1
|
Baruah P, Patra A, Barge S, Khan MR, Mukherjee AK. Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19). J Fungi (Basel) 2023; 9:897. [PMID: 37755005 PMCID: PMC10532592 DOI: 10.3390/jof9090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Collapse
Affiliation(s)
- Paran Baruah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aparup Patra
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Sagar Barge
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Ashis K. Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| |
Collapse
|
2
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
3
|
Patel DK, Dutta SD, Ganguly K, Cho SJ, Lim KT. Mushroom-Derived Bioactive Molecules as Immunotherapeutic Agents: A Review. Molecules 2021; 26:molecules26051359. [PMID: 33806285 PMCID: PMC7961999 DOI: 10.3390/molecules26051359] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mushrooms with enhanced medicinal properties focus on finding such compounds that could modulate the human body's immune systems. Mushrooms have antimicrobial, antidiabetic, antiviral, hepatoprotective, antitumor, and immunomodulatory properties due to the presence of various bioactive components. β-glucans are the major constituent of the mushroom cell wall and play a significant role in their biological activity. This review described the techniques used in the extraction of the active ingredients from the mushroom. We highlighted the structure of the bioactive polysaccharides present in the mushrooms. Therapeutic applications of different mushrooms were also described. It is interesting to note that mushrooms have the potential sources of many bioactive products that can regulate immunity. Thus, the development of functional medicinal food based on the mushroom is vital for human welfare.
Collapse
Affiliation(s)
- Dinesh K. Patel
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
- Correspondence: ; Tel.: +82-033-250-6491
| |
Collapse
|
4
|
Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand J Immunol 2020; 93:e12937. [PMID: 32657436 PMCID: PMC7404338 DOI: 10.1111/sji.12937] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Medicinal mushrooms have documented effects against different diseases, including infections and inflammatory disorders. The related Basidiomycota Agaricus blazei Murill (AbM), Hericium erinaceus (HE), and Grifola frondosa (GF) have been shown to exert antimicrobial activity against viral agents, Gram‐positive and Gram‐negative bacteria, and parasites in vitro and in vivo. Since the mechanism is immunomodulatory and not antibiotical, the mushrooms should be active against multi‐drug resistant microbes as well. Moreover, since these Basidiomycota also have anti‐inflammatory properties, they may be suited for treatment of the severe lung inflammation that often follows COVID‐19 infection. An AbM‐based mushroom extract (Andosan™), also containing HE and GF, has been shown to significantly reduce bacteraemia and increase survival in mice with pneumococcal sepsis, and to improve symptoms and quality of life in IBD patients via an anti‐inflammatory effect. Hence, such mushroom extracts could have prophylactic or therapeutic effect against the pneumonic superinfection and severe lung inflammation that often complicates COVID‐19 infection. Here, we review antimicrobial and anti‐inflammatory properties of AbM, HE and GF mushrooms, which could be used for the battle against COVID‐19.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital (OUH), Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Egil Johnson
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal and Pediatric Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Bjørn Grinde
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Hetland G, Tangen JM, Mahmood F, Mirlashari MR, Nissen-Meyer LSH, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E. Antitumor, Anti-Inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutrients 2020; 12:nu12051339. [PMID: 32397163 PMCID: PMC7285126 DOI: 10.3390/nu12051339] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Since the 1980s, medicinal effects have been documented in scientific studies with the related Basidiomycota mushrooms Agaricus blazei Murill (AbM), Hericium erinaceus (HE) and Grifola frondosa (GF) from Brazilian and Eastern traditional medicine. Special focus has been on their antitumor effects, but the mushrooms' anti-inflammatory and antiallergic properties have also been investigated. The antitumor mechanisms were either direct tumor attack, e.g., apoptosis and metastatic suppression, or indirect defense, e.g., inhibited tumor neovascularization and T helper cell (Th) 1 immune response. The anti-inflammatory mechanisms were a reduction in proinflammatory cytokines, oxidative stress and changed gut microbiota, and the antiallergic mechanism was amelioration of a skewed Th1/Th2 balance. Since a predominant Th2 milieu is also found in cancer, which quite often is caused by a local chronic inflammation, the three conditions-tumor, inflammation and allergy-seem to be linked. Further mechanisms for HE were increased nerve and beneficial gut microbiota growth, and oxidative stress regulation. The medicinal mushrooms AbM, HE and GF appear to be safe, and can, in fact, increase longevity in animal models, possibly due to reduced tumorigenesis and oxidation. This article reviews preclinical and clinical findings with these mushrooms and the mechanisms behind them.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Correspondence:
