1
|
Williamson JN, Yang Y. Sex differences in aging and injured brain. Neural Regen Res 2025; 20:2901-2902. [PMID: 39610095 PMCID: PMC11826458 DOI: 10.4103/nrr.nrr-d-24-00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Jordan N. Williamson
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Northwestern University, Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| |
Collapse
|
2
|
Chern H, Caruso G, Desaire H, Jarosova R. Carnosine Mitigates Cognitive Impairment and Dopamine Release in an Okadaic Acid-Induced Zebrafish Model with Alzheimer's Disease-like Symptoms. ACS Chem Neurosci 2025; 16:790-801. [PMID: 39933073 DOI: 10.1021/acschemneuro.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, affects 1 in 9 people aged 65 and older. The disease impacts patients on multiple levels, from memory and problem-solving issues to difficulties with basic functions and personality changes. Unfortunately, there is only a handful of FDA-approved drugs, and none of them offer an effective cure. Therefore, recent strategies have focused on preventing and delaying disease onset, rather than curing already developed pathological changes in the brain. In this study, we investigated the therapeutic potential of carnosine (CAR), a naturally occurring dipeptide known for its multimodal mechanism of action, such as the ability to mitigate neuroinflammation, oxidative stress, and deficiencies in neurotropic factors, all of which are connected with aging-related cognitive decline and an increased risk of developing dementia. For this purpose, we utilized an okadaic acid-induced zebrafish model of AD, which replicates some of the key features of the disease, including hyperphosphorylation of tau protein, changes in Aβ-fragments, and cognitive decline. By employing a latent learning behavioral assay and fast-scan cyclic voltammetry, we evaluated the effect of CAR on the prevention of cognitive decline and neurochemical changes in the AD-like zebrafish brain. Our findings revealed that CAR prevents impaired learning and motor dysfunction in a sex-dependent manner and reduces anxiety-like behavior. Additionally, we found that CAR inhibits dopamine release impairment. Hence, our study demonstrates the potential of CAR as a promising candidate for further investigations focused on identifying molecules that could potentially serve as therapeutics for delaying the onset of AD.
Collapse
Affiliation(s)
- Hannah Chern
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Heather Desaire
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
4
|
Kijpaisalratana N, Phuah CL, Ament Z, Bhave VM, Garcia-Guarniz AL, Duskin J, Couch CA, Irvin MR, Kimberly WT. White matter hyperintensity severity modifies gut metabolite association with cognitive outcomes. J Prev Alzheimers Dis 2025:100086. [PMID: 39939193 DOI: 10.1016/j.tjpad.2025.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Gut microbiome-associated metabolites and white matter hyperintensities (WMH) are independently associated with cognitive impairment. However, it is unclear if gut metabolites and WMH interact to influence dementia. OBJECTIVES To examine the association between gut microbial metabolites and cognitive outcomes and assess whether the severity of baseline WMH would impact associations between gut microbial metabolites and cognitive outcomes. DESIGN Cross-sectional design. SETTING Cohort of individuals who are clinically normal, mild cognitive impairment, or Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative (ADNI). PARTICIPANTS A total of 578 participants with available baseline 3.0T 2D-Fluid Attenuation Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI) scans and baseline gut microbial metabolite measurement were included in the analysis. MEASUREMENTS Gut metabolite measurements and automated WMH volume estimations were obtained from FLAIR MRI and were used to assess the association and interaction with cognitive impairment. RESULTS Of 104 metabolites studied, glycodeoxycholic acid (GDCA) surpassed the false discovery rate and was associated the Alzheimer's Disease Assessment Scale-Cognitive Subscale version 13 (ADAS-Cog13) score (β = 0.12, 95 % CI = 0.05-0.20, p = 0.001) and cognitive impairment determined by mini-mental status exam (MMSE) (OR = 2.11, 95 % CI = 1.41-3.15, p < 0.001). GDCA was associated with higher ADAS-Cog13 in participants with low WMH burden (β = 0.21, 95% CI = 0.10-0.32, p < 0.001) but not in participants with high WMH burden (β = 0.04, 95 % CI = -0.07 to 0.14, p = 0.48; interaction p = 0.02). CONCLUSION An elevated level of GDCA was associated with worse cognition. WMH severity modified the association between GDCA and cognitive outcomes.
Collapse
Affiliation(s)
- Naruchorn Kijpaisalratana
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Chia-Ling Phuah
- Departments of Neurology and Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA; Barrow Neuro Analytics Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Jonathan Duskin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Catharine A Couch
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Williamson JN, James SA, Mullen SP, Sutton BP, Wszalek T, Mulyana B, Mukli P, Yabluchanskiy A, Yang Y. Sex differences in interacting genetic and functional connectivity biomarkers in Alzheimer's disease. GeroScience 2024; 46:6071-6084. [PMID: 38598069 PMCID: PMC11493897 DOI: 10.1007/s11357-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
As of 2023, it is estimated that 6.7 million individuals in the United States live with Alzheimer's disease (AD). Prior research indicates that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research shows that hippocampal functional connectivity differs by sex and may be related to the observed sex differences in AD, and apolipoprotein E (ApoE) ε4 carriers have reduced hippocampal functional connectivity. The purpose of this study was to determine if the ApoE genotype plays a role in the observed sex differences in hippocampal functional connectivity in Alzheimer's disease. The resting state fMRI and T2 MRI of individuals with AD (n = 30, female = 15) and cognitively normal individuals (n = 30, female = 15) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the functional connectivity toolbox (CONN). Our results demonstrated intrahippocampal functional connectivity differed between those without an ε4 allele and those with at least one ε4 allele in each group. Additionally, intrahippocampal functional connectivity differed only by sex when Alzheimer's participants had at least one ε4 allele. These results improve our current understanding of the role of the interacting relationship between sex, ApoE genotype, and hippocampal function in AD. Understanding these biomarkers may aid in the development of sex-specific interventions for improved AD treatment.
Collapse
Affiliation(s)
- Jordan N Williamson
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Hudson College of Public Health, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Sean P Mullen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology & Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Informatics Programs, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Social & Behavioral Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bradley P Sutton
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Beni Mulyana
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuan Yang
- Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Li Y, Yu X, Ma Z, Liu Q, Li M, Tian X, Li B, Zhang R, Gu P, Bai F, Luo G, Li M, Sun D. Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer's Disease: A Retrospective Health-Controlled Study. Psychiatry Investig 2024; 21:1211-1220. [PMID: 39610232 DOI: 10.30773/pi.2024.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/29/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer's disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers. METHODS Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy. RESULTS Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05). CONCLUSION Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
Collapse
Affiliation(s)
- Yanzhe Li
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xue Yu
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Zhonghui Ma
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Qinghe Liu
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Min Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Xue Tian
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Baozhu Li
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Ran Zhang
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Pei Gu
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Fengfeng Bai
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Daliang Sun
- Institute of Mental Health, Tianjin Mental Health Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Hwang SY, Kim CS, Kim MK, Yang Y, Yang YJ. Association of the Korean-specific food-based index of dietary inflammatory potential with the risk of mild cognitive impairment in Korean older adults. Epidemiol Health 2024; 46:e2024067. [PMID: 39118546 DOI: 10.4178/epih.e2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES This study aimed to examine the association between the food-based index of dietary inflammatory potential (FBDI) and the risk of mild cognitive impairment (MCI) in Korean older adults. METHODS The subjects were 798 Korean adults aged 60 years and older. The FBDI was calculated based on the intake of 7 anti-inflammatory and 3 inflammatory food groups. Cognitive function was assessed using the Korean version of the Mini-Mental State Examination. A general linear model and multiple logistic regression were applied to assess the association between FBDI and the risk of MCI. RESULTS As the FBDI increased, the intake of white rice, cookies/candies, and sweetened drinks tended to increase, but the intake of niacin, β-carotene, calcium, and potassium tended to decrease (p for trend<0.05). The highest FBDI group had a higher MCI risk (odds ratio [OR], 1.60; 95% confidence interval [CI], 1.01 to 2.52) than the lowest FBDI group, adjusted for gender, age, and education level; and this trend was significant in a fully adjusted model (p for trend=0.039). No significant associations were found in men after adjusting for confounding factors. Among women, MCI risk increased as the FBDI increased (p for trend=0.007); and the highest FBDI group had a higher MCI risk (OR, 2.22; 95% CI, 1.04 to 4.74) than the lowest FBDI group in a fully adjusted model. CONCLUSIONS These results suggest that the appropriate intake of anti-inflammatory foods and nutrients may be associated with a reduced risk of MCI among older adults.
Collapse
Affiliation(s)
- Se Yeon Hwang
- Department of Clinical Nutrition, Dongduk Women's University, Seoul, Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, Dongduk Women's University, Seoul, Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yoonkyoung Yang
- Department of Food and Nutrition, Ansan University, Ansan, Korea
| | - Yoon Jung Yang
- Department of Food and Nutrition, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
8
|
Selenius JS, Silveira PP, Haapanen MJ, von Bonsdorff M, Lahti J, Eriksson JG, Wasenius NS. The brain insulin receptor gene network and associations with frailty index. Age Ageing 2024; 53:afae091. [PMID: 38752921 PMCID: PMC11097905 DOI: 10.1093/ageing/afae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To investigate longitudinal associations between variations in the co-expression-based brain insulin receptor polygenic risk score and frailty, as well as change in frailty across follow-up. METHODS This longitudinal study included 1605 participants from the Helsinki Birth Cohort Study. Biologically informed expression-based polygenic risk scores for the insulin receptor gene network, which measure genetic variation in the function of the insulin receptor, were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions. Frailty was assessed in at baseline in 2001-2004, 2011-2013 and 2017-2018 by applying a deficit accumulation-based frailty index. Analyses were carried out by applying linear mixed models and logistical regression models adjusted for adult socioeconomic status, birthweight, smoking and their interactions with age. RESULTS The FI levels of women were 1.19%-points (95% CI 0.12-2.26, P = 0.029) higher than in men. Both categorical and continuous hePRS-IR in women were associated with higher FI levels than in men at baseline (P < 0.05). In women with high hePRS-IR, the rate of change was steeper with increasing age compared to those with low or moderate hePRS-IR (P < 0.05). No associations were detected between mePRS-IR and frailty at baseline, nor between mePRS-IR and the increase in mean FI levels per year in either sex (P > 0.43). CONCLUSIONS Higher variation in the function of the insulin receptor gene network in the hippocampus is associated with increasing frailty in women. This could potentially offer novel targets for future drug development aimed at frailty and ageing.
