1
|
Lee JY, Choi YH, Choi HI, Moon KW. Association between environmental mercury exposure and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) cycles 3-4 (2015-2020). Sci Rep 2024; 14:1472. [PMID: 38233475 PMCID: PMC10794242 DOI: 10.1038/s41598-024-51811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Although previous studies have suggested potential adverse effects of mercury on a child's immune system, the associations have been inconsistent. We aimed to determine the association between urinary mercury levels and allergic diseases in Korean children with high mercury exposure. Data from 853 and 710 children aged 6-11 years in the Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017) and cycle 4 (2018-2020) were analyzed. We examined the association between mercury exposure and the prevalence of atopic dermatitis (AD), asthma, allergic rhinitis (AR), and allergic multimorbidity. After adjusting for all covariates, the urinary mercury level was positively associated with AD in the 2015-2017 study (OR = 1.34, 95% CI = 1.01, 1.79) and AR in 2018-2020 study (OR = 1.46, 95% CI = 1.01, 2.10). Pooled effects showed OR of 1.34 (95% CI = 1.01, 1.79) for AD and 1.47 (95% CI = 1.01, 2.12) for allergic multimorbidity. The association with allergic multimorbidity was greater in boys (OR = 1.88, 95% CI = 1.01, 3.49) than in girls (OR = 1.25, 95% CI = 0.73, 2.14). These results suggest that environmental mercury exposure may exacerbate symptoms of atopic dermatitis and allergic multimorbidity in children.
Collapse
Affiliation(s)
- Ji-Youn Lee
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Yun-Hee Choi
- Department of Ophthalmology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hyeon-Il Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Munhwa-ro 266, Jung-gu, Daejeon, 35015, South Korea.
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
- BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
2
|
Ran Z, Wang B, Zhang SY. Associations of exposure to metals with total and allergen-specific IgE: An NHANES analysis (2005-2006). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167385. [PMID: 37777136 DOI: 10.1016/j.scitotenv.2023.167385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Immunoglobulin E (IgE) is a diagnostic biomarker for allergic diseases. While some metal exposure has been found to be associated with allergic diseases, there are still a lot of knowledge gaps regarding the relationship between metal exposure and allergen-specific IgE antibodies, particularly in adults. METHODS We included a total of 1433 adult participants from the 2005-2006 National Health and Nutrition Examination Survey (NHANES), all of whom had concentrations of 10 metals (including Barium (Ba), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Molybdenum (Mo), Lead (Pb), Antimony (Sb), Thallium (Tl), Tungsten (Tu), and Uranium (Ur)) in urine, as well as measurements of 19 allergen-specific IgE and total IgE antibodies. Linear regression, logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to estimate associations between metals and total and allergen-specific IgE. RESULTS Linear regression models revealed a positive correlation between Pb and Cd levels and the total IgE levels. Furthermore, the WQS and BKMR models suggested a positive association between mixed metals and total IgE levels, with the WQS model highlighting Pb and Cd as the major contributors. Logistic regression models showed positive correlations between Pb and food sensitization, Ur and plant sensitization, negative correlations between Cs and plant sensitization, Co and dust mite and pet sensitization, Mo and dust mite and cockroach sensitization, and Tl and mold sensitization. Moreover, the BKMR results indicated a statistically significant negative correlation between mixed metals and mold sensitization. CONCLUSION According to the research findings, exposure to metals is associated with total and allergen-specific IgE in American adults. Further assessment of these relationships is necessary in representative populations of other countries.
Collapse
Affiliation(s)
- Zhujie Ran
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ben Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
3
|
Parida L, Patel TN. Systemic impact of heavy metals and their role in cancer development: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:766. [PMID: 37249740 DOI: 10.1007/s10661-023-11399-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Heavy metals are well-recognised as environmental hazards due to their toxicity, environmental persistence, and bioaccumulation in living organisms. Human health is a crucial concern related to terrestrial and aquatic ecosystems poisoned by harmful heavy metals. Most heavy metals pollute the air, water, and soil, which can be fatal to humans. Humans and other species can be exposed to heavy metals through the food chain if the metals oxidise or combine with other environmental elements (such as water, soil, or air). Their entry into the food chain assures interactions with biological macromolecules in living systems, including humans, resulting in undesirable outcomes. Human poisonings have typically been caused by mercury, lead, chromium, cadmium, and arsenic. The build-up of these metals in living organisms causes various harmful consequences on different organs and tissues. The gravitas of heavy metal toxicity regarding molecular impact and carcinogenesis needs in-depth understanding despite the plethora of available data. Hence, additionally, we attempt to elaborate on the multi-level impact of five heavy metals and emphasise their role in cancer development. The rationale of this essay is thus to understand the role of five heavy metals, viz., lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg), in carcinogenesis. Heavy metals interfere with various biological functions, including proliferation, differentiation, repair of damage, and apoptosis. By comparing their modes of action, we see that these metals share common mechanisms for inducing toxicity, such as reactive oxygen species (ROS) production, antioxidant defence weakening, enzyme inactivation, and oxidative stress.
