qi C, Sun J, Li Y, Gu M, Goulette T, You X, Sela DA, Wang X, Xiao H. Peyer's patch-specificLactobacillus reuteristrains increase extracellular microbial DNA and antimicrobial peptide expression in the mouse small intestine. Food Funct 2018; 9:2989-2997. [DOI: 10.1039/c8fo00109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peyer's patch-specificL. reuterialters gut microbiota, promotes the release of bacterial extracellular DNA and increases antibacterial peptide expression in the small intestine crypts of mice.
Collapse
Affiliation(s)
- Ce Qi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Jin Sun
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Ya Li
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Min Gu
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Tim Goulette
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Xiaomeng You
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - David A. Sela
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst 01003
- USA
| |
Collapse
|
30
|
Lee JY, Han GG, Choi J, Jin GD, Kang SK, Chae BJ, Kim EB, Choi YJ. Pan-Genomic Approaches in Lactobacillus reuteri as a Porcine Probiotic: Investigation of Host Adaptation and Antipathogenic Activity. MICROBIAL ECOLOGY 2017; 74:709-721. [PMID: 28439658 DOI: 10.1007/s00248-017-0977-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
After the introduction of a ban on the use of antibiotic growth promoters (AGPs) for livestock, reuterin-producing Lactobacillus reuteri is getting attention as an alternative to AGPs. In this study, we investigated genetic features of L. reuteri associated with host specificity and antipathogenic effect. We isolated 104 L. reuteri strains from porcine feces, and 16 strains, composed of eight strains exhibiting the higher antipathogenic effect (group HS) and eight strains exhibiting the lower effect (group LS), were selected for genomic comparison. We generated draft genomes of the 16 isolates and investigated their pan-genome together with the 26 National Center for Biotechnology Information-registered genomes. L. reuteri genomes organized six clades with multi-locus sequence analysis, and the clade IV includes the 16 isolates. First, we identified six L. reuteri clade IV-specific genes including three hypothetical protein-coding genes. The three annotated genes encode transposases and cell surface proteins, indicating that these genes are the result of adaptation to the host gastrointestinal epithelia and that these host-specific traits were acquired by horizontal gene transfer. We also identified differences between groups HS and LS in the pdu-cbi-cob-hem gene cluster, which is essential for reuterin and cobalamin synthesis, and six genes specific to group HS are revealed. While the strains of group HS possessed all genes of this cluster, LS strains have lost many genes of the cluster. This study provides a deeper understanding of the relationship between probiotic properties and genomic features of L. reuteri.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Geon Goo Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jaeyun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung Jo Chae
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infect Immun 2017; 85:IAI.00303-17. [PMID: 28760934 PMCID: PMC5607411 DOI: 10.1128/iai.00303-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Integration of antibiotic and probiotic therapy has the potential to lessen the public health burden of antimicrobial-associated diseases. Clostridium difficile infection (CDI) represents an important example where the rational design of next-generation probiotics is being actively pursued to prevent disease recurrence. Because intrinsic resistance to clinically relevant antibiotics used to treat CDI (vancomycin, metronidazole, and fidaxomicin) is a desired trait in such probiotic species, we screened several bacteria and identified Lactobacillus reuteri to be a promising candidate for adjunct therapy. Human-derived L. reuteri bacteria convert glycerol to the broad-spectrum antimicrobial compound reuterin. When supplemented with glycerol, strains carrying the pocR gene locus were potent reuterin producers, with L. reuteri 17938 inhibiting C. difficile growth at a level on par with the level of growth inhibition by vancomycin. Targeted pocR mutations and complementation studies identified reuterin to be the precursor-induced antimicrobial agent. Pathophysiological relevance was demonstrated when the codelivery of L. reuteri with glycerol was effective against C. difficile colonization in complex human fecal microbial communities, whereas treatment with either glycerol or L. reuteri alone was ineffective. A global unbiased microbiome and metabolomics analysis independently confirmed that glycerol precursor delivery with L. reuteri elicited changes in the composition and function of the human microbial community that preferentially targets C. difficile outgrowth and toxicity, a finding consistent with glycerol fermentation and reuterin production. Antimicrobial resistance has thus been successfully exploited in the natural design of human microbiome evasion of C. difficile, and this method may provide a prototypic precursor-directed probiotic approach. Antibiotic resistance and substrate bioavailability may therefore represent critical new determinants of probiotic efficacy in clinical trials.