Collapse
Affiliation(s)
- Jannica S Selenius
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Patricia P Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Verdun QCH4H1R3, Canada
- Ludmer Centre for Neuroinformatic and Mental Health, Douglas Mental Health University Institute, McGill University, Verdun QCH4H1R3, Canada
| | - Markus J Haapanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikaela von Bonsdorff
- Folkhälsan Research Center, Helsinki, Finland
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Lahti
- Folkhälsan Research Center, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, 20014 Turku, Finland
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics & Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Niko S Wasenius
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1345498. [PMID: 38689734 PMCID: PMC11058985 DOI: 10.3389/fendo.2024.1345498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | | | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
10
|
Veneziani I, Grimaldi A, Marra A, Morini E, Culicetto L, Marino S, Quartarone A, Maresca G. Towards a Deeper Understanding: Utilizing Machine Learning to Investigate the Association between Obesity and Cognitive Decline-A Systematic Review. J Clin Med 2024; 13:2307. [PMID: 38673581 PMCID: PMC11051247 DOI: 10.3390/jcm13082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: Several studies have shown a relation between obesity and cognitive decline, highlighting a significant global health challenge. In recent years, artificial intelligence (AI) and machine learning (ML) have been integrated into clinical practice for analyzing datasets to identify new risk factors, build predictive models, and develop personalized interventions, thereby providing useful information to healthcare professionals. This systematic review aims to evaluate the potential of AI and ML techniques in addressing the relationship between obesity, its associated health consequences, and cognitive decline. Methods: Systematic searches were performed in PubMed, Cochrane, Web of Science, Scopus, Embase, and PsycInfo databases, which yielded eight studies. After reading the full text of the selected studies and applying predefined inclusion criteria, eight studies were included based on pertinence and relevance to the topic. Results: The findings underscore the utility of AI and ML in assessing risk and predicting cognitive decline in obese patients. Furthermore, these new technology models identified key risk factors and predictive biomarkers, paving the way for tailored prevention strategies and treatment plans. Conclusions: The early detection, prevention, and personalized interventions facilitated by these technologies can significantly reduce costs and time. Future research should assess ethical considerations, data privacy, and equitable access for all.
Collapse
Affiliation(s)
- Isabella Veneziani
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Alessandro Grimaldi
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Angela Marra
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Elisabetta Morini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Laura Culicetto
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| |
Collapse
|
11
|
Levy SA, Misiura MB, Grant JG, Adrien TV, Taiwo Z, Armstrong R, Dotson VM. Depression, Vascular Burden, and Dementia Prevalence in Late Middle-Aged and Older Black Adults. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae009. [PMID: 38374692 PMCID: PMC10926943 DOI: 10.1093/geronb/gbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES Late-life depression and white matter hyperintensities (WMH) have been linked to increased dementia risk. However, there is a dearth of literature examining these relationships in Black adults. We investigated whether depression or WMH volume are associated with a higher likelihood of dementia diagnosis in a sample of late middle-aged to older Black adults, and whether dementia prevalence is highest in individuals with both depression and higher WMH volume. METHODS Secondary data analysis involved 443 Black participants aged 55+ with brain imaging within 1 year of baseline visit in the National Alzheimer's Coordinating Center Uniform Data Set. Chi-square analyses and logistic regression models controlling for demographic variables examined whether active depression in the past 2 years, WMH volume, or their combination were associated with higher odds of all-cause dementia. RESULTS Depression and higher WMH volume were associated with a higher prevalence of dementia. These associations remained after controlling for demographic factors, as well as vascular disease burden. Dementia risk was highest in the depression/high WMH volume group compared to the depression-only group, high WMH volume-only group, and the no depression/low WMH volume group. Post hoc analyses comparing the Black sample to a demographically matched non-Hispanic White sample showed associations of depression and the combination of depression and higher WMH burden with dementia were greater in Black compared to non-Hispanic White individuals. DISCUSSION Results suggest late-life depression and WMH have independent and joint relationships with dementia and that Black individuals may be particularly at risk due to these factors.
Collapse
Affiliation(s)
- Shellie-Anne Levy
- Department of Clinical and Health Psychology, The Center for Cognitive Aging and Memory, University of Florida, Gainesville, Florida, USA
- The Center for Cognitive Aging and Memory, University of Florida, Gainesville, Florida, USA
| | - Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Jeremy G Grant
- Department of Clinical and Health Psychology, The Center for Cognitive Aging and Memory, University of Florida, Gainesville, Florida, USA
| | - Tamare V Adrien
- Department of Clinical and Health Psychology, The Center for Cognitive Aging and Memory, University of Florida, Gainesville, Florida, USA
| | - Zinat Taiwo
- Department of Rehabilitation Psychology and Neuropsychology, TIRR Memorial Hermann, Houston, Texas, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - Rebecca Armstrong
- Department of Clinical and Health Psychology, The Center for Cognitive Aging and Memory, University of Florida, Gainesville, Florida, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
- Gerontology Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Garcia P, Mendoza L, Padron D, Duarte A, Duara R, Loewenstein D, Greig-Custo M, Barker W, Curiel R, Rosselli M, Rodriguez M. Sex significantly predicts medial temporal volume when controlling for the influence of ApoE4 biomarker and demographic variables: A cross-ethnic comparison. J Int Neuropsychol Soc 2024; 30:128-137. [PMID: 37385978 PMCID: PMC11057967 DOI: 10.1017/s1355617723000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE To explore the relationship between age, education, sex, and ApoE4 (+) status to brain volume among a cohort with amnestic mild cognitive impairment (aMCI). METHOD One hundred and twenty-three participants were stratified into Hispanic (n = 75) and White non-Hispanic (WNH, N = 48). Multiple linear regression analyses were conducted with age, education, sex, and ApoE4 status as predictor variables and left and right combined MRI volumes of the hippocampus, parahippocampus, and entorhinal cortex as dependent variables. Variations in head sizes were corrected by normalization with a total intracranial volume measurement. RESULTS Bonferroni-corrected results indicated that when controlling for ApoE4 status, education, and age, sex was a significant predictor of hippocampal volume among the Hispanic group (β = .000464, R2 = .196, p < .01) and the WNH group (β = .000455, R2 = .195, p < .05). Education (β = .000028, R2 = .168, p < .01) and sex (β = .000261, R2 = .168, p < .01) were significant predictors of parahippocampal volume among the Hispanic MCI group when controlling for the effects of ApoE4 status and age. One-way ANCOVAs comparing hippocampal and parahippocampal volume between males and females within groups revealed that females had significantly larger hippocampal volumes (p < .05). Hispanic females had significantly larger hippocampal (p < .001) and parahippocampal (p < .05) volume compared to males. No sex differences in parahippocampal volume were noted among WNHs. CONCLUSIONS Biological sex, rather than ApoE4 status, was a greater predictor of hippocampal volume among Hispanic and WNH females. These findings add to the mixed literature on sex differences in dementia research and highlight continued emphasis on ethnic populations to elucidate on neurodegenerative disparities.
Collapse
Affiliation(s)
- Patricia Garcia
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Ranjan Duara
- Mount Sinai Medical Center, Miami Beach, FL, USA
| | - David Loewenstein
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | - Rosie Curiel
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Miriam Rodriguez
- Department of Health & Wellness Design, Indiana University Bloomington School of Public Health, Bloomington, IN, USA
| |
Collapse
|
13
|
Williamson J, James SA, Mukli P, Yabluchanskiy A, Wu DH, Sonntag W, Yang Y. Sex difference in brain functional connectivity of hippocampus in Alzheimer's disease. GeroScience 2024; 46:563-572. [PMID: 37743414 PMCID: PMC10828268 DOI: 10.1007/s11357-023-00943-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's disease (AD), affecting nearly 6.5 million people, is the fifth leading cause of death in individuals 65 years or older in the USA. Prior research has shown that AD disproportionality affects females; females have a greater incidence rate, perform worse on a variety of neuropsychological tasks, and have greater total brain atrophy. Recent research has linked these sex differences to neuroimaging markers of brain pathology, such as hippocampal volumes. Specifically, research from our lab found that functional connectivity from the hippocampus to the precuneus cortex and brain stem was significantly stronger in males than in females with mild cognitive impairment. The aim of this study was to extend our understanding to individuals with AD and to determine if these potential sex-specific functional connectivity biomarkers extend through different disease stages. The resting state fMRI and T2 MRI of cognitively normal individuals (n = 32, female = 16) and individuals with AD (n = 32, female = 16) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the Functional Connectivity Toolbox (CONN). Our results demonstrate that males had a significantly stronger interhemispheric functional connectivity between the left and right hippocampus compared to females. These results improve our current understanding of the role of the hippocampus in sex differences in AD. Understanding the contribution of impaired functional connectivity sex differences may aid in the development of sex-specific precision medicine for improved AD treatment.
Collapse
Affiliation(s)
- Jordan Williamson
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shirley A James
- Department of Public Health, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Dee H Wu
- Department of Radiological Science and Medical Physics, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, Health Sciences Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Yuan Yang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Rehabilitation Sciences, Health Science Center, University of Oklahoma, Oklahoma City, OK, USA.