| | - Jon-Magnus Tangen
- National CBRNE Medical Advisory Centre, Oslo University Hospital, 0407 Oslo, Norway;
| | - Faiza Mahmood
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, 1478 Lørenskog, Norway;
| | - Mohammad Reza Mirlashari
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | - Lise Sofie Haug Nissen-Meyer
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | - Ivo Nentwich
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | | | - Geir Erland Tjønnfjord
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Egil Johnson
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Department of Gastrointestinal and Pediatric Surgery, Oslo University Hospital, 0407 Oslo, Norway
| |
Collapse
|
6
|
Agaricus blazei-Based Mushroom Extract Supplementation to Birch Allergic Blood Donors: A Randomized Clinical Trial. Nutrients 2019; 11:nu11102339. [PMID: 31581605 PMCID: PMC6836217 DOI: 10.3390/nu11102339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
Since Agaricus blazei Murill (AbM) extract reduced specific IgE and ameliorated a skewed Th1/Th2 balance in a mouse allergy model, it was tested in blood donors with self-reported, IgE-positive, birch pollen allergy and/or asthma. Sixty recruited donors were randomized in a placebo-controlled, double-blinded study with pre-seasonal, 7-week, oral supplementation with the AbM-based extract AndosanTM. Before and after the pollen season, questionnaires were answered for allergic rhino-conjunctivitis, asthma, and medication; serum IgE was measured, and Bet v 1-induced basophil activation was determined by CD63 expression. The reported general allergy and asthma symptoms and medication were significantly reduced in the AbM compared to the placebo group during pollen season. During the season, there was significant reduction in specific IgE anti-Bet v 1 and anti-t3 (birch pollen extract) levels in the AbM compared with the placebo group. While the maximal allergen concentrations needed for eliciting basophil activation before the season, changed significantly in the placebo group to lower concentrations (i.e., enhanced sensitization) after the season, these concentrations remained similar in the AndosanTM AbM extract group. Hence, the prophylactic effect of oral supplementation before the season with the AbM-based AndosanTM extract on aeroallergen-induced allergy was associated with reduced specific IgE levels during the season and basophils becoming less sensitive to allergen activation.
Collapse
|
7
|
Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7271509. [PMID: 29849725 PMCID: PMC5937616 DOI: 10.1155/2018/7271509] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Since time immemorial, plants and their compounds have been used in the treatment and management of various ailments. Currently, most of conventional drugs used for treatment of diseases are either directly or indirectly obtained from plant sources. The fungal group of plants is of significance, which not only provides food directly to man but also has been source of important drugs. For instance, commonly used antibiotics are derived from fungi. Fungi have also been utilized in the food industry, baking, and alcohol production. Apart from the economic importance of the microfungi, macrofungi have been utilized directly as food, which is usually got from their fruiting bodies, commonly known as mushrooms. Due to their richness in proteins, minerals, and other nutrients, mushrooms have also been associated with boosting the immune system. This makes mushrooms an important food source, especially for vegetarians and immunosuppressed individuals including the HIV/AIDS persons. In complementary and alternative medicines (CAMs), mushrooms are increasingly being accepted for treatment of various diseases. Mushrooms have been shown to have the ability to stimulate the immune system, modulate humoral and cellular immunity, and potentiate antimutagenic and antitumorigenic activity, as well as rejuvenating the immune system weakened by radiotherapy and chemotherapy in cancer treatment. This potential of mushrooms, therefore, qualifies them as candidates for immunomodulation and immunotherapy in cancer and other diseases' treatment. However, a critical review on mushroom's immune modulating potential in cancer has not been sufficiently addressed. This review puts forward insights into the immune activities of mushroom associated with anticancer activities.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- Department of Biological Sciences, Faculty of Science, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| |
Collapse
|
8
|
Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2059825. [PMID: 29238712 PMCID: PMC5697368 DOI: 10.1155/2017/2059825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 11/29/2022]
Abstract
Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.