Collapse
Affiliation(s)
- Lucky Parida
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
4
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
5
|
Yuehui Z, Hosoki M, Oshima M, Tajima T, Miyagi M, Raman S, Raju R, Matsuka Y. Identification of microRNA Signatures in Peripheral Blood of Young Women as Potential Biomarkers for Metal Allergy. Biomedicines 2023; 11:biomedicines11020277. [PMID: 36830814 PMCID: PMC9953729 DOI: 10.3390/biomedicines11020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
MicroRNA (miRNA) is a short (19-24 nucleotide) endogenous non-protein RNA that exists in the body and controls the translation process from genes to proteins. It has become useful as a diagnostic tool and a potential treatment target in cancer research. To explore the function of miRNA in contact dermatitis, female participants with a positive metal allergy diagnosis (n = 3) were enrolled along with additional female participants with no medical history of metal allergy (n = 3). A patch test was performed on each participant. Peripheral blood was collected from all the participants before the patch test and at days 3 and 7 after starting the patch test. After total RNA was obtained from peripheral blood leukocytes and cDNA was generated, microarray analysis was performed to analyze the large-scale circulating miRNA profile. Real-time polymerase chain reaction (RT-PCR) was then used to clarify the overall target miRNA expression. Downregulation of hsa-let-7d-5p, hsa-miR-24-3p, hsa-miR-23b-3p, hsa-miR-26b-5p, and hsa-miR-150-5p was found on day 7. Certain miRNAs were confirmed using RT-PCR. These peripheral blood miRNAs could be diagnostic biomarkers for metal allergies.
Collapse
Affiliation(s)
- Zhang Yuehui
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Maki Hosoki
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Toyoko Tajima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Mayu Miyagi
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
| | - Resmi Raju
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 7708504, Japan
- Correspondence:
| |
Collapse
|
6
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Wang J, Yin J, Hong X, Liu R. Exposure to Heavy Metals and Allergic Outcomes in Children: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 200:4615-4631. [PMID: 35006554 DOI: 10.1007/s12011-021-03070-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
It has been reported that heavy metals have adverse effects on the immune system. However, the relationship between heavy metal exposure and allergic outcomes remains unclear. This systematic review was conducted to examine whether heavy metal exposure is associated with allergic outcomes during childhood. We performed a systematic search of all relevant articles in Web of Science, EMBASE, and PubMed, from inception through to November 2020. We used odds ratio (OR) and the standard mean differences (SMDs) with 95% confidence intervals (CIs) to present estimates from individual studies. In addition, random-effects meta-analysis was used to pool the data. We also conducted the meta-regression and subgroup analysis to explore potential sources of heterogeneity. After duplicate removal, we finally included 35 articles in the systematic review and meta-analysis from an initial 11,181 articles. The overall results showed that copper (Cu) was associated with asthma (pooled SMD = 1.50, 95% CI = 0.13-2.86); in the subgroup analysis, the results indicated that lead (Pb) was associated with asthma (pooled OR = 6.27, 95% CI = 2.24-17.56), and Cu and Pb were connected with atopic dermatitis (SMD = - 1.05, 95% CI = - 1.45 to - 0.65; SMD = 5.68, 95% CI = 5.05-6.32), respectively. Mercury (Hg) was associated with atopic dermatitis (pooled OR = 1.13, 95% CI = 1.04-1.22) and wheeze (OR = 1.20, 95% CI = 1.05-1.37). The meta-analysis results indicate that Cu might be connected with childhood asthma, but not with other allergic diseases; Hg and Pb may have no association with allergic diseases during childhood. Given some limits observed in the current studies, more prospective cohort studies are still needed to verify our findings. Review registration: PROSPERO CRD42020222167.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Zhao M, Li Y, Wang Z. Mercury and Mercury-Containing Preparations: History of Use, Clinical Applications, Pharmacology, Toxicology, and Pharmacokinetics in Traditional Chinese Medicine. Front Pharmacol 2022; 13:807807. [PMID: 35308204 PMCID: PMC8924441 DOI: 10.3389/fphar.2022.807807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, mercury and mercury-containing preparations have been widely used in traditional Chinese medicine and applied in many clinical practices mainly in the form of mercury sulfides. The clinical application, toxicity manifestations, and symptoms of these preparations largely depend on the route of administration and the dosage form. Commonly used mercury-containing medicinal materials and preparations in traditional Chinese medicine include Cinnabar, an excellent medicine for tranquilizing the nerves; Hongsheng Dan and Baijiang Dan, which have antibacterial, anti-inflammatory, promotion of tissue repair and regeneration and other pharmacological effects. Tibetan medicine commonly uses Zaotai and Qishiwei Zhenzhu pills, which have pharmacological effects such as sedation, anti-inflammatory, anti-convulsant, and improvement of cerebral apoplexy. Menggen Wusu Shibawei pills, commonly used in Mongolian traditional medicine, have the muscle growth and astringent effects. In India and Europe, mercury is often used for treating syphilis. This article summarizes the history, clinical application, pharmacology, toxicology, and pharmacokinetics of mercury and mercury-containing preparations in traditional medicines. In terms of clinical application, it provides suggestions for the rational use and safety of mercury-containing drugs in clinical practices and in public health issues. It will further provide a reference for formulation strategies related to mercury risk assessment and management.