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- SFCRI Clinical Imaging Research Center, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Venneri A, Ruano Caballero D, Rajagopal L. Editorial: Sex differences in aging: a cognitive and behavioral perspective. Front Aging Neurosci 2024; 16:1365482. [PMID: 38318151 PMCID: PMC10839083 DOI: 10.3389/fnagi.2024.1365482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Affiliation(s)
- Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Lakshmi Rajagopal
- Pychiatry and Behavioral Sciences, North Western University, Evanston, IL, United States
| |
Collapse
|
15
|
Okita Y, Kitamura T, Komukai S, Zha L, Komatsu M, Narii N, Murata F, Megumi M, Gon Y, Kimura Y, Kiyohara K, Sobue T, Fukuda H. Association of anticholinergic drug exposure with the risk of dementia among older adults in Japan: The LIFE Study. Int J Geriatr Psychiatry 2023; 38:e6029. [PMID: 38041399 DOI: 10.1002/gps.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES Several studies have investigated that anticholinergic drugs cause cognitive impairment. However, the risk of dementia associated with anticholinergics has not been extensively investigated in the super-aging society of Japan. We conducted this study to assess the association between anticholinergic drugs and the risk of dementia in older adults in Japan. METHODS This nested case-control study used data from the Longevity Improvement & Fair Evidence Study, which includes claim data in Japan from 2014 to 2020. We included 66,478 cases of diagnosed dementia and 328,919 matched controls aged ≥65 years, matched by age, sex, municipality, and cohort entry year. Primary exposure was the total cumulative anticholinergic drugs prescribed from cohort entry date to event date or matched index date, which was the total standardized daily doses for each patient, calculated by adding the total dose of different types of anticholinergic drugs in each prescription, divided by the World Health Organization-defined daily dose values. Odds ratios for dementia associated with cumulative exposure to anticholinergic drugs were calculated using conditional logistic regression adjusted for confounding variables. RESULTS The mean (standard deviation) age at index date was 84.3 (6.9), and the percentage of women was 62.1%. From cohort entry date to event date or matched index date, 18.8% of the case patients and 13.7% of the controls were prescribed at least one anticholinergic drug. In the multivariable-adjusted model, individuals with anticholinergic drugs prescribed had significantly higher odds of being diagnosed with dementia (adjusted odds ratio, 1.50 [95% confidence interval, 1.47-1.54]). Among specific types of anticholinergic drugs, a significant increase in risk was observed with the use of antidepressants, antiparkinsonian drugs, antipsychotics, and bladder antimuscarinics in a fully multivariable-adjusted model. CONCLUSIONS Several types of anticholinergic drugs used by older adults in Japan are associated with an increased risk of dementia. These findings suggest that the underlying risks should be considered alongside the benefits of prescribing anticholinergic drugs to this population.
Collapse
Affiliation(s)
- Yuki Okita
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Komukai
- Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ling Zha
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayo Komatsu
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nobuhiro Narii
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Maeda Megumi
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kosuke Kiyohara
- Department of Food Science, Faculty of Home Economics, Otsuma Women's University, Chiyoda-ku, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
16
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
17
|
Yang Y, Yabluchanskiy A. Sex-specific hippocampal connectivity markers in mild cognitive impairment. Aging (Albany NY) 2023; 15:2371-2372. [PMID: 37053017 PMCID: PMC10120893 DOI: 10.18632/aging.204660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Yuan Yang
- Neural Control and Rehabilitation Laboratory, Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK 74104,USA
- Department of Rehabilitation Sciences, The University of Oklahoma Health Sciences Center, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, The University of Oklahoma Health Sciences Center, USA
| |
Collapse
|
18
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Santiago JA, Potashkin JA. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer's Disease. Handb Exp Pharmacol 2023; 282:181-197. [PMID: 37460661 DOI: 10.1007/164_2023_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Mounting evidence indicates that the female sex is a risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. Decades of research suggest that sex-specific differences in genetics, environmental factors, hormones, comorbidities, and brain structure and function may contribute to AD development. However, although significant progress has been made in uncovering specific genetic factors and biological pathways, the precise mechanisms underlying sex-biased differences are not fully characterized. Here, we review several lines of evidence, including epidemiological, clinical, and molecular studies addressing sex differences in AD. In addition, we discuss the challenges and future directions in advancing personalized treatments for AD.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
20
|
Katabathula S, Davis PB, Xu R. Sex-Specific Heterogeneity of Mild Cognitive Impairment Identified Based on Multi-Modal Data Analysis. J Alzheimers Dis 2023; 91:233-243. [PMID: 36404544 PMCID: PMC11391386 DOI: 10.3233/jad-220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI), a prodromal phase of Alzheimer's disease (AD), is heterogeneous with different rates and risks of progression to AD. There are significant gender disparities in the susceptibility, prognosis, and outcomes in patients with MCI, with female being disproportionately negatively impacted. OBJECTIVE The aim of this study was to identify sex-specific heterogeneity of MCI using multi-modality data and examine the differences in the respective MCI subtypes with different prognostic outcomes or different risks for MCI to AD conversion. METHODS A total of 325 MCI subjects (146 women, 179 men) and 30 relevant features were considered. Mixed-data clustering was applied to women and men separately to discover gender-specific MCI subtypes. Gender differences were compared in the respective subtypes of MCI by examining their MCI to AD disease prognosis, descriptive statistics, and conversion rates. RESULTS We identified three MCI subtypes: poor-, good-, and best-prognosis for women and for men, separately. The subtype-wise comparison (for example, poor-prognosis subtype in women versus poor-prognosis subtype in men) showed significantly different means for brain volumetric, cognitive test-related, also for the proportion of comorbidities. Also, there were substantial gender differences in the proportions of participants who reverted to normal function, remained stable, or converted to AD. CONCLUSION Analyzing sex-specific heterogeneity of MCI offers the opportunity to advance the understanding of the pathophysiology of both MCI and AD, allows stratification of risk in clinical trials of interventions, and suggests gender-based early intervention with targeted treatment for patients at risk of developing AD.
Collapse
Affiliation(s)
- Sreevani Katabathula
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
21
|
Ji W, An K, Wang C, Wang S. Bioinformatics analysis of diagnostic biomarkers for Alzheimer's disease in peripheral blood based on sex differences and support vector machine algorithm. Hereditas 2022; 159:38. [PMID: 36195955 PMCID: PMC9531459 DOI: 10.1186/s41065-022-00252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background The prevalence of Alzheimer's disease (AD) varies based on gender. Due to the lack of early stage biomarkers, most of them are diagnosed at the terminal stage. This study aimed to explore sex-specific signaling pathways and identify diagnostic biomarkers of AD. Methods Microarray dataset for blood was obtained from the Gene Expression Omnibus (GEO) database of GSE63060 to conduct differentially expressed genes (DEGs) analysis by R software limma. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene set enrichment analysis (GSEA) were conducted. Immune checkpoint gene expression was compared between females and males. Using CytoHubba, we identified hub genes in a protein–protein interaction network (PPI). Then, we evaluated their distinct effectiveness using unsupervised hierarchical clustering. Support vector machine (SVM) and ten-fold cross-validation were used to further verify these biomarkers. Lastly, we confirmed our findings by using another independent dataset. Results A total of 37 female-specific DEGs and 27 male-specific DEGs were identified from GSE63060 datasets. Analyses of enrichment showed that female-specific DEGs primarily focused on energy metabolism, while male-specific DEGs mostly involved in immune regulation. Three immune-checkpoint-relevant genes dysregulated in males. In females, however, these eight genes were not differentially expressed. SNRPG, RPS27A, COX7A2, ATP5PO, LSM3, COX7C, PFDN5, HINT1, PSMA6, RPS3A and RPL31 were regarded as hub genes for females, while SNRPG, RPL31, COX7C, RPS27A, RPL35A, RPS3A, RPS20 and PFDN5 were regarded as hub genes for males. Thirteen hub genes mentioned above was significantly lower in both AD and mild cognitive impairment (MCI). The diagnostic model of 15-marker panel (13 hub genes with sex and age) was developed. Both the training dataset and the independent validation dataset have area under the curve (AUC) with a high value (0.919, 95%CI 0.901–0.929 and 0.803, 95%CI 0.789–0.826). Based on GSEA for hub genes, they were associated with some aspects of AD pathogenesis. Conclusion DEGs in males and females contribute differently to AD pathogenesis. Algorithms combining blood-based biomarkers may improve AD diagnostic accuracy, but large validation studies are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00252-x.