Collapse
|
9
|
|
10
|
Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse. PLoS One 2016; 11:e0167754. [PMID: 28002446 PMCID: PMC5176274 DOI: 10.1371/journal.pone.0167754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. METHODS AND FINDINGS Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. CONCLUSIONS The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines of Andosan™ treated mice and increased systemic Th1 cytokine response. The mechanism is probably both immuno-modulatory and growth inhibition of tumor cells by induction of apoptosis.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag M. Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon M. Tangen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine & National CBRNE Medical and Advisory Centre–Norway, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital – The Norwegian Radium Hospital, Oslo, Norway
| | | | - Jan E. Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo, Norway
| |
Collapse
|
11
|
Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. PLoS One 2016; 11:e0150191. [PMID: 26933886 PMCID: PMC4774976 DOI: 10.1371/journal.pone.0150191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Ingestion of AndoSan™, based on the mushroom Agaricus blazei Murill, has previously been shown to exhibit anti-inflammatory effects because of reduction of pro-inflammatory cytokines in healthy individuals and patients with ulcerative colitis. In this randomized single-blinded placebo controlled study we examined whether intake of AndoSan™ also resulted in clinical effects. Methods and Findings 50 patients with symptomatic ulcerative colitis were block-randomized and blinded for oral daily intake of AndoSan™ or placebo for the 21 days’ experimental period. The patients reported scores for symptoms, fatigue and health related quality of life (HRQoL) at days 0, 14 and 21. Fecal calprotectin and general blood parameters were also analyzed. In the AndoSan™ group (n = 24) symptoms improved from baseline (day 0) to days 14 and 21, with respective mean scores (95% CI) of 5.88 (4.92–6.83), 4.71 (3.90–5.52) (p = 0.002) and 4.50 (3.70–5.30) (p = 0.001). Corresponding improved mean scores (±SD) for total fatigue were 16.6 (5.59), 14.1 (4.50) (p = 0.001) and 15.1 (4.09) (p = 0.023). These scores in the placebo group (n = 26) were not improved. When comparing the two study groups using mixed model statistics, we found significant better scores for the AndoSan™-patients. HRQoL for dimensions bodily pain, vitality, social functioning and mental health improved in the AndoSan™ group. There were no alterations in general blood samples and fecal calprotectin. Conclusions Beneficiary effects on symptoms, fatigue and HRQoL from AndoSan™ consumption were demonstrated in this per-protocol study, supporting its use as a supplement to conventional medication for patients with mild to moderate symptoms from ulcerative colitis. The patients did not report any harms or unintended effects of AndoSan™ in this study. Trial Registration ClinicalTrials.gov NCT01496053
Collapse
|
12
|
Ike K, Kameyama N, Ito A, Imai S. Induction of a T-Helper 1 (Th1) immune response in mice by an extract from the Pleurotus eryngii (Eringi) mushroom. J Med Food 2012; 15:1124-8. [PMID: 23134464 DOI: 10.1089/jmf.2012.2239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To assess the effect of edible mushroom extracts on the induction of T-helper 1 (Th1) immunity, we examined differences in interferon-gamma (IFN-γ) and interleukin (IL)-4 production in mice induced by hot-water extracts of 15 species of edible mushroom. Extracts from Agaricus bisporus, Flammulina velutipes, Hypsizigus marmoreus, Lentinula edodes, and Lyophyllum decastes induced both IFN-γ and IL-4 production in mice, whereas extracts from Pleurotus ostreatus only induced IL-4. In contrast, extracts from Agaricus blazei, Grifola frondosa, Morchella esculenta, Pholiota nameko, Pleurotus citrinopileatus, and Pleurotus eryngii induced only IFN-γ production. In particular, the extract from P. eryngii induced high levels of IFN-γ and reduced levels of IL-4. We further investigated the use of a trial immunogen using the P. eryngii extract as a Th1 immunostimulator. An oil-in-water emulsion of the hot-water extract from P. eryngii (immunostimulator) and ovalbumin (OVA; antigen) was used as a trial immunogen. This immunogen induced strong OVA-specific IgG2a antibody production in mice compared with the negative controls. In addition, OVA-specific IgG1 antibody levels were lower than those for the negative controls. Marked increases in serum IFN-γ levels and high-level production of IFN-γ in the culture supernatant from the CD4(+) spleen cells in the trial immunogen group mice were observed. Our results suggested that the hot-water extract from P. eryngii induced Th1 immunity by acting as an immunostimulator.