Collapse
Affiliation(s)
- Meiling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
10
|
Tsuji M, Koriyama C, Ishihara Y, Yamamoto M, Yamamoto-Hanada K, Kanatani K, Bamai YA, Onishi K, Senju A, Araki S, Shibata E, Morokuma S, Sanefuji M, Kitazawa H, Saito M, Umezawa M, Onoda A, Kusuhara K, Tanaka R, Kawamoto T. Associations Between Metal Levels in Whole Blood and IgE Concentrations in Pregnant Women Based on Data From the Japan Environment and Children's Study. J Epidemiol 2019; 29:478-486. [PMID: 30643099 PMCID: PMC6859078 DOI: 10.2188/jea.je20180098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Metal exposures could possibly affect allergic responses in pregnant women, although no studies have yet shown a clear relationship between the two, and such exposures might also affect the development of allergic diseases in children. Methods We investigated the relationship between metal concentrations in whole blood and immunoglobulin E (IgE; total and specific) in 14,408 pregnant women who participated in the Japan Environment and Children’s Study. The subjects submitted self-administered questionnaires, and blood samples were collected from them twice, specifically, during the first trimester and again during the second/third trimester. Concentrations of the metals Cd, Pb, Hg, Se, and Mn, as well as serum total and allergen-specific IgEs for egg white, house dust-mites (HDM), Japanese cedar pollen (JCP), animal dander, and moth, were measured. Allergen-specific IgE(s) were divided based on concentrations <0.35 or ≥0.35 UA/mL, and the metal levels were divided into quartiles. Results Multivariable logistic regression analysis showed that there was a significant negative correlation between HDM- and animal dander-specific IgEs and Hg and Mn concentrations. Conversely, there was a significant positive relationship between JCP-specific IgE and Hg and Se concentrations. Conclusions Metal exposures may be related to both increases and decreases in allergen-specific IgEs in pregnant women.
Collapse
Affiliation(s)
- Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease
| | - Kiwako Yamamoto-Hanada
- Medical Support Center for Japan Environment and Children's Study, National Center for Child Health and Development
| | - Kumiko Kanatani
- Department of Health Informatics, Graduate School of Medicine and Public Health, Kyoto University
| | - Yu Ait Bamai
- Department of Public Health, Hokkaido University Graduate School of Medicine, Sciences
| | - Kazunari Onishi
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi
| | - Ayako Senju
- Japan Environment and Children's Study, UOEH Subunit Center, University of Occupational and Environmental Health.,Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Shunsuke Araki
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Eiji Shibata
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health
| | - Seiichi Morokuma
- Research Center for Environmental and Developmental Medical Sciences, Kyushu University
| | - Masafumi Sanefuji
- Research Center for Environmental and Developmental Medical Sciences, Kyushu University
| | - Hiroshi Kitazawa
- Medical Support Center for Japan Environment and Children's Study, National Center for Child Health and Development
| | - Mayako Saito
- Medical Support Center for Japan Environment and Children's Study, National Center for Child Health and Development
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Atsuto Onoda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital.,Postdoctoral Fellow of Japan Society for the Promotion of Science
| | - Koichi Kusuhara
- Japan Environment and Children's Study, UOEH Subunit Center, University of Occupational and Environmental Health.,Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Rie Tanaka
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Toshihiro Kawamoto
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | | |
Collapse
|
11
|
|
12
|
Batista-Duharte A, Téllez-Martínez D, Aparecida Jellmayer J, Leandro Portuondo Fuentes D, Campos Polesi M, Martins Baviera A, Zeppone Carlos I. Repeated Exposition to Mercury (II) Chloride Enhances Susceptibility to S. schenckii sensu stricto Infection in Mice. J Fungi (Basel) 2018; 4:jof4020064. [PMID: 29799450 PMCID: PMC6023541 DOI: 10.3390/jof4020064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/18/2023] Open
Abstract
Sporotrichosis is a subcutaneous mycosis that has re-emerged in several tropical and subtropical regions over the last decades. Growing findings suggest that the interplay of host, pathogen, and environment has a determinant effect on the diversity, local distribution, and virulence of Sporothrix schenckii sensu lato, the etiologic agent. Among the environmental factors, we have studied the potential role of repeated exposures to mercury (Hg), a known immunotoxic xenobiotic that is widely used in gold mining regions where sporotrichosis outbreaks are frequently reported. In this study, male Swiss mice received subcutaneous injections of either 300 or 1200 µg/kg of mercury (II) chloride (HgCl2) for 14 days, three times a week. A control group was injected with the vehicle Phosphate Buffered Saline (PBS). Treatment with HgCl2 impaired several immunologic parameters that are involved in host response to Sporothrix infection, such as the production of TNFα, IL-1, and nitric oxide by macrophages, and Th1/Th2/Th17 populations and their respective cytokines. The consequences of these effects on the host resistance to S. schenckii infection were subsequently evaluated. Hg-exposed mice exhibited a higher fungal load in the fungal inoculation site associated to systemic dissemination to spleen and liver on 14 days post-infection and a higher production of specific IgG1 and mild reduction of IgG2a. These findings suggest that repeated exposition to Hg enhances susceptibility to S. schenckii infection in mice and can be a factor associated to sporotrichosis outbreaks in endemic and highly Hg-polluted areas.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Damiana Téllez-Martínez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Juliana Aparecida Jellmayer
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Deivys Leandro Portuondo Fuentes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Marisa Campos Polesi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú km 1, Araraquara 14800-903, Brazil.