Collapse
Affiliation(s)
- Wencan Ji
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.,Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu,, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu,, China.,School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Canjun Wang
- Department of Laboratory Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shaohua Wang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China. .,Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu,, China. .,School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
22
|
Chang YL, Moscovitch M. Sex differences in item and associative memory among older adults with amnestic mild cognitive impairment. Neuropsychologia 2022; 176:108375. [PMID: 36179862 DOI: 10.1016/j.neuropsychologia.2022.108375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
In older adults without cognitive impairment, women have an advantage over men in verbal memory tests; however, whether women with amnestic mild cognitive impairment (aMCI) exhibit this advantage remains controversial. We evaluated sex-specific differences in older adults with and without aMCI in item and associative verbal memory by using an associative memory task with immediate and delayed recognition conditions. The associations between memory task performances and medial temporal morphometric measures were examined. The study included 49 individuals with aMCI and 55 healthy older adults (HOs). The results revealed that a female advantage in immediate item and delayed associative memory was evident in HOs, and the female advantage in associative memory persisted even after item memory performance was controlled. By contrast, the female advantage was absent in individuals with aMCI; such women had more associative false alarms than men with aMCI. Furthermore, decreases in item memory, associative memory, and cortical thickness in the perirhinal and entorhinal regions in individuals with aMCI versus their sex-matched controls were more prominent in women than in men. The relation between brain structure and associative memory function was evident only for women, indicating that women and men may have different cognitive and neural mechanisms for processing associative memory. These findings support the concept of cognitive reserve in women during normal aging. Accounting for sex differences in verbal memory performance is crucial to improve aMCI identification, particularly for women.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, 10617, Taiwan.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
23
|
Guo W, Shi J. White matter hyperintensities volume and cognition: A meta-analysis. Front Aging Neurosci 2022; 14:949763. [PMID: 36118701 PMCID: PMC9476945 DOI: 10.3389/fnagi.2022.949763] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral small vessel disease (CSVD) is prevalent in the elderly and leads to an increased risk of cognitive impairment and dementia. The volume of white matter hyperintensities (WMHs) increases with age, which affects cognition. Objective To explore the relationship between WMH volume and cognitive decline in patients with CSVD. Methods We performed a systematic search of PubMed, Embase, and the Web of Science databases from their respective creation dates to the 5 May 2022 to identify all the clinical studies on either mild cognitive impairment (MCI) or dementia in regards to WMH volume in CSVD. Results White matter hyperintensities was associated with the risk of both the MCI and dementia, with a 35% increased risk [relative risk (RR) = 1.35; (95% CI: 1.01-1.81)] of progression from cognitively unimpaired (CU) to MCI (six studies, n = 2,278) and a 49% increased risk [RR = 1.49; (95% CI: 1.21-1.84)] of progression to dementia (six studies, n = 6,330). In a subgroup analysis, a follow-up period of over 5 years increased the risk of MCI by 40% [RR = 1.40; (95% CI: 1.07-1.82)] and dementia by 48% [RR = 1.48; (95% CI: 1.15-1.92)]. Conclusion White matter hyperintensities was found to be substantially correlated with the risk of cognitive impairment. Furthermore, cognitive decline was found to be a chronic process, such that WMH predicted the rate of cognitive decline in CSVD beyond 5 years. The cognitive decline observed in patients with WMH may, therefore, be minimized by early intervention.
Collapse
Affiliation(s)
| | - Jing Shi
- The 3rd Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Andrews EJ, Martini AC, Head E. Exploring the role of sex differences in Alzheimer's disease pathogenesis in Down syndrome. Front Neurosci 2022; 16:954999. [PMID: 36033603 PMCID: PMC9411995 DOI: 10.3389/fnins.2022.954999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Women are disproportionately affected by Alzheimer's disease (AD), yet little is known about sex-specific effects on the development of AD in the Down syndrome (DS) population. DS is caused by a full or partial triplication of chromosome 21, which harbors the amyloid precursor protein (APP) gene, among others. The majority of people with DS in their early- to mid-40s will accumulate sufficient amyloid-beta (Aβ) in their brains along with neurofibrillary tangles (NFT) for a neuropathological diagnosis of AD, and the triplication of the APP gene is regarded as the main cause. Studies addressing sex differences with age and impact on dementia in people with DS are inconsistent. However, women with DS experience earlier age of onset of menopause, marked by a drop in estrogen, than women without DS. This review focuses on key sex differences observed with age and AD in people with DS and a discussion of possible underlying mechanisms that could be driving or protecting from AD development in DS. Understanding how biological sex influences the brain will lead to development of dedicated therapeutics and interventions to improve the quality of life for people with DS and AD.
Collapse
Affiliation(s)
- Elizabeth J. Andrews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Alessandra C. Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
25
|
Williamson J, Yabluchanskiy A, Mukli P, Wu DH, Sonntag W, Ciro C, Yang Y. Sex differences in brain functional connectivity of hippocampus in mild cognitive impairment. Front Aging Neurosci 2022; 14:959394. [PMID: 36034134 PMCID: PMC9399646 DOI: 10.3389/fnagi.2022.959394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer's Disease (AD). Prior research shows that females are more impacted by MCI than males. On average females have a greater incidence rate of any dementia and current evidence suggests that they suffer greater cognitive deterioration than males in the same disease stage. Recent research has linked these sex differences to neuroimaging markers of brain pathology, such as hippocampal volumes. Specifically, the rate of hippocampal atrophy affects the progression of AD in females more than males. This study was designed to extend our understanding of the sex-related differences in the brain of participants with MCI. Specifically, we investigated the difference in the hippocampal connectivity to different areas of the brain. The Resting State fMRI and T2 MRI of cognitively normal individuals (n = 40, female = 20) and individuals with MCI (n = 40, female = 20) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the Functional Connectivity Toolbox (CONN). Our results demonstrate that connectivity of hippocampus to the precuneus cortex and brain stem was significantly stronger in males than in females. These results improve our current understanding of the role of hippocampus-precuneus cortex and hippocampus-brainstem connectivity in sex differences in MCI. Understanding the contribution of impaired functional connectivity sex differences may aid in the development of sex specific precision medicine to manipulate hippocampal-precuneus cortex and hippocampal-brainstem connectivity to decrease the progression of MCI to AD.
Collapse
Affiliation(s)
- Jordan Williamson
- Neural Control and Rehabilitation Laboratory, Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dee H. Wu
- Department of Radiological Science and Medical Physics, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, United States
- School of Computer Science, Gallogly College of Engineering, University of Oklahoma, Norman, OK, United States
- School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, United States
| | - William Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carrie Ciro
- Department of Rehabilitation Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Neural Control and Rehabilitation Laboratory, Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, United States
- Department of Rehabilitation Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
26
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
27
|
Kamath V, Senjem ML, Spychalla AJ, Chen H, Palta P, Mosley TH, Windham BG, Griswold M, Knopman DS, Gottesman RF, Jack CR, Sharrett AR, Schneider AL. The Neuroanatomic Correlates of Olfactory Identification Impairment in Healthy Older Adults and in Persons with Mild Cognitive Impairment. J Alzheimers Dis 2022; 89:233-245. [PMID: 35871337 PMCID: PMC10134400 DOI: 10.3233/jad-220228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Olfactory identification (OI) impairment appears early in the course of Alzheimer's disease dementia (AD), prior to detectable cognitive impairment. However, the neuroanatomical correlates of impaired OI in cognitively normal older adults (CN) and persons with mild cognitive impairment (MCI) are not fully understood. OBJECTIVE We examined the neuroanatomic correlates of OI impairment in older adults from the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). METHODS Our sample included 1,600 older adults without dementia who completed clinical assessment and structural brain imaging from 2011 to 2013. We characterized OI impairment using the 12-item Sniffin' Sticks odor identification test (score ≤6). We used voxel-based morphometry (VBM) and region of interest (ROI) analyses to examine the neuroanatomic correlates of impaired OI in CN and MCI, after adjusting for potential confounders. Analyses were also separately stratified by race and sex. RESULTS In CN, OI impairment was associated with smaller amygdala gray matter (GM) volume (p < 0.05). In MCI, OI impairment was associated with smaller GM volumes of the olfactory cortex, amygdala, entorhinal cortex, hippocampus, and insula (ps < 0.05). Differential associations were observed by sex in MCI; OI impairment was associated with lower insular GM volumes among men but not among women (p-interaction = 0.04). There were no meaningful interactions by race. CONCLUSION The brain regions associated with OI impairment in individuals without dementia are specifically those regions known to be the primary targets of AD pathogenic processes. These findings highlight the potential utility of olfactory assessment in the identification and stratification of older adults at risk for AD.
Collapse
Affiliation(s)
- Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN
- Department of Information Technology, Mayo Clinic, Rochester, MN
| | | | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Thomas H. Mosley
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | - B. Gwen Windham
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | - Michael Griswold
- The MIND Center, Department of Medicine, The University of Mississippi School of Medicine, Jackson, MI
| | | | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD
| | - Andrea L.C. Schneider
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
28
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
29
|
Shi L, Buchanan CR, Cox SR, Hillary RF, Marioni RE, Campbell A, Hayward C, Stolicyn A, Whalley HC, Harris MA, Waymont J, Waiter G, Backhouse E, Wardlaw JM, Steele D, Mcintosh A, Lovestone S, Buckley NJ, Nevado‐Holgado AJ. Identification of plasma proteins relating to brain neurodegeneration and vascular pathology in cognitively normal individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12240. [PMID: 34604499 PMCID: PMC8474123 DOI: 10.1002/dad2.12240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology. METHODS Five thousand and thirty-two plasma proteins were measured in 1061 cognitively normal individuals (628 females and 433 males), nearly 90% of whom had magnetic resonance imaging measures of hippocampal volume (as N) and white matter hyperintensities (as V). RESULTS Differential protein expression analysis and co-expression network analysis revealed different proteins and modules associated with N and V, respectively. Furthermore, causal mediation analysis revealed four proteins mediated sex-related difference in N and one protein mediated such difference in V damage. DISCUSSION Once validated, the identified proteins could help to select cognitively normal individuals with N and V pathology for Alzheimer's disease clinical trials and provide targets for further mechanistic studies on brain sex differences, leading to sex-specific therapeutic strategies.