Collapse
Affiliation(s)
- Kazunori Ike
- Laboratory of Veterinary Parasitology, Department of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.
| | | | | | | |
Collapse
|
13
|
Gonçalves JL, Roma EH, Gomes-Santos AC, Aguilar EC, Cisalpino D, Fernandes LR, Vieira AT, Oliveira DR, Cardoso VN, Teixeira MM, Alvarez-Leite JI. Pro-inflammatory effects of the mushroom Agaricus blazei and its consequences on atherosclerosis development. Eur J Nutr 2011; 51:927-37. [PMID: 22086299 DOI: 10.1007/s00394-011-0270-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE Extracts of the mushroom Agaricus blazei (A. blazei) have been described as possessing immunomodulatory and potentially cancer-protective activities. However, these effects of A. blazei as a functional food have not been fully investigated in vivo. METHODS Using apolipoprotein E-deficient (ApoE(-/-)) mice, an experimental model of atherosclerosis, we evaluated the effects of 6 or 12 weeks of A. blazei supplementation on the activation of immune cells in the spleen and blood and on the development of atherosclerosis. RESULTS Food intake, weight gain, blood lipid profile, and glycemia were similar between the groups. To evaluate leukocyte homing and activation, mice were injected with (99m)Tc-radiolabeled leukocytes, which showed enhanced leukocyte migration to the spleen and heart of A. blazei-supplemented animals. Analysis of the spleen showed higher levels of activation of neutrophils, NKT cells, and monocytes as well as increased production of TNF-α and IFN-γ. Circulating NKT cells and monocytes were also more activated in the supplemented group. Atherosclerotic lesion areas were larger in the aorta of supplemented mice and exhibited increased numbers of macrophages and neutrophils and a thinner fibrous cap. A. blazei-induced transcriptional upregulation of molecules linked to macrophage activation (CD36, TLR4), neutrophil chemotaxy (CXCL1), leukocyte adhesion (VCAM-1), and plaque vulnerability (MMP9) were seen after 12 weeks of supplementation. CONCLUSIONS This is the first in vivo study showing that the immunostimulatory effect of A. blazei has proatherogenic repercussions. A. blazei enhances local and systemic inflammation, upregulating pro-inflammatory molecules, and enhancing leukocyte homing to atherosclerosis sites without affecting the lipoprotein profile.
Collapse
Affiliation(s)
- Juliana L Gonçalves
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The Mushroom Agaricus blazei Murill Elicits Medicinal Effects on Tumor, Infection, Allergy, and Inflammation through Its Modulation of Innate Immunity and Amelioration of Th1/Th2 Imbalance and Inflammation. Adv Pharmacol Sci 2011; 2011:157015. [PMID: 21912538 PMCID: PMC3168293 DOI: 10.1155/2011/157015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
The medicinal mushroom Agaricus blazei Murill from the Brazilian rain forest has been used in traditional medicine and as health food for the prevention of a range of diseases, including infection, allergy, and cancer. Other scientists and we have examined whether there is scientific evidence behind such postulations. Agaricus blazei M is rich in the immunomodulating polysaccharides, β-glucans, and has been shown to have antitumor, anti-infection, and antiallergic/-asthmatic properties in mouse models, in addition to anti-inflammatory effects in inflammatory bowel disease patients. These effects are mediated through the mushroom's stimulation of innate immune cells, such as monocytes, NK cells, and dendritic cells, and the amelioration of a skewed Th1/Th2 balance and inflammation.
Collapse
|
15
|
Effects of α-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr 2010; 64:720-6. [DOI: 10.1038/ejcn.2010.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|