| |
Collapse
|
13
|
Lee F, Lawrence DA. From Infections to Anthropogenic Inflicted Pathologies: Involvement of Immune Balance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 21:24-46. [PMID: 29252129 DOI: 10.1080/10937404.2017.1412212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A temporal trend can be seen in recent human history where the dominant causes of death have shifted from infectious to chronic diseases in industrialized societies. Human influences in the current "Anthropocene" epoch are exponentially impacting the environment and consequentially health. Changing ecological niches are suggested to have created health transitions expressed as modifications of immune balance from infections inflicting pathologies in the Holocene epoch (12,000 years ago) to human behaviors inflicting pathologies beginning in the Anthropocene epoch (300 years ago). A review of human immune health and adaptations responding to environmental (biological, chemical, physical, and psychological) stresses, which are influenced by social conditions, emphasize the involvement of fluctuations in immune cell subsets affecting influential gene-environment interactions. The literature from a variety of fields (anthropological, immunological, and environmental) is incorporated to present an expanded perspective on shifts in diseases within the context of immune balance and function and environmental immunology. The influences between historical and contemporary human ecology are examined in relation to human immunity. Several examples of shifts in human physiology and immunity support the premise that increased incidences of chronic diseases are a consequence of human modification of environment and lifestyle. Although the development of better health care and a broader understanding of human health have helped with better life quality and expectancy, the transition of morbidity and mortality rates from infections to chronic diseases is a cause for concern. Combinations of environmental stressors/pollutants and human behaviors and conditions are modulating the immune-neuroendocrine network, which compromises health benefits.
Collapse
Affiliation(s)
- Florence Lee
- a Department of Anthropology , University at Albany , Albany , NY , USA
| | - David A Lawrence
- b Wadsworth Center/New York State Department of Health , Albany , NY , USA
- c Biomedical Sciences and Environmental Health Sciences , University at Albany, School of Public Health , Albany , NY , USA
| |
Collapse
|
14
|
Systemic sclerosis and exposure to heavy metals: A case control study of 100 patients and 300 controls. Autoimmun Rev 2017; 16:223-230. [DOI: 10.1016/j.autrev.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
|
15
|
Abstract
BACKGROUND Mercury (Hg) has been reported to have adverse effects on the immune system. However, the association between Hg exposure and asthma remains unclear. We hypothesized that blood Hg concentrations are associated with asthma and immune system blood profile changes in school-age children. METHODS Between 2005 and 2010, we evaluated 4,350 Korean children at 7-8 years of age with no previous asthma diagnosis. Follow-up surveys were conducted twice, each 2 years apart, until 11-12 years of age. For every survey, we evaluated asthma through a questionnaire and blood profile. We analyzed the association of Hg concentration with asthma by logistic and Cox regression models and the association with blood profile by generalized additive and linear mixed models. RESULTS Blood Hg concentrations at 7-8 years of age were associated with an increased risk of asthma (odds ratio [OR] = 1.3; 95% confidence interval [CI] = 1.0, 1.6) at ages up to 11-12 years (n = 191). Hg concentration was also associated with wheezing (OR = 1.2; 95% CI = 1.0, 1.3), asthma medication use (OR = 1.4; 95% CI = 0.97, 2.0), and airway hyperresponsiveness (OR = 1.2; 95% CI = 1.0, 1.3). Further adjustment for fish consumption did not change the results appreciably. CONCLUSIONS Low-level Hg exposure was associated with asthma and blood profile changes in school-age children.