Collapse
Affiliation(s)
- Liu Shi
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Colin R. Buchanan
- Lothian Birth Cohorts GroupThe University of EdinburghEdinburghUK
- Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Simon R. Cox
- Lothian Birth Cohorts GroupThe University of EdinburghEdinburghUK
- Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging NetworkA Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Robert F. Hillary
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Archie Campbell
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Caroline Hayward
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
- Medical Research Council Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Aleks Stolicyn
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | | | | | - Jennifer Waymont
- Aberdeen Biomedical Imaging CentreInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gordon Waiter
- Aberdeen Biomedical Imaging CentreInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Ellen Backhouse
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Douglas Steele
- Division of Imaging Science and TechnologyMedical SchoolUniversity of DundeeScotlandUK
| | - Andrew Mcintosh
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Division of PsychiatryCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Simon Lovestone
- Department of PsychiatryUniversity of OxfordOxfordUK
- Janssen R&DLondonUK
| | | | | |
Collapse
|
30
|
Mendoza-Holgado C, Lavado-García J, López-Espuela F, Roncero-Martín R, Canal-Macías ML, Vera V, Aliaga I, Rey-Sánchez P, Pedrera-Zamorano JD, Moran JM. Cognitive Reserve Characteristics and Occupational Performance Implications in People with Mild Cognitive Impairment. Healthcare (Basel) 2021; 9:1266. [PMID: 34682946 PMCID: PMC8535347 DOI: 10.3390/healthcare9101266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
The Cognitive Reserve hypothesis suggests that there are individual differences in the ability to cope with the pathologic changes in Alzheimer's Disease. The proportion of elderly individuals has increased in recent years; this increase emphasizes the importance of early detection of mild cognitive impairment and the promotion of healthy ageing. The purpose of our study is to characterize cognitive reserve and occupational performance implications in people with mild cognitive impairment. 125 patients with mild cognitive impairment were enrolled. The Montreal Cognitive Assessments (MoCA) was used to evaluate cognitive status and the Cognitive Reserve Index Questionnaire (CRIq) as an indicator of cognitive reserve. Higher level of education was associated with higher MoCA scores (r = 0.290, p = 0.001). Positive significant correlations were observed between MoCA and total CRIq (r = 0.385, p < 0.001) as well as its three sub-domains, education (r = 0.231, p = 0.010), working activity (r = 0.237, p = 0.008) and leisure time (r = 0.319, p < 0.001). This study findings provide the importance of considering socio-behavioral factors in cognitive status. This research helps to describe the importance of engaging occupationally along the whole life-course as a potential protective factor in ageing, and includes a perspective of occupational therapy regarding the hypothesis of cognitive reserve.
Collapse
Affiliation(s)
- Cristina Mendoza-Holgado
- Occupational Therapist in Health and Social Services Department, Government of Extremadura, 10001 Cáceres, Spain;
| | - Jesús Lavado-García
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Fidel López-Espuela
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Raúl Roncero-Martín
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - María Luz Canal-Macías
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Vicente Vera
- Department of Stomatology II, School of Dentistry, Complutense University, 28040 Madrid, Spain;
| | - Ignacio Aliaga
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Purificación Rey-Sánchez
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Juan Diego Pedrera-Zamorano
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| | - Jose M. Moran
- Metabolic Bone Diseases Research Group, Nursing Department, University of Extremadura, 10003 Cáceres, Spain; (J.L.-G.); (R.R.-M.); (M.L.C.-M.); (I.A.); (P.R.-S.); (J.D.P.-Z.); (J.M.M.)
| |
Collapse
|
31
|
Foret JT, Dekhtyar M, Cole JH, Gourley DD, Caillaud M, Tanaka H, Haley AP. Network Modeling Sex Differences in Brain Integrity and Metabolic Health. Front Aging Neurosci 2021; 13:691691. [PMID: 34267647 PMCID: PMC8275835 DOI: 10.3389/fnagi.2021.691691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 01/14/2023] Open
Abstract
Hypothesis-driven studies have demonstrated that sex moderates many of the relationships between brain health and cardiometabolic disease, which impacts risk for later-life cognitive decline. In the present study, we sought to further our understanding of the associations between multiple markers of brain integrity and cardiovascular risk in a midlife sample of 266 individuals by using network analysis, a technique specifically designed to examine complex associations among multiple systems at once. Separate network models were constructed for male and female participants to investigate sex differences in the biomarkers of interest, selected based on evidence linking them with risk for late-life cognitive decline: all components of metabolic syndrome (obesity, hypertension, dyslipidemia, and hyperglycemia); neuroimaging-derived brain-predicted age minus chronological age; ratio of white matter hyperintensities to whole brain volume; seed-based resting state functional connectivity in the Default Mode Network, and ratios of N-acetyl aspartate, glutamate and myo-inositol to creatine, measured through proton magnetic resonance spectroscopy. Males had a sparse network (87.2% edges = 0) relative to females (69.2% edges = 0), indicating fewer relationships between measures of cardiometabolic risk and brain integrity. The edges in the female network provide meaningful information about potential mechanisms between brain integrity and cardiometabolic health. Additionally, Apolipoprotein ϵ4 (ApoE ϵ4) status and waist circumference emerged as central nodes in the female model. Our study demonstrates that network analysis is a promising technique for examining relationships between risk factors for cognitive decline in a midlife population and that investigating sex differences may help optimize risk prediction and tailor individualized treatments in the future.
Collapse
Affiliation(s)
- Janelle T. Foret
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Maria Dekhtyar
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - James H. Cole
- Department of Computer Science, Centre for Medical Image Computing, University College London, London, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Drew D. Gourley
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Marie Caillaud
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Andreana P. Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
32
|
Schellhorn T, Zucknick M, Askim T, Munthe-Kaas R, Ihle-Hansen H, Seljeseth YM, Knapskog AB, Næss H, Ellekjær H, Thingstad P, Wyller TB, Saltvedt I, Beyer MK. Pre-stroke cognitive impairment is associated with vascular imaging pathology: a prospective observational study. BMC Geriatr 2021; 21:362. [PMID: 34126944 PMCID: PMC8201706 DOI: 10.1186/s12877-021-02327-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic brain pathology and pre-stroke cognitive impairment (PCI) is predictive of post-stroke dementia. The aim of the current study was to measure pre-stroke neurodegenerative and vascular disease burden found on brain MRI and to assess the association between pre-stroke imaging pathology and PCI, whilst also looking for potential sex differences. METHODS This prospective brain MRI cohort is part of the multicentre Norwegian cognitive impairment after stroke (Nor-COAST) study. Patients hospitalized with acute ischemic or hemorrhagic stroke were included from five participating stroke units. Visual rating scales were used to categorize baseline MRIs (N = 410) as vascular, neurodegenerative, mixed, or normal, based on the presence of pathological imaging findings. Pre-stroke cognition was assessed by interviews of patients or caregivers using the Global Deterioration Scale (GDS). Stroke severity was assessed with the National Institute of Health Stroke Scale (NIHSS). Univariate and multiple logistic regression analyses were performed to investigate the association between imaging markers, PCI, and sex. RESULTS Patients' (N = 410) mean (SD) age was 73.6 (±11) years; 182 (44%) participants were female, the mean (SD) NIHSS at admittance was 4.1 (±5). In 68% of the participants, at least one pathological imaging marker was found. Medial temporal lobe atrophy (MTA) was present in 30% of patients, white matter hyperintensities (WMH) in 38% of patients and lacunes in 35% of patients. PCI was found in 30% of the patients. PCI was associated with cerebrovascular pathology (OR 2.5; CI = 1.4 to 4.5, p = 0.001) and mixed pathology (OR 3.4; CI = 1.9 to 6.1, p = 0.001) but was not associated with neurodegeneration (OR 1.0; CI = 0.5 to 2.2; p = 0.973). Pathological MRI markers, including MTA and lacunes, were more prevalent among men, as was a history of clinical stroke prior to the index stroke. The OR of PCI for women was not significantly increased (OR 1.2; CI = 0.8 to 1.9; p = 0.3). CONCLUSIONS Pre-stroke chronic brain pathology is common in stroke patients, with a higher prevalence in men. Vascular pathology and mixed pathology are associated with PCI. There were no significant sex differences for the risk of PCI. TRIAL REGISTRATION NCT02650531 , date of registration: 08.01.2016.
Collapse
Affiliation(s)
- Till Schellhorn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torunn Askim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Ragnhild Munthe-Kaas
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Vestre Viken Hospital Trust, Bærum Hospital, Drammen, Norway
| | - Hege Ihle-Hansen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Yngve M Seljeseth
- Medical Department, Ålesund Hospital, Møre and Romsdal Health Trust, Ålesund, Norway
| | | | - Halvor Næss
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne Ellekjær
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Stroke Unit, Department of Internal Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pernille Thingstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Bruun Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, Department of Internal Medicine St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Zhu D, Montagne A, Zhao Z. Alzheimer's pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci 2021; 78:4907-4920. [PMID: 33844047 PMCID: PMC8720296 DOI: 10.1007/s00018-021-03830-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
AD is a neurodegenerative disease, and its frequency is often reported to be higher for women than men: almost two-thirds of patients with AD are women. One prevailing view is that women live longer than men on average of 4.5 years, plus there are more women aged 85 years or older than men in most global subpopulations; and older age is the greatest risk factor for AD. However, the differences in the actual risk of developing AD for men and women of the same age is difficult to assess, and the findings have been mixed. An increasing body of evidence from preclinical and clinical studies as well as the complications in estimating incidence support the sex-specific biological mechanisms in diverging AD risk as an important adjunct explanation to the epidemiologic perspective. Although some of the sex differences in AD prevalence are due to differences in longevity, other distinct biological mechanisms increase the risk and progression of AD in women. These risk factors include (1) deviations in brain structure and biomarkers, (2) psychosocial stress responses, (3) pregnancy, menopause, and sex hormones, (4) genetic background (i.e., APOE), (5) inflammation, gliosis, and immune module (i.e., TREM2), and (6) vascular disorders. More studies focusing on the underlying biological mechanisms for this phenomenon are needed to better understand AD. This review presents the most recent data in sex differences in AD-the gateway to precision medicine, therefore, shaping expert perspectives, inspiring researchers to go in new directions, and driving development of future diagnostic tools and treatments for AD in a more customized way.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Neuroscience Graduate Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Ferini-Strambi L, Hensley M, Salsone M. Decoding Causal Links Between Sleep Apnea and Alzheimer’s Disease. J Alzheimers Dis 2021; 80:29-40. [DOI: 10.3233/jad-201066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer’s disease (AD) are two common chronic diseases with a well-documented association. Whether the association is causal has been highlighted by recent evidence reporting a neurobiological link between these disorders. This narrative review discusses the brain regions and networks involved in OSA as potential vulnerable areas for the development of AD neuropathology with a particular focus on gender-related implications. Using a neuroimaging perspective supported by neuropathological investigations, we provide a new model of neurodegeneration common to OSA and AD, that we have called OSA-AD neurodegeneration in order to decode the causal links between these two chronic conditions.