Collapse
|
32
|
Gut Microbe-Mediated Suppression of Inflammation-Associated Colon Carcinogenesis by Luminal Histamine Production. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2323-2336. [PMID: 28917668 DOI: 10.1016/j.ajpath.2017.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
Microbiome-mediated suppression of carcinogenesis may open new avenues for identification of therapeutic targets and prevention strategies in oncology. Histidine decarboxylase (HDC) deficiency has been shown to promote inflammation-associated colorectal cancer by accumulation of CD11b+Gr-1+ immature myeloid cells, indicating a potential antitumorigenic effect of histamine. Here, we demonstrate that administration of hdc+Lactobacillus reuteri in the gut resulted in luminal hdc gene expression and histamine production in the intestines of Hdc-/- mice. This histamine-producing probiotic decreased the number and size of colon tumors and colonic uptake of [18F]-fluorodeoxyglucose by positron emission tomography in Hdc-/- mice. Administration of L. reuteri suppressed keratinocyte chemoattractant (KC), Il22, Il6, Tnf, and IL1α gene expression in the colonic mucosa and reduced the amounts of proinflammatory, cancer-associated cytokines, keratinocyte chemoattractant, IL-22, and IL-6, in plasma. Histamine-generating L. reuteri also decreased the relative numbers of splenic CD11b+Gr-1+ immature myeloid cells. Furthermore, an isogenic HDC-deficient L. reuteri mutant that was unable to generate histamine did not suppress carcinogenesis, indicating a significant role of the cometabolite, histamine, in suppression of chronic intestinal inflammation and colorectal tumorigenesis. These findings link luminal conversion of amino acids to biogenic amines by gut microbes and probiotic-mediated suppression of colorectal neoplasia.
Collapse
|
33
|
Kobierecka PA, Wyszyńska AK, Aleksandrzak-Piekarczyk T, Kuczkowski M, Tuzimek A, Piotrowska W, Górecki A, Adamska I, Wieliczko A, Bardowski J, Jagusztyn-Krynicka EK. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiologyopen 2017; 6. [PMID: 28736979 PMCID: PMC5635155 DOI: 10.1002/mbo3.512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni/coli infections are the leading cause of bacterial diarrheal illnesses in humans. Many epidemiological studies indicate that improperly prepared meat from chickens that carry a high load of Campylobacter in their intestinal tracts is the key source of human infections. LAB, mainly members of the Lactococcus and Lactobacillus genera, increasingly have been tested as vehicles for the delivery of heterologous bacterial or viral antigens to animal mucosal immune systems. Thus, the objective of this study was to isolate, identify, and characterize Lactobacillus spp. strains isolated from chickens bred in Poland. Their ability to decrease the level of bird gut colonization by C. jejuni strain was also analyzed. First, the influence of the different chicken rearing systems was evaluated, especially the effect of diets on the Lactobacillus species that colonize the gut of chickens. Next, selected strains were analyzed in terms of their anti‐Campylobacter activity in vitro; potential probiotic traits such as adhesion properties, bile and low pH tolerance; and their ability to grow on a defined carbon source. Given that improperly prepared chicken meat is the main source of human infection by Campylobacter, the selected strains were also assessed for their ability to inhibit Campylobacter colonization in the bird's intestine. These experiments revealed enormous physiological diversity among the Lactobacillus genus strains. Altogether, our results showed that L. plantarum strains isolated from the digestive tracts of chickens bred in Poland displayed some probiotic attributes in vitro and were able to decrease the level of bird gut colonization by C. jejuni strain. This suggests that they can be employed as vectors to deliver Campylobacter immunodominant proteins to the bird's immune system to strengthen the efficacy of in ovo vaccination.