Collapse
|
16
|
Nakamura R, Takanezawa Y, Sone Y, Uraguchi S, Sakabe K, Kiyono M. Immunotoxic Effect of Low-Dose Methylmercury Is Negligible in Mouse Models of Ovalbumin or Mite-Induced Th2 Allergy. Biol Pharm Bull 2016; 39:1353-8. [DOI: 10.1248/bpb.b16-00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | | | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Kou Sakabe
- Department of Human Structure and Function, Tokai University School of Medicine
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
17
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 2015; 28:231-54. [DOI: 10.1007/s10534-015-9823-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
|
18
|
Motts JA, Shirley DL, Silbergeld EK, Nyland JF. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil. ENVIRONMENTAL RESEARCH 2014; 132:12-8. [PMID: 24742722 PMCID: PMC4060520 DOI: 10.1016/j.envres.2014.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/30/2014] [Accepted: 03/18/2014] [Indexed: 05/23/2023]
Abstract
Mercury is a ubiquitous environmental contaminant, causing both neurotoxicity and immunotoxicity. Given its ability to amalgamate gold, mercury is frequently used in small-scale artisanal gold mining. We have previously reported that elevated serum titers of antinuclear autoantibodies (ANA) are associated with mercury exposures of miners in gold mining. The goal of this project was to identify novel serum biomarkers of mercury-induced immunotoxicity and autoimmune dysregulation. We conducted an analysis of serum samples from a cross-sectional epidemiological study on miners working in Amazonian Brazil. In proteomic screening analyses, samples were stratified based on mercury concentrations and ANA titer and a subset of serum samples (N=12) were profiled using Immune Response Biomarker Profiling ProtoArray protein microarray for elevated autoantibodies. Of the up-regulated autoantibodies in the mercury-exposed cohort, potential target autoantibodies were selected based on relevance to pro-inflammatory and macrophage activation pathways. ELISAs were developed to test the entire sample cohort (N=371) for serum titers to the highest of these autoantibodies (anti-glutathione S-transferase alpha, GSTA1) identified in the high mercury/high ANA group. We found positive associations between elevated mercury exposure and up-regulated serum titers of 3760 autoantibodies as identified by ProtoArray. Autoantibodies identified as potential novel biomarkers of mercury-induced immunotoxicity include antibodies to the following proteins: GSTA1, tumor necrosis factor ligand superfamily member 13, linker for activation of T cells, signal peptide peptidase like 2B, stimulated by retinoic acid 13, and interferon induced transmembrane protein. ELISA analyses confirmed that mercury-exposed gold miners had significantly higher serum titers of anti-GSTA1 autoantibody [unadjusted odds ratio=89.6; 95% confidence interval: 27.2, 294.6] compared to emerald miners (referent population). Mercury exposure was associated with increased titers of several autoantibodies in serum including anti-GSTA1. These proteins play a wide variety of roles, including as antioxidants, in the regulation of pro- and anti-inflammatory cytokines, as well as danger and oxidative stress signaling. Dysregulation of these proteins and pathways is believed to play a role in autoimmune diseases such as rheumatoid arthritis, Sjögren׳s syndrome, and multiple sclerosis. Taken together, these results suggest that mercury exposure can induce complex autoimmune dysfunction and the immunotoxic effects of this dysfunction may be measured by serum titers to autoantibodies such as anti-GSTA1.
Collapse
Affiliation(s)
- Jonathan A Motts
- Department of Biology, University of South Carolina, Columbia, SC 29209, USA
| | - Devon L Shirley
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC, USA
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jennifer F Nyland
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
19
|
Kawano M, Nakayama M, Aoshima Y, Nakamura K, Ono M, Nishiya T, Nakamura S, Takeda Y, Dobashi A, Takahashi A, Endo M, Ito A, Ueda K, Sato N, Higuchi S, Kondo T, Hashimoto S, Watanabe M, Watanabe M, Takahashi T, Sasaki K, Nakamura M, Sasazuki T, Narushima T, Suzuki R, Ogasawara K. NKG2D⁺ IFN-γ⁺ CD8⁺ T cells are responsible for palladium allergy. PLoS One 2014; 9:e86810. [PMID: 24533050 PMCID: PMC3922723 DOI: 10.1371/journal.pone.0086810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022] Open
Abstract
Nickel, cobalt, and chromium are well known to be causal agents of allergic contact dermatitis. Palladium (Pd) can also cause allergic disease and exposure results from wide use of this metal in dental restorations and jewelry. Metal allergy is categorized as a delayed-type hypersensitivity, and metal-responsive T cell clones have been isolated from allergic patients. However, compared to nickel, little is known about the pathology of allergic disease mediated by Pd, and pathogenic T cells are poorly understood. To identify the pathogenic T cells that are responsible for onset of Pd allergy, we enriched metal-responsive lymphocytes by sequential adoptive transfer of involved lymph node cells. Here we show that sequential adoptive transfer gradually increased the incidence and the intensity of Pd allergy, and CD8+ T cells are responsible for the disease as CD8+ T cell-depleted mice and β2-microglobulin-deficient mice did not develop Pd allergy. In addition, we found that draining lymph node cells skewed toward CD8+ T cells in response to Pd challenge in 8th adoptive transferred recipient mice. The CD8+ T cells expressed NKG2D, a costimulatory molecule involved in the production of IFN-γ. NKG2D ligand was also induced in Pd-injected tissues. Furthermore, both NKG2D ligand-transgenic mice, where NKG2D is downmodulated, and IFN-γ-deficient mice showed impaired Pd allergy. Taken together, these results indicate that IFN-γ-producing NKG2D+ CD8+ T cells are responsible for Pd allergy and suggest that NKG2D is a potential therapeutic target for treatment of metal allergy.