Collapse
Affiliation(s)
| | - Michael Hensley
- John Hunter Hospital and The University of Newcastle, Newcastle, Australia
| | - Maria Salsone
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| |
Collapse
|
35
|
Arruda F, Rosselli M, Greig MT, Loewenstein DA, Lang M, Torres VL, Vélez-Uribe I, Conniff J, Barker WW, Curiel RE, Adjouadi M, Duara R. The Association Between Functional Assessment and Structural Brain Biomarkers in an Ethnically Diverse Sample With Normal Cognition, Mild Cognitive Impairment, or Dementia. Arch Clin Neuropsychol 2021; 36:51-61. [PMID: 32890393 DOI: 10.1093/arclin/acaa065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To investigate the association between the functional activities questionnaire (FAQ) and brain biomarkers (bilateral hippocampal volume [HV], bilateral entorhinal volume [ERV], and entorhinal cortical thickness [ERT]) in cognitively normal (CN) individuals, mild cognitive impairment (MCI), or dementia. METHOD In total, 226 participants (137 females; mean age = 71.76, SD = 7.93; Hispanic Americans = 137; European Americans = 89) were assessed with a comprehensive clinical examination, a neuropsychological battery, a structural magnetic resonance imaging, and were classified as CN or diagnosed with MCI or dementia. Linear regression analyses examined the association between functional activities as measured by the FAQ on brain biomarkers, including HV, ERV, and ERT, controlling for age, education, global cognition, gender, and ethnicity. RESULTS The FAQ significantly predicted HV, ERV, and ERT for the entire sample. However, this association was not significant for ERV and ERT when excluding the dementia group. The FAQ score remained a significant predictor of HV for the non-dementia group. Age, education, gender, ethnicity, Montreal Cognitive Assessment score, and FAQ were also significant predictors of HV for the overall sample, suggesting that younger Hispanic females with fewer years of education, higher global mental status, and better functioning, were more likely to have larger HV. CONCLUSION FAQ scores were related to HV in older adults across clinical groups (CN, MCI, and dementia), but its association with the entorhinal cortex was driven by individuals with dementia. Demographic variables, including ethnicity, additionally influenced these associations.
Collapse
Affiliation(s)
- Fernanda Arruda
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Mónica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA.,1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA
| | - Maria T Greig
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - David A Loewenstein
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Department of Psychiatry and Behavioral Sciences, Center for Cognitive Neuroscience and Aging, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Merike Lang
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Valeria L Torres
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Idaly Vélez-Uribe
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Joshua Conniff
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Warren W Barker
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Rosie E Curiel
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Department of Psychiatry and Behavioral Sciences, Center for Cognitive Neuroscience and Aging, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Malek Adjouadi
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Engineering Center, Florida International University, Miami, FL, USA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.,Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
36
|
White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev 2020; 120:16-27. [PMID: 33188821 DOI: 10.1016/j.neubiorev.2020.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND White matter hyperintensities of presumed vascular origin (WMH) are one of the imaging features of cerebral small vessel disease. Controversies persist about the effects of WMH on cognitive dysfunction. This meta-analysis aimed to identify the associations of WMH with risks of cognitive impairment and dementia. METHODS We searched PubMed, EMBASE and Cochrane Library for prospective studies. Primary analyses of cognitive dysfunction and sub-analyses of specific outcomes and study characteristics were conducted using random-effect models. RESULTS Thirty-six prospective studies with 19,040 participants were included. WMH at baseline conferred a 14 % elevated risk of cognitive impairment and all-cause dementia (ACD). WMH also conferred 25 % elevated risk of Alzheimer's disease and 73 % elevated risk of vascular dementia. Risk effects of high-grade WMH and continually increasing WMH (in volume or severity) on ACD were revealed. Periventricular WMH conferred a 1.51-fold excess risk for dementia. CONCLUSIONS WMH were associated with increased risk of cognitive dysfunction and could become a neuroimaging indicator of dementia.
Collapse
|
37
|
Murphy KJ, Hodges TE, Sheppard PAS, Troyer AK, Hampson E, Galea LAM. Sex differences in cortisol and memory following acute social stress in amnestic mild cognitive impairment. J Clin Exp Neuropsychol 2020; 42:881-901. [PMID: 33023371 DOI: 10.1080/13803395.2020.1825633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Older adults with amnestic mild cognitive impairment (aMCI) develop Alzheimer's type dementia approximately 10 times faster annually than the normal population. Adrenal hormones are associated with aging and cognition. We investigated the relationship between acute stress, cortisol, and memory function in aMCI with an exploratory analysis of sex. METHOD Salivary cortisol was sampled diurnally and during two test sessions, one session with the Trier Social Stress Test (TSST), to explore differences in the relationship between cortisol and memory function in age-normal cognition (NA) and aMCI. Participants with aMCI (n = 6 women, 9 men; mean age = 75) or similarly aged NA (n = 9 women, 7 men, mean age = 75) were given tests of episodic, associative, and spatial working memory with a psychosocial stressor (TSST) in the second session. RESULTS The aMCI group performed worse on the memory tests than NA as expected, and males with aMCI had elevated cortisol levels on test days. Immediate episodic memory was enhanced by social stress in NA but not in the aMCI group, indicating that stress-induced alterations in memory are different in individuals with aMCI. High cortisol was associated with impaired performance on episodic memory in aMCI males only. Cortisol in Session 1 moderated the relationship with spatial working memory, whereby higher cortisol was associated with worse performance in NA, but better spatial working memory in aMCI. In addition, effects of aMCI on perceived anxiety in response to stress exposure were moderated by stress-induced cortisol in a sex-specific manner. CONCLUSIONS We show effects of aMCI on Test Session cortisol levels and effects on perceived anxiety, and stress-induced impairments in memory in males with aMCI in our exploratory sample. Future studies should explore sex as a biological variable as our findings suggest that effects at the confluence of aMCI and stress can be obfuscated without sex as a consideration.
Collapse
Affiliation(s)
- Kelly J Murphy
- Neuropsychology and Cognitive Health Program, Baycrest , Toronto, ON, Canada.,Psychology Department, University of Toronto , Toronto, ON, Canada
| | - Travis E Hodges
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia , Vancouver, BC, Canada
| | - Paul A S Sheppard
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia , Vancouver, BC, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest , Toronto, ON, Canada.,Psychology Department, University of Toronto , Toronto, ON, Canada
| | | | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia , Vancouver, BC, Canada
| |
Collapse
|
38
|
Pergher V, Schoenmakers B, Demaerel P, Tournoy J, Van Hulle MM. Differential Impact of Cognitive Impairment in MCI Patients: A Case-Based Report. Case Rep Neurol 2020; 12:222-231. [PMID: 32774279 PMCID: PMC7383180 DOI: 10.1159/000507977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/19/2020] [Indexed: 11/19/2022] Open
Abstract
Mild cognitive impairment (MCI) traditionally refers to an intermediate stage between healthy individuals and early Alzheimer disease. Evidence shows grey and white matter volume changes and decrease in several executive functions, albeit the relation between cognitive performance and brain volume remains unclear. Here, we discuss 3 individual cases of MCI by investigating their MRI scans and cognitive test performance. We also recruited age-matched healthy older adults serving as gold standard for both grey and white matter volume and cognitive test outcomes. Our results show the impact of cognitive impairment on cognitive test performance and grey and white matter volumes, and the role played by cognitive and brain reserve on mitigating cognitive decline. Furthermore, we add evidence to previous studies by showing an increase in white matter volume compared to healthy controls, in all 3 patients. This pattern of increased white matter volume might help us to better understand the pathological mechanisms underlying MCI which in turn could contribute to future investigations.
Collapse
Affiliation(s)
- Valentina Pergher
- Department of Cognitive Neuropsychology, Harvard University, Cambridge, Massachusetts, USA.,Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Birgitte Schoenmakers
- Academic Centre of General Practice, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Demaerel
- Department of Neuroradiology, KU Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven - University Hospitals Leuven, Leuven, Belgium.,Department of Geriatric Medicine, KU Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Soldan A, Pettigrew C, Zhu Y, Wang M, Gottesman RF, DeCarli C, Albert M. Cognitive reserve and midlife vascular risk: Cognitive and clinical outcomes. Ann Clin Transl Neurol 2020; 7:1307-1317. [PMID: 32856790 PMCID: PMC7448143 DOI: 10.1002/acn3.51120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Examine whether cognitive reserve moderates the association of 1) vascular risk factors and 2) white matter hyperintensity burden with risk of clinical progression and longitudinal cognitive decline. METHODS BIOCARD Study participants were cognitively normal and primarily middle-aged (M = 57 years) at baseline and have been followed with annual cognitive and clinical assessments (M = 13 years). Baseline cognitive reserve was indexed with a composite score combining education with reading and vocabulary scores. Baseline vascular risk (N = 229) was assessed with a composite risk score reflecting five vascular risk factors. Baseline white matter hyperintensity load (N = 271) was measured with FLAIR magnetic resonance imaging. Cox regression models assessed risk of progression from normal cognition to onset of clinical symptoms of Mild Cognitive Impairment. Longitudinal mixed effects models measured the relationship of these variables to cognitive decline, using a global composite score, and executive function and episodic memory sub-scores. RESULTS Both vascular risk and white matter hyperintensities were associated with cognitive decline, particularly in executive function. Higher vascular risk, but not white matter hyperintensity burden, was associated with an increased risk of progression to Mild Cognitive Impairment. Higher cognitive reserve was associated with a reduced risk of symptom onset and higher levels of baseline cognition but did not modify the associations between the vascular risk score and white matter hyperintensities with clinical progression or cognitive decline. INTERPRETATION Although cognitive reserve has protective effects on clinical and cognitive outcomes, it does not mitigate the negative impact of vascular risk and small vessel cerebrovascular disease on these same outcomes.