Collapse
Affiliation(s)
- Patrycja A Kobierecka
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka K Wyszyńska
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Kuczkowski
- Faculty of Veterinary Medicine, Department of Epizootiology and the Clinic of Birds and Exotic Animals, University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Tuzimek
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Wioletta Piotrowska
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Adrian Górecki
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Iwona Adamska
- Faculty of Biology, Department of Animal Physiology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - Alina Wieliczko
- Faculty of Veterinary Medicine, Department of Epizootiology and the Clinic of Birds and Exotic Animals, University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bardowski
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Faculty of Biology, Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Crovesy L, Ostrowski M, Ferreira DMTP, Rosado EL, Soares-Mota M. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond) 2017; 41:1607-1614. [PMID: 28792488 DOI: 10.1038/ijo.2017.161] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/01/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
Gut microbiota is important for maintaining body weight. Modulation of gut microbiota by probiotics may result in weight loss and thus help in obesity treatment. The aim of this systematic review was to evaluate the effects of Lactobacillus on weight loss and/or fat mass in overweight adults. A search was performed on the Medline (PubMed) and Scopus electronic databases using the search terms: 'probiotics', 'Lactobacillus, 'obesity', 'body weight changes', 'weight loss', 'overweight', 'abdominal obesity', 'body composition', 'body weight', 'body fat' and 'fat mass'. In the total were found 1567 articles, but only 14 were included in this systematic review. Of these nine showed decreased body weight and/or body fat, three did not find effect and two showed weight gain. Results suggest that the beneficial effects are strain dependent. It can highlight that Lactobacillus plantarum and Lactobacillus rhamnosus when combined with a hypocaloric diet, L. plantarum with Lactobacillus curvatus, Lactobacillus gasseri, Lactobacillus amylovorus, Lactobacillus acidophilus and Lactobacillus casei with phenolic compounds, and multiple species of Lactobacillus.
Collapse
Affiliation(s)
- L Crovesy
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Ostrowski
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D M T P Ferreira
- Library of Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E L Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Soares-Mota
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Mohan A, Quek SY, Gutierrez-Maddox N, Gao Y, Shu Q. Effect of honey in improving the gut microbial balance. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqs/fyx015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Mohan A, Quek SY, Gutierrez-Maddox N, Gao Y, Shu Q. Effect of honey in improving the gut microbial balance. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Allograft inflammatory factor 1 is a regulator of transcytosis in M cells. Nat Commun 2017; 8:14509. [PMID: 28224999 PMCID: PMC5322540 DOI: 10.1038/ncomms14509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
M cells in follicle-associated epithelium (FAE) are specialized antigen-sampling cells that take up intestinal luminal antigens. Transcription factor Spi-B regulates M-cell maturation, but the molecules that promote transcytosis within M cells are not fully identified. Here we show that mouse allograft inflammatory factor 1 (Aif1) is expressed by M cells and contributes to M-cell transcytosis. FAE in Aif1−/− mice has suppressed uptake of particles and commensal bacteria, compared with wild-type mice. Translocation of Yersinia enterocolitica, but not of Salmonella enterica serovar Typhimurium, leading to the generation of antigen-specific IgA antibodies, is also diminished in Aif1-deficient mice. Although β1 integrin, which acts as a receptor for Y. enterocolitica via invasin protein, is expressed on the apical surface membranes of M cells, its active form is rarely found in Aif1−/− mice. These findings show that Aif1 is important for bacterial and particle transcytosis in M cells. M cells are intestinal epithelial cells that are specialized to transcytose antigens and bacteria from the intestinal lumen to antigen presenting cells on the other side. Here the authors show that the actin-binding protein Aif1 is highly expressed by intestinal M cells and regulates this transcytosis.