Collapse
Affiliation(s)
- Mitsuko Kawano
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Yusuke Aoshima
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aramakiaza, Aoba-ku, Sendai, Miyagi, Japan
| | - Kyohei Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Mizuho Ono
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Tadashi Nishiya
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Syou Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Yuri Takeda
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Dentistry, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Akira Dobashi
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Akiko Takahashi
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Misato Endo
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Akiyo Ito
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Kyosuke Ueda
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aramakiaza, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Sato
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Shigehito Higuchi
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Takeru Kondo
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Suguru Hashimoto
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masamichi Watanabe
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Watanabe
- Graduate School of Dentistry, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Tetsu Takahashi
- Graduate School of Dentistry, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiichi Sasaki
- Graduate School of Dentistry, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masanori Nakamura
- Graduate School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Takehiko Sasazuki
- Institute for Advanced Study, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Takayuki Narushima
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aramakiaza, Aoba-ku, Sendai, Miyagi, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
20
|
Bernhoft RA. Mercury toxicity and treatment: a review of the literature. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2011; 2012:460508. [PMID: 22235210 PMCID: PMC3253456 DOI: 10.1155/2012/460508] [Citation(s) in RCA: 502] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/01/2011] [Indexed: 11/30/2022]
Abstract
Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.
Collapse
Affiliation(s)
- Robin A Bernhoft
- Bernhoft Center for Advanced Medicine, Suite 208, 11677 San Vicente Boulevard, Los Angeles, CA 90049, USA.
| |
Collapse
|
21
|
Gallagher CM, Smith DM, Meliker JR. Total blood mercury and serum measles antibodies in US children, NHANES 2003-2004. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 410-411:65-71. [PMID: 21992842 DOI: 10.1016/j.scitotenv.2011.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Environmental toxins, pathogens and host susceptibility cofactors may interact to contribute to disease. In vitro mercury exposure inhibited antiviral cytokines in human cells; however, little is known about the relationship between mercury and viruses in children. Children are susceptible to mercury toxicity; lower vitamin B-12 and folate levels and higher homocysteine levels may represent susceptibility cofactors. This study aimed to evaluate associations between total blood mercury (Hg) and measles antibodies in children, and the influence of these susceptibility cofactors. DESIGN Cross-sectional data on serum measles antibodies, Hg, homocysteine, methylmalonic acid (MMA, indicator of B-12 deficiency), and folate were obtained from the 2003-2004 NHANES for children aged 6-11 years with measles seropositivity (n=692). We used linear regression to evaluate relationships between measles antibodies and Hg, stratified by sex, MMA ≥, folate <, and homocysteine≥sample medians, adjusted for demographic, nutritional and environmental cofactors. RESULTS Hg (range: 0.10-19.10μg/L) was inversely associated with measles antibodies (range: 1.00-28.24 units) in non-stratified analysis (n=692), yet positively associated among the subset of boys with higher MMA and lower folate (n=98). Among this subset with higher homocysteine levels (n=61), correlations were positive across all Hg quartiles relative to Q1 (Hg≤0.20μg/L): Q2:β=6.60 (3.02, 10.19); Q3:β=8.49 (6.17, 10.81); Q4 (Hg>0.80μg/L):β=4.90 (2.12, 7.67) (p(trend)=0.077). CONCLUSION Stratification by susceptibility cofactors revealed opposing directionality for correlations between Hg and measles antibodies, with positive effect estimates at lowest exposures only among boys with higher MMA, lower folate and higher homocysteine levels.
Collapse
Affiliation(s)
- Carolyn M Gallagher
- Stony Brook University, School of Medicine, Health Sciences Center Level 3, Room 071, Stony Brook, NY 11794-8338, USA.