Collapse
Affiliation(s)
- Anja Soldan
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMD21205
| | - Corinne Pettigrew
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMD21205
| | - Yuxin Zhu
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21287
| | - Mei‐Cheng Wang
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMD21287
| | - Rebecca F. Gottesman
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMD21205
| | - Charles DeCarli
- Department of NeurologyUniversity of California, Davis, School of MedicineDavisCA95616
| | - Marilyn Albert
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMD21205
| | | |
Collapse
|
40
|
Bayram E, Banks SJ, Shan G, Kaplan N, Caldwell JZK. Sex Differences in Cognitive Changes in De Novo Parkinson's Disease. J Int Neuropsychol Soc 2020; 26:241-249. [PMID: 31822306 PMCID: PMC7282562 DOI: 10.1017/s1355617719001085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the sex differences in cognitive course over 4 years in Parkinson's disease (PD) patients with and without mild cognitive impairment (MCI) compared to controls. METHODS Four-year longitudinal cognitive scores of 257 cognitively intact PD, 167 PD-MCI, and 140 controls from the Parkinson's Progression Markers Initiative were included. Longitudinal scores of men and women, and PD with and without MCI were compared. RESULTS Women had better verbal memory, men had better visuospatial function. There was no interaction between sex, diagnostic group, and/or time (4-year follow-up period). CONCLUSIONS Sex differences in cognitive course in de novo PD are similar to healthy aging. Cognitive decline rates in PD with and without MCI are similar for the first 4 years of PD.
Collapse
Affiliation(s)
- Ece Bayram
- University of California San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Sarah J. Banks
- University of California San Diego, Department of Neurosciences, La Jolla, CA, USA
| | - Guogen Shan
- University of Nevada Las Vegas, Department of Environmental and Occupational Health, Las Vegas, NV, USA
| | - Nikki Kaplan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | |
Collapse
|
41
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Moghekar A, Gottesman RF, Singh B, Martinez O, Fletcher E, DeCarli C, Albert M. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease. Neurology 2019; 94:e950-e960. [PMID: 31888969 DOI: 10.1212/wnl.0000000000008864] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Recent studies suggest that white matter hyperintensities (WMH) on MRI, which primarily reflect small vessel cerebrovascular disease, may play a role in the evolution of Alzheimer disease (AD). In a longitudinal study, we investigated whether WMH promote the progression of AD pathology, or alter the association between AD pathology and risk of progression from normal cognition to mild cognitive impairment (MCI). METHODS Two sets of analyses were conducted. The relationship between whole brain WMH load, based on fluid-attenuated inversion recovery MRI, obtained in initially cognitively normal participants (n = 274) and time to onset of symptoms of MCI (n = 60) was examined using Cox regression models. In a subset of the participants with both MRI and CSF data (n = 204), the interaction of WMH load and CSF AD biomarkers was also evaluated. RESULTS Baseline WMH load interacted with CSF total tau (t-tau) with respect to symptom onset, but not with CSF β-amyloid 1-42 or phosphorylated tau (p-tau) 181. WMH volume was associated with time to symptom onset of MCI among individuals with low t-tau (hazard ratio [HR] 1.35, confidence interval [CI] 1.06-1.73, p = 0.013), but not those with high t-tau (HR 0.86, CI 0.56-1.32, p = 0.47). The rate of change in the CSF biomarkers over time was not associated with the rate of change in WMH volumes. CONCLUSION These results suggest that WMH primarily affect the risk of progression when CSF measures of neurodegeneration or neuronal injury (as reflected by t-tau) are low. However, CSF biomarkers of amyloid and p-tau and WMH appear to have largely independent and nonsynergistic effects on the risk of progression to MCI.
Collapse
Affiliation(s)
- Anja Soldan
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis.
| | - Corinne Pettigrew
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Yuxin Zhu
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Mei-Cheng Wang
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Abhay Moghekar
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Rebecca F Gottesman
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Baljeet Singh
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Oliver Martinez
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Evan Fletcher
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Charles DeCarli
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | - Marilyn Albert
- From the Department of Neurology (A.S., C.P., A.M., R.F.G., M.A.), The Johns Hopkins University School of Medicine; Department of Biostatistics (Y.Z., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and Department of Neurology (B.S., O.M., E.F., C.D.), School of Medicine, University of California, Davis
| | | |
Collapse
|
42
|
Caldwell JZK, Cummings JL, Banks SJ, Palmqvist S, Hansson O. Cognitively normal women with Alzheimer's disease proteinopathy show relative preservation of memory but not of hippocampal volume. ALZHEIMERS RESEARCH & THERAPY 2019; 11:109. [PMID: 31878968 PMCID: PMC6933621 DOI: 10.1186/s13195-019-0565-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022]
Abstract
Background We examined interactive effects of sex, diagnosis, and cerebrospinal fluid (CSF) amyloid beta/phosphorylated tau ratio (Aβ/P-tau) on verbal memory and hippocampal volumes. Methods We assessed 682 participants (350 women) from BioFINDER (250 cognitively normal [CN]; and 432 symptomatic: 186 subjective cognitive decline [SCD], 246 mild cognitive impairment [MCI]). General linear models evaluated effects of Alzheimer’s disease (AD) proteinopathy (CSF Aß/p-tau ratio), diagnosis, and sex on verbal memory (ADAS-cog 10-word recall), semantic fluency (animal naming fluency), visuospatial skills (cube copy), processing speed/attention functions (Symbol Digit Modalities Test and Trail Making Part A), and hippocampal volumes. Results Amyloid-positive (Aβ/P-tau+) CN women (women with preclinical AD) showed memory equivalent to amyloid-negative (Aβ/P-tau−) CN women. In contrast, Aβ/P-tau+ CN men (men with preclinical AD) showed poorer memory than Aβ/P-tau− CN men. Symptomatic groups showed no sex differences in effect of AD proteinopathy on memory. There was no interactive effect of sex, diagnosis, and Aβ/P-tau on other measures of cognition or on hippocampal volume. Conclusions CN women show relatively preserved verbal memory, but not general cognitive reserve or preserved hippocampal volume in the presence of Aβ/P-tau+. Results have implications for diagnosing AD in women, and for clinical trials.
Collapse
Affiliation(s)
- Jessica Z K Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.,UNLV Department of Brain Health, School of Integrated Health Sciences, Box 453019, 4505 S. Maryland Pkwy, Las Vegas, Nevada, 89154, USA
| | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.,University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, PO Box 188, 221, Lund, Sweden.,Department of Neurology, Skåne University Hospital, 221 85, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, PO Box 188, 221, Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 05, Malmö, Sweden
| |
Collapse
|
43
|
Lennon JC. Etiopathogenesis of Suicide: A Conceptual Analysis of Risk and Prevention Within a Comprehensive, Deterministic Model. Front Psychol 2019; 10:2087. [PMID: 31572269 PMCID: PMC6751268 DOI: 10.3389/fpsyg.2019.02087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Suicide is a rising global health concern receiving disproportionate attention in comparison to other health conditions. In spite of substantial technological and scientific advancements, suicide research has continued to move slowly in terms of clinical translation due to the complexity of neural mechanisms, and subjective experiences that seem to underpin this complex human behavior. This paper analyzes the concepts of risk and prevention in the context of suicide in an attempt to bridge the large methodological and theoretical gaps between the biological, psychological, and sociological dimensions. This paper aims to accomplish the following objectives: (1) operationalize the concepts of suicide risk and prevention as they relate to current knowledge and capabilities; (2) synthesize and integrate suicide research across biological, psychological, and sociological dimensions; (3) discuss limitations of each dimension in isolation; (4) suggest a model of etiopathogenesis that incorporates extant literature and bridges unnecessary gaps between dimensions; and (5) suggest future directions for multidimensional research through the inclusion of principles from the physical sciences. Ultimately, this paper provides a basis for a comprehensive model of suicide within a deterministic, chaotic system.
Collapse
Affiliation(s)
- Jack C Lennon
- Department of Psychology, Adler University, Chicago, IL, United States.,Section of Parkinson's Disease and Movement Disorders, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States.,Department of Behavioral Sciences, Rush Neurobehavioral Center, Rush University Medical Center, Skokie, IL, United States
| |
Collapse
|
44
|
Caldwell JZK, Berg JL, Shan G, Cummings JL, Banks SJ. Sex Moderates the Impact of Diagnosis and Amyloid PET Positivity on Hippocampal Subfield Volume. J Alzheimers Dis 2019; 64:79-89. [PMID: 29865063 PMCID: PMC6004904 DOI: 10.3233/jad-180028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined moderation effects of sex and diagnosis on the effect of positive florbetapir positron emission tomography (PET) amyloid-β (Aβ) scan (A+) on hippocampus subfield volumes in 526 normal control (NC) and early mild cognitive impairment (eMCI) participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI2; ADNI-GO). Regression moderation models showed that women— but not men— with NC designation did not show reduced subiculum volumes despite A+. At the eMCI stage, A+ was detrimental across sexes. Findings were significant while accounting for the effects of age, cognition at screening, education, and APOE4 carrier status. These findings suggest that women with A+ have early neural resistance to Alzheimer’s disease-related amyloid burden.