Collapse
|
38
|
Lecker JL, Froberg-Fejko K. PrimiOtic and PrimiOtic Plus: novel probiotic for primates suffering from idiopathic chronic diarrhea. Lab Anim (NY) 2016; 44:414-5. [PMID: 26398619 DOI: 10.1038/laban.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Idiopathic chronic diarrhea of nonhuman primates is a major gastrointestinal disorder and a leading cause of serious morbidity in nonhuman primates kept in captivity. Many animals are not responsive to traditional treatments. Millions of dollars are spent annually on diagnosis and supportive care of these animals. Probiotics like Bio-Serv's PrimiOtic and PrimiOtic Plus can help to reduce the incidence of diarrhea in captive nonhuman primates by supporting the natural microflora in the gut.
Collapse
|
39
|
Abd El-Tawab M, Youssef I, Bakr H, Fthenakis G, Giadinis N. Role of probiotics in nutrition and health of small ruminants. Pol J Vet Sci 2016; 19:893-906. [DOI: 10.1515/pjvs-2016-0114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractSmall ruminants represent an important economic source in small farm systems and agriculture. Feed is the main component of livestock farming, which has gained special attention to improve animal performance. Many studies have been done to improve feed utilisation through addition of feed additives. For a long period, antibiotics have been widely used as growth promoters in livestock diets. Due to their ban in many countries, search for alternative feed additives has been intensified. Probiotics are one of these alternatives recognised to be safe to the animals. Use of probiotics in small ruminant nutrition has been confirmed to improve animal health, productivity and immunity. Probiotics improved growth performance through enhancing of rumen microbial ecosystem, nutrient digestibility and feed conversion rate. Moreover, probiotics have been reported to stabilise rumen pH, increase volatile fatty acids production and to stimulate lactic acid utilising protozoa, resulting in a highly efficient rumen function. Furthermore, use of probiotics has been found to increase milk production and can reduce incidence of neonatal diarrhea and mortality. However, actual mechanisms through which probiotics exert these functions are not known. Since research on application of probiotics in small ruminants is scarce, the present review attempts to discuss the potential roles of this class of feed additives on productive performance and health status of these animals.
Collapse
|
40
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
41
|
The goblet cell-derived mediator RELM-β drives spontaneous colitis in Muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol 2016; 9:1218-33. [PMID: 26813339 DOI: 10.1038/mi.2015.140] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/13/2015] [Indexed: 02/04/2023]
Abstract
Intestinal goblet cells are potentially key players in controlling susceptibility to ulcerative colitis (UC). Although impaired mucin (Muc2) production by goblet cells increases microbial stimulation of the colonic mucosa, goblet cells secrete other mediators that may influence or promote UC development. Correspondingly, Muc2-deficient ((-/-)) mice develop spontaneous colitis, concurrent with the dramatic upregulation of the goblet cell mediator, resistin-like molecule-beta (RELM-β). Testing RELM-β's role, we generated Muc2(-/-)/Retnlb(-/-) mice, finding that RELM-β deficiency significantly attenuated colitis development and symptoms compared with Muc2(-/-) mice. RELM-β expression in Muc2(-/-) mice strongly induced the production/secretion of the antimicrobial lectin RegIIIβ, that exerted its microbicidal effect predominantly on Gram-positive Lactobacillus species. Compared with Muc2(-/-)/Retnlb(-/-) mice, this worsened intestinal microbial dysbiosis with a selective loss of colonic Lactobacilli spp. in Muc2(-/-) mice. Orally replenishing Muc2(-/-) mice with murine Lactobacillus spp., but not with a probiotic formulation containing several human Lactobacillus spp. (VSL#3), ameliorated their spontaneous colitis in concert with increased production of short-chain fatty acids. These studies demonstrate that the goblet cell mediator RELM-β drives colitis in Muc2(-/-) mice by depleting protective commensal microbes. The ability of selective commensal microbial replacement to ameliorate colitis suggests that personalized bacterial therapy may prove beneficial for treatment of UC.