| | | | | |
Collapse
|
22
|
Miyake Y, Tanaka K, Yasutake A, Sasaki S, Hirota Y. Lack of association of mercury with risk of wheeze and eczema in Japanese children: the Osaka Maternal and Child Health Study. ENVIRONMENTAL RESEARCH 2011; 111:1180-1184. [PMID: 21807364 DOI: 10.1016/j.envres.2011.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 05/31/2023]
Abstract
Mercury can have profound and complicated effects on the immune system, and epidemiological evidence regarding the relationship between mercury exposure and allergic disorders has been sparse. We investigated the associations between mercury levels in maternal and children's hair and the risk of wheeze and eczema in Japanese children at 29-39 months of age. Study subjects were 582 Japanese mother-child pairs. Presence or absence of wheeze and eczema symptoms was determined based on the criteria of the International Study of Asthma and Allergies in Childhood. Adjustment was made for maternal age; residential municipality at baseline; maternal and paternal education; maternal and paternal history of allergic disorders; maternal energy-adjusted fish intake during pregnancy; maternal smoking during pregnancy; number of child's older siblings; child's sex; household smoking in the same room as the child; breastfeeding duration; and children's fish intake at the fourth survey. The prevalence of wheeze and eczema was 18.6% and 17.2%, respectively. The range of hair mercury levels was 0.26-6.05 μg/g in mothers and 0.13-9.51 μg/g in children. Neither maternal nor children's hair mercury levels were related to the risk of wheeze or eczema. Maternal and children's hair mercury levels in the second quartile were non-significantly inversely related to the risk of wheeze (adjusted odds ratios [95% confidence intervals] were 0.77 [0.41-1.44] and 0.57 [0.29-1.11], respectively) while those in the third quartile were non-significantly inversely associated with the risk of eczema (adjusted odds ratios [95% confidence intervals] were 0.77 [0.40-1.45] and 0.66 [0.33-1.30], respectively). The current study provides no evidence that hair mercury levels in either mothers or children are positively associated with the risk of wheeze or eczema in children aged 29-39 months in Japan, where fish intake is high.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
23
|
Barygina VV, Aref’eva AS, Zatsepina OV. The role of mercury in the processes of vital activity of the human and mammalian organisms. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363210130037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Grandjean P, Poulsen LK, Heilmann C, Steuerwald U, Weihe P. Allergy and sensitization during childhood associated with prenatal and lactational exposure to marine pollutants. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1429-33. [PMID: 20562055 PMCID: PMC2957924 DOI: 10.1289/ehp.1002289] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/01/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Breast-feeding may affect the risk of developing allergy during childhood and may also cause exposure to immunotoxicants, such as polychlorinated biphenyls (PCBs), which are of concern as marine pollutants in the Faroe Islands and the Arctic region. OBJECTIVES The objective was to assess whether sensitization and development of allergic disease is associated with duration of breast-feeding and prenatal or postnatal exposures to PCBs and methylmercury. METHODS A cohort of 656 singleton births was formed in the Faroe Islands during 1999-2001. Duration of breast-feeding and history of asthma and atopic dermatitis were recorded at clinical examinations at 5 and 7 years of age. PCB and mercury concentrations were determined in blood samples obtained at parturition and at follow-up. Serum from 464 children (71%) at 7 years of age was analyzed for total immunoglobulin E (IgE) and grass-specific IgE. RESULTS The total IgE concentration in serum at 7 years of age was positively associated both with the concomitant serum PCB concentration and with the duration of breast-feeding. However, the effect only of the latter was substantially attenuated in a multivariate analysis. A raised grass-specific IgE concentration compatible with sensitization was positively associated with the duration of breast-feeding and inversely associated with prenatal methylmercury exposure. However, a history of asthma or atopic dermatitis was not associated with the duration of breast-feeding, although children with atopic dermatitis had lower prenatal PCB exposures than did nonallergic children. CONCLUSIONS These findings suggest that developmental exposure to immunotoxicants may both increase and decrease the risk of allergic disease and that associations between breast-feeding and subsequent allergic disease in children may, at least in part, reflect lactational exposure to immunotoxic food contaminants.
Collapse
Affiliation(s)
- Philippe Grandjean
- Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Abdalla F, Bellé L, De Bona K, Bitencourt P, Pigatto A, Moretto M. Allium sativum L. extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS). Food Chem Toxicol 2010; 48:417-21. [DOI: 10.1016/j.fct.2009.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/19/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
26
|
Gasparik J, Vladarova D, Capcarova M, Smehyl P, Slamecka J, Garaj P, Stawarz R, Massanyi P. Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:818-23. [PMID: 20397088 DOI: 10.1080/10934521003708992] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of this study was to monitor accumulation of lead, cadmium, mercury and arsenic in leg skeletal muscle of some wild birds from selected areas of Slovakia and the correlations among the heavy metals. A total of 160 wild birds representing 3 species-Eurasian coot (Fulica atra) (n = 24), mallard (Anas platyrhynchos) (n = 68) and pheasant (Phasianus colchicus) (n = 68) were involved for analyses. Concentrations of heavy metals from samples were measured using atomic absorption spectrophotometry (AAS). Metal concentrations are expressed as mg/kg wet weight. The order of lead and arsenic concentrations in muscles of wild birds were as follows: mallard > pheasant > Eurasian coot; in the case of arsenic the differences were significant (P < 0.05). Muscle of Eurasian coot accumulated the highest concentration of cadmium and mercury followed by pheasant and the lowest in mallard, but differences were not significant (P > 0.05). Moderately negative correlations were noted in pheasant between cadmium and mercury (r = -0.39), and between mercury and arsenic (r = -0.45). Moderately negative correlation between cadmium and arsenic (r = -0.31) was found for Eurasian coot.