Collapse
Affiliation(s)
| | - Jody-Lynn Berg
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Guogen Shan
- University of Nevada Las Vegas, School of Community Health Sciences, Las Vegas, NV, USA
| | | | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | |
Collapse
|
45
|
Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies. Front Neurol 2019; 10:238. [PMID: 30972001 PMCID: PMC6443932 DOI: 10.3389/fneur.2019.00238] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background: White matter hyperintensities of presumed vascular origin (WMH) are a common finding in elderly people and a growing social malady in the aging western societies. As a manifestation of cerebral small vessel disease, WMH are considered to be a vascular contributor to various sequelae such as cognitive decline, dementia, depression, stroke as well as gait and balance problems. While pathophysiology and therapeutical options remain unclear, large-scale studies have improved the understanding of WMH, particularly by quantitative assessment of WMH. In this review, we aimed to provide an overview of the characteristics, research subjects and segmentation techniques of these studies. Methods: We performed a systematic review according to the PRISMA statement. One thousand one hundred and ninety-six potentially relevant articles were identified via PubMed search. Six further articles classified as relevant were added manually. After applying a catalog of exclusion criteria, remaining articles were read full-text and the following information was extracted into a standardized form: year of publication, sample size, mean age of subjects in the study, the cohort included, and segmentation details like the definition of WMH, the segmentation method, reference to methods papers as well as validation measurements. Results: Our search resulted in the inclusion and full-text review of 137 articles. One hundred and thirty-four of them belonged to 37 prospective cohort studies. Median sample size was 1,030 with no increase over the covered years. Eighty studies investigated in the association of WMH and risk factors. Most of them focussed on arterial hypertension, diabetes mellitus type II and Apo E genotype and inflammatory markers. Sixty-three studies analyzed the association of WMH and secondary conditions like cognitive decline, mood disorder and brain atrophy. Studies applied various methods based on manual (3), semi-automated (57), and automated segmentation techniques (75). Only 18% of the articles referred to an explicit definition of WMH. Discussion: The review yielded a large number of studies engaged in WMH research. A remarkable variety of segmentation techniques was applied, and only a minority referred to a clear definition of WMH. Most addressed topics were risk factors and secondary clinical conditions. In conclusion, WMH research is a vivid field with a need for further standardization regarding definitions and used methods.
Collapse
Affiliation(s)
- Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Yagi S, Galea LAM. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 2019; 44:200-213. [PMID: 30214058 PMCID: PMC6235970 DOI: 10.1038/s41386-018-0208-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Sex differences are reported in hippocampal plasticity, cognition, and in a number of disorders that target the integrity of the hippocampus. For example, meta-analyses reveal that males outperform females on hippocampus-dependent tasks in rodents and in humans, furthermore women are more likely to experience greater cognitive decline in Alzheimer's disease and depression, both diseases characterized by hippocampal dysfunction. The hippocampus is a highly plastic structure, important for processing higher order information and is sensitive to the environmental factors such as stress. The structure retains the ability to produce new neurons and this process plays an important role in pattern separation, proactive interference, and cognitive flexibility. Intriguingly, there are prominent sex differences in the level of neurogenesis and the activation of new neurons in response to hippocampus-dependent cognitive tasks in rodents. However, sex differences in spatial performance can be nuanced as animal studies have demonstrated that there are task, and strategy choice dependent sex differences in performance, as well as sex differences in the subregions of the hippocampus influenced by learning. This review discusses sex differences in pattern separation, pattern completion, spatial learning, and links between adult neurogenesis and these cognitive functions of the hippocampus. We emphasize the importance of including both sexes when studying genomic, cellular, and structural mechanisms of the hippocampal function.
Collapse
Affiliation(s)
- Shunya Yagi
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
47
|
Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep 2018; 8:16128. [PMID: 30382190 PMCID: PMC6208341 DOI: 10.1038/s41598-018-33843-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
This study cross-sectionally examines in the elderly population: (a) the association of type 2 diabetes with executive function (EF); (b) the effect of BMI on both type 2 diabetes and EF; (c) the association between glycaemia control and EF in type 2 diabetes. 6823 older individuals with overweight/obesity and metabolic syndrome participating in the PREDIMED-PLUS study, were assessed with a battery of cognitive tests and a medical interview. ANOVA showed a significantly worse performance on EF in type 2 diabetes vs. non-diabetic individuals. Two complementary models were displayed: (1) in the whole sample, the presence of type 2 diabetes, depressive symptoms and BMI had a direct negative effect on EF, while apnoea had an indirect negative effect; (2) in the diabetes subsample, higher illness duration was associated with worse performance in EF. Participants with type 2 diabetes and HbA1c<53 mmol/mol displayed better cognitive performance when compared to those with HbA1c≥53 mmol/mol. Our results provide a controlled comprehensive model that integrates relevant neuropsychological and physical variables in type 2 diabetes. The model suggests that, to improve treatment adherence and quality of life once diabetes has been diagnosed, cognitive decline prevention strategies need to be implemented while monitoring depressive symptoms, BMI and glycaemia control.
Collapse
|
48
|
Besser L, Kukull W, Knopman DS, Chui H, Galasko D, Weintraub S, Jicha G, Carlsson C, Burns J, Quinn J, Sweet RA, Rascovsky K, Teylan M, Beekly D, Thomas G, Bollenbeck M, Monsell S, Mock C, Zhou XH, Thomas N, Robichaud E, Dean M, Hubbard J, Jacka M, Schwabe-Fry K, Wu J, Phelps C, Morris JC. Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 2018; 32:351-358. [PMID: 30376508 PMCID: PMC6249084 DOI: 10.1097/wad.0000000000000279] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION In 2015, the US Alzheimer's Disease Centers (ADC) implemented Version 3 of the Uniform Data Set (UDS). This paper describes the history of Version 3 development and the UDS data that are freely available to researchers. METHODS UDS Version 3 was developed after years of coordination between the National Institute on Aging-appointed Clinical Task Force (CTF), clinicians from ∼30 ADCs, and the National Alzheimer's Coordinating Center (NACC). The CTF recognized the need for updates to align with the state of the science in dementia research, while being flexible to the diverse needs and diseases studied at the ADCs. Version 3 also developed a nonproprietary neuropsychological battery. RESULTS This paper focuses on the substantial Version 3 changes to the UDS forms related to clinical diagnosis and characterization of clinical symptoms to match updated consensus-based diagnostic criteria. Between March 2015 and March 2018, 4820 participants were enrolled using UDS Version 3. Longitudinal data were available for 25,337 of the 37,568 total participants using all UDS versions. DISCUSSION The results from utilization of the UDS highlight the possibility for numerous research institutions to successfully collaborate, produce, and use standardized data collection instruments for over a decade.
Collapse
Affiliation(s)
- Lilah Besser
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
- Institute for Healthy Aging and Lifespan Studies and School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, FL
| | - Walter Kukull
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | | | - Helena Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| | - Sandra Weintraub
- Departments of Psychiatry and Neurology, and Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gregory Jicha
- Department of Neurology, University of Kentucky, Lexington, KY
| | - Cynthia Carlsson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health; Geriatric Research, Education and Clinical Center, Madison VA Hospital, Madison, WI
| | - Jeffrey Burns
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS
| | - Joseph Quinn
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Robert A. Sweet
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Katya Rascovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine
- Department of Neurology, University of Pittsburgh School of Medicine
- Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Merilee Teylan
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Duane Beekly
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - George Thomas
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Mark Bollenbeck
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Sarah Monsell
- Center for Biomedical Statistics, University of Washington, Seattle, WA
| | - Charles Mock
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Xiao Hua Zhou
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Nicole Thomas
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Elizabeth Robichaud
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Margaret Dean
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Janene Hubbard
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Mary Jacka
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Kristen Schwabe-Fry
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Joylee Wu
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | | | | | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
49
|
Zhou CN, Chao FL, Zhang Y, Jiang L, Zhang L, Luo YM, Xiao Q, Chen LM, Tang Y. Sex Differences in the White Matter and Myelinated Fibers of APP/PS1 Mice and the Effects of Running Exercise on the Sex Differences of AD Mice. Front Aging Neurosci 2018; 10:243. [PMID: 30174598 PMCID: PMC6107833 DOI: 10.3389/fnagi.2018.00243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Previous studies have suggested that changes in the white matter might play an important role in the pathogenic processes of Alzheimer's disease (AD). However, no study has investigated sex differences in these changes. Previous studies found that running exercise could delay both the decline in spatial learning and memory abilities as well as the changes in the white matter during early AD in male mice. However, whether exercise also has an effect on the changes in the white matter in female AD mice remains unknown. To address these questions, 6- and 10-month-old male and female APP/PS1 double transgenic AD mice were used. The 6-month-old male and female APP/PS1 double transgenic AD mice underwent a 4-month running exercise regime. The white matter volume and parameters of the myelinated fibers in the white matter of the 10-month-old exercised and non-exercised male and female AD mice were investigated using electron microscopy and stereological methods. There were no significant differences in the mean escape latencies between the male and female AD mice in the non-exercised groups, but after 4 months of treadmill exercise, the mean escape latencies of the female exercised AD mice had significantly shortened compared with those of the male exercised AD mice. The total white matter volume and most of the parameters of the myelinated fibers of the white matter in the female AD mice were significantly lower than those of the male AD mice. The total length of the myelinated fibers with diameters ranging from 0.6 to 0.7 μm, the axonal diameter of the myelinated fibers and the g-ratio of the myelinated fibers in the white matter of the exercised female AD mice were significantly increased compared with those of the non-exercised female AD mice. There were sex-specific differences in the white matter and myelinated fibers of white matter in the AD mice. Running exercise more effectively delayed the decline in spatial learning and memory abilities and delayed the changes in the myelinated fibers of the white matter in female transgenic mice with early AD than in male transgenic mice.
Collapse
Affiliation(s)
- Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yan-Min Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|