Collapse
|
42
|
Ang LYE, Too HKI, Tan EL, Chow TKV, Shek LPC, Tham EH, Alonso S. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines. Virol J 2016; 13:111. [PMID: 27341804 PMCID: PMC4920999 DOI: 10.1186/s12985-016-0567-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background Recurrence of hand, foot and mouth disease (HFMD) pandemics continues to threaten public health. Despite increasing awareness and efforts, effective vaccine and drug treatment have yet to be available. Probiotics have gained recognition in the field of healthcare worldwide, and have been extensively prescribed to babies and young children to relieve gastrointestinal (GI) disturbances and diseases, associated or not with microbial infections. Since the faecal-oral axis represents the major route of HFMD transmission, transient persistence of probiotic bacteria in the GI tract may confer some protection against HFMD and limit transmission among children. Methods In this work, the antiviral activity of two commercially available probiotics, namely Lactobacillus reuteri Protectis (L. reuteri Protectis) and Lactobacillus casei Shirota (L. casei Shirota), was assayed against Coxsackieviruses and Enterovirus 71 (EV71), the main agents responsible for HFMD. In vitro infection set-ups using human skeletal muscle and colon cell lines were designed to assess the antiviral effect of the probiotic bacteria during entry and post-entry steps of the infection cycle. Results Our findings indicate that L. reuteri Protectis displays a significant dose-dependent antiviral activity against Coxsackievirus type A (CA) strain 6 (CA6), CA16 and EV71, but not against Coxsackievirus type B strain 2. Our data support that the antiviral effect is likely achieved through direct physical interaction between bacteria and virus particles, which impairs virus entry into its mammalian host cell. In contrast, no significant antiviral effect was observed with L. casei Shirota. Conclusions Should the antiviral activity of L. reuteri Protectis observed in vitro be translated in vivo, such probiotics-based therapeutic approach may have the potential to address the urgent need for a safe and effective means to protect against HFMD and limit its transmission among children.
Collapse
Affiliation(s)
- Lei Yin Emily Ang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #03-05, Singapore, 117456, Singapore.,Immunology programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Horng Khit Issac Too
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #03-05, Singapore, 117456, Singapore.,Immunology programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eng Lee Tan
- Department of Paediatrics, National University Hospital, Singapore, Singapore.,Centre for Biomedical & Life Sciences, Singapore Polytechnic, Singapore, Singapore
| | - Tak-Kwong Vincent Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #03-05, Singapore, 117456, Singapore
| | | | | | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #03-05, Singapore, 117456, Singapore. .,Immunology programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
43
|
Complete genome sequence of probiotic Lactobacillus reuteri ZLR003 isolated from healthy weaned pig. J Biotechnol 2016; 228:69-70. [DOI: 10.1016/j.jbiotec.2016.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
|
44
|
Gómez-Torres N, Ávila M, Delgado D, Garde S. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese. Int J Food Microbiol 2016; 232:103-10. [PMID: 27289193 DOI: 10.1016/j.ijfoodmicro.2016.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
The effect of the biopreservation system formed by Lactobacillus reuteri INIA P572, a reuterin-producing strain, and glycerol (required for reuterin production), on the volatile fraction, aroma and odour of industrial sized semi-hard ewe milk cheese (Castellano type) was investigated over a 3-month ripening period. The volatile compounds were extracted and analyzed by SPME-GC-MS and cheese odour and aroma profiles were studied by descriptive sensory analysis. Control cheese was made only with a mesophilic starter and experimental cheeses with L. reuteri were made with and without glycerol. The addition of L. reuteri INIA P572 to milk enhanced the formation of six volatile compounds. Despite the changes in the volatile compounds profile, the use of L. reuteri INIA P572 did not noticeably affect the sensory characteristics of cheese. On the other hand, the addition of L. reuteri INIA P572 coupled with 30mM glycerol enhanced the formation of twelve volatile compounds, but decreased the formation of five ones. The use of the biopreservation system did not affect overall odour and aroma quality of cheese although it resulted in a significant decrease of the odour intensity scores. In addition, this cheese received significant higher scores for "cheesy" aroma and significant lower scores for the aroma attributes "milky", "caramel" and "yogurt-like". The first two axes of a principal component analysis (PCA) performed for selected volatile compounds and sensory characteristics, accounting for 75% of the variability between cheeses, separated cheeses made with L. reuteri INIA P572 and glycerol from the rest of cheeses, and also differentiated control cheese from cheeses made with L. reuteri INIA P572 from day 60 onward. Our results showed that the reuterin-producing L. reuteri INIA P572 strain, when coupled with glycerol, may be a suitable biopreservation system to use in cheese without affecting odour and aroma quality.