Collapse
Affiliation(s)
- Jozef Gasparik
- Department of Poultry Science and Farm Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dietert RR, Zelikoff JT. Early-life environment, developmental immunotoxicology, and the risk of pediatric allergic disease including asthma. ACTA ACUST UNITED AC 2009; 83:547-60. [PMID: 19085948 DOI: 10.1002/bdrb.20170] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Incidence of childhood allergic disease including asthma (AD-A) has risen since the mid-20th century with much of the increase linked to changes in environment affecting the immune system. Childhood allergy is an early life disease where predisposing environmental exposures, sensitization, and onset of symptoms all occur before adulthood. Predisposition toward allergic disease (AD) is among the constellation of adverse outcomes following developmental immunotoxicity (DIT; problematic exposure of the developing immune system to xenobiotics and physical environmental factors). Because novel immune maturation events occur in early life, and the pregnancy state itself imposes certain restrictions on immune functional development, the period from mid-gestation until 2 years after birth is one of particular concern relative to DIT and AD-A. Several prenatal-perinatal risk factors have been identified as contributing to a DIT-mediated immune dysfunction and increased risk of AD. These include maternal smoking, environmental tobacco smoke, diesel exhaust and traffic-related particles, heavy metals, antibiotics, environmental estrogens and other endocrine disruptors, and alcohol. Diet and microbial exposure also significantly influence immune maturation and risk of allergy. This review considers (1) the critical developmental windows of vulnerability for the immune system that appear to be targets for risk of AD, (2) a model in which the immune system of the DIT-affected infant exhibits immune dysfunction skewed toward AD, and (3) the lack of allergy-relevant safety testing of drugs and chemicals that could identify DIT hazards and minimize problematic exposure of pregnant women and children.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
28
|
Das K, Siebert U, Gillet A, Dupont A, Di-Poï C, Fonfara S, Mazzucchelli G, De Pauw E, De Pauw-Gillet MC. Mercury immune toxicity in harbour seals: links to in vitro toxicity. Environ Health 2008; 7:52. [PMID: 18959786 PMCID: PMC2600635 DOI: 10.1186/1476-069x-7-52] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/29/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Mercury is known to bioaccumulate and to magnify in marine mammals, which is a cause of great concern in terms of their general health. In particular, the immune system is known to be susceptible to long-term mercury exposure. The aims of the present study were (1) to determine the mercury level in the blood of free-ranging harbour seals from the North Sea and (2) to examine the link between methylmercury in vitro exposure and immune functions using seal and human mitogen-stimulated peripheral blood mononuclear cells (T-lymphocytes). METHODS Total mercury was analysed in the blood of 22 harbour seals. Peripheral blood mononuclear cells were isolated from seals (n = 11) and from humans (n = 9). Stimulated lymphocytes of both species were exposed to functional tests (proliferation, metabolic activity, radioactive precursor incorporation) under increasing doses of methylmercury (0.1 to 10 microM). The expression of cytokines (IL-2, IL-4 and TGF-beta) was investigated in seal lymphocytes by RT-PCR and by real time quantitative PCR (n = 5) at methylmercury concentrations of 0.2 and 1 microM. Finally, proteomics analysis was attempted on human lymphocytes (cytoplasmic fraction) in order to identify biochemical pathways of toxicity at concentration of 1 microM (n = 3). RESULTS The results showed that the number of seal lymphocytes, viability, metabolic activity, DNA and RNA synthesis were reduced in vitro, suggesting deleterious effects of methylmercury concentrations naturally encountered in free-ranging seals. Similar results were found for human lymphocytes. Functional tests showed that a 1 microM concentration was the critical concentration above which lymphocyte activity, proliferation and survival were compromised. The expression of IL-2 and TGF-beta mRNA was weaker in exposed seal lymphocytes compared to control cells (0.2 and 1 microM). Proteomics showed some variation in the protein expression profile (e.g. vimentin). CONCLUSION Our results suggest that seal and human PBMCs react in a comparable way to MeHg in vitro exposure with, however, larger inter-individual variations. MeHg could be an additional cofactor in the immunosuppressive pollutant cocktail generally described in the blood of seals and this therefore raises the possibility of additional additive effects in the marine mammal immune system.
Collapse
Affiliation(s)
- Krishna Das
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Ursula Siebert
- Research and Technology Center Westcoast, University of Kiel, 25761 Buesum, Germany
| | - Audrey Gillet
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Aurélie Dupont
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Carole Di-Poï
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Sonja Fonfara
- Research and Technology Center Westcoast, University of Kiel, 25761 Buesum, Germany
- GKSS Research Centre, Institute for Coastal Research, 21502, Geesthacht, Germany
| | - Gabriel Mazzucchelli
- Laboratoire de Spectrométrie de Masse, B6C Liège, Université de Liège, 4000, Liège, Belgium
| | - Edwin De Pauw
- Laboratoire de Spectrométrie de Masse, B6C Liège, Université de Liège, 4000, Liège, Belgium
| | | |
Collapse
|