Collapse
Affiliation(s)
- Natalia Gómez-Torres
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - Marta Ávila
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain
| | - David Delgado
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Estación Tecnológica de la Leche, Carretera de Autilla s/n, 34071 Palencia, Spain
| | - Sonia Garde
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Tecnología de Alimentos, Carretera de La Coruña km 7, 28040 Madrid, Spain.
| |
Collapse
|
45
|
Kassa SR. Role of probiotics in rumen fermentation and animal performance: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ijlp2016.0285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front Microbiol 2016; 7:713. [PMID: 27242734 PMCID: PMC4871866 DOI: 10.3389/fmicb.2016.00713] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to highly impact the metabolic balance as well as the gut microbiota/host homeostasis by the formation of different short chain fatty acids.
Collapse
Affiliation(s)
- Christina Engels
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; Research Informatics, Scientific IT Services, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| |
Collapse
|
47
|
Urbańska M, Gieruszczak-Białek D, Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment Pharmacol Ther 2016; 43:1025-34. [PMID: 26991503 DOI: 10.1111/apt.13590] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/09/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Not all probiotics are equal. AIM To investigate the efficacy of Lactobacillus reuteri DSM 17938 (L. reuteri) in the management of various types of diarrhoeal diseases in children. METHODS Medline, Embase, the Cochrane Library, trial registries and reference lists of included studies were searched in January 2016, with no language restriction, for randomised controlled trials (RCTs). RESULTS Eight RCTs (n = 1229) met the inclusion criteria. In treatment trials, L. reuteri administration reduced the duration of diarrhoea (three RCTs, n = 256, mean difference, MD -24.82 h, 95% CI -38.8 to -10.8) and increased the cure rate on day 1 and day 2. However, heterogeneity and wide confidence intervals call for caution in interpreting results. In preventive trials carried out in hospitalised children, based on the findings from two RCTs (n = 290), there was no significant reduction in the risk of nosocomial diarrhoea, rotavirus diarrhoea or diarrhoea of any origin with L. reuteri administration. Based on one RCT (n = 97), there was no effect of L. reuteri on the risk of antibiotic-associated diarrhoea. However, the evidence is limited because the overall frequency of diarrhoea was surprisingly low. In preventive studies carried out in apparently healthy children, L. reuteri reduced diarrhoeal outcomes in one RCT; the evidence from another trial was less convincing. CONCLUSIONS In therapeutic settings, L. reuteri administration reduces the duration of diarrhoea and increases the chance of cure. In preventive settings, L. reuteri has the potential to reduce the risk of community-acquired diarrhoea in otherwise healthy children.
Collapse
Affiliation(s)
- M Urbańska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | - H Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Karimi S, Ahl D, Vågesjö E, Holm L, Phillipson M, Jonsson H, Roos S. In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence. PLoS One 2016; 11:e0151969. [PMID: 27002525 PMCID: PMC4803345 DOI: 10.1371/journal.pone.0151969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus reuteri is a symbiont that inhabits the gastrointestinal (GI) tract of mammals, and several strains are used as probiotics. After introduction of probiotic strains in a complex ecosystem like the GI tract, keeping track of them is a challenge. The main objectives of this study were to introduce reporter proteins that would enable in vivo and in vitro detection of L. reuteri and increase knowledge about its interactions with the host. We describe for the first time cloning of codon-optimized reporter genes encoding click beetle red luciferase (CBRluc) and red fluorescent protein mCherry in L. reuteri strains ATCC PTA 6475 and R2LC. The plasmid persistence of mCherry-expressing lactobacilli was evaluated by both flow cytometry (FCM) and conventional plate count (PC), and the plasmid loss rates measured by FCM were lower overall than those determined by PC. Neutralization of pH and longer induction duration significantly improved the mCherry signal. The persistency, dose-dependent signal intensity and localization of the recombinant bacteria in the GI tract of mice were studied with an in vivo imaging system (IVIS), which allowed us to detect fluorescence from 6475-CBRluc-mCherry given at a dose of 1×1010 CFU and luminescence signals at doses ranging from 1×105 to 1×1010 CFU. Both 6475-CBRluc-mCherry and R2LC-CBRluc were localized in the colon 1 and 2 h after ingestion, but the majority of the latter were still found in the stomach, possibly reflecting niche specificity for R2LC. Finally, an in vitro experiment showed that mCherry-producing R2LC adhered efficiently to the intra cellular junctions of cultured IPEC-J2 cells. In conclusion, the two reporter genes CBRluc and mCherry were shown to be suitable markers for biophotonic imaging (BPI) of L. reuteri and may provide useful tools for future studies of in vivo and in vitro interactions between the bacteria and the host.
Collapse
Affiliation(s)
- Shokoufeh Karimi
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Evelina Vågesjö
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Hans Jonsson
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
49
|
Walsham ADS, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, Schüller S. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium. Front Microbiol 2016; 7:244. [PMID: 26973622 PMCID: PMC4771767 DOI: 10.3389/fmicb.2016.00244] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.
Collapse
Affiliation(s)
- Alistair D S Walsham
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| | - Donald A MacKenzie
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Vivienne Cook
- Department of Gastroenterology, Norfolk and Norwich University Hospital Norwich, UK
| | | | - Claire L Hews
- Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK; School of Biological Sciences, University of East AngliaNorwich, UK
| | - Nathalie Juge
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East AngliaNorwich, UK; Gut Health and Food Safety Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
50
|
Mishra SK, Malik RK, Manju G, Pandey N, Singroha G, Behare P, Kaushik JK. Characterization of a Reuterin-Producing Lactobacillus reuteri BPL-36 Strain Isolated from Human Infant Fecal Sample. Probiotics Antimicrob Proteins 2016; 4:154-61. [PMID: 26782041 DOI: 10.1007/s12602-012-9103-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A reuterin (3-hydroxypropinaldehyde, 3-HPA)-producing isolate from a human infant fecal sample was identified as Lactobacillus reuteri BPL-36 strain. The organism displayed a broad-spectrum antimicrobial activity. The gene (gdh) encoding a glycerol dehydratase subunit was detected by PCR, thus confirming its reuterin-producing ability. Reuterin concentration of 89.63 mM/mL was obtained in the MRS-glycerol medium after 16 h of incubation at 37 °C. The reuterin concentration required to inhibit the growth of Pseudomonas aeruginosa, Escherichia coli O157: H7, Salmonella typhi, Staphylococcus aureus, and Listeria monocytogenes was found to be 1.0, 2.0, 2.0, 4.0, and 10.0 AU/mL, respectively. Antimicrobial efficiency test using BPL-36 cell-free supernatant co-incubated along with different test pathogens was done. Viability of all the tested pathogens decreased with increasing contact time with the cell-free supernatant. S. typhi was observed to be the most susceptible among the tested organisms, and the number of viable cells hugely declined as the contact with cell-free supernatant continued, resulting in a reduction of 6 log cycles (100 % inhibition) of the cells after 4 h of treatment. Production of biogenic amines and degradation of mucin by the reuterin-producing BPL-36 strain were not detected.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - R K Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India.
| | - G Manju
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Neha Pandey
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Garima Singroha
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - Pradip Behare
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India
| | - J K Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|