1
|
Worthley E, Grzadzinski R, Zwaigenbaum L, Dager SR, Estes AM, Hazlett HC, Schultz RT, Piven J, Wolff JJ. Sensory Profiles in Relation to Later Adaptive Functioning Among Toddlers at High-Familial Likelihood for Autism. J Autism Dev Disord 2024; 54:2183-2197. [PMID: 37017863 DOI: 10.1007/s10803-022-05869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 04/06/2023]
Abstract
This study investigated the extent to which sensory responsivity in infancy contributes to adaptive behavior development among toddlers at high-familial likelihood for autism. Prospective, longitudinal data were analyzed for 218 children, 58 of whom received an autism diagnosis. Results indicated that sensory profiles at age one year (hyperresponsivity, sensory seeking) were negatively associated with later adaptive behavior, particularly for socialization, at age 3 years regardless of diagnostic status. These results suggest that early differences in sensory responsivity may have downstream developmental consequences related to social development among young children with high-familial likelihood for autism.
Collapse
Affiliation(s)
- Emma Worthley
- University of Minnesota, 56 East River Road, 55455, Minneapolis, MN, USA
| | - Rebecca Grzadzinski
- University of North Carolina at Chapel Hill, 321 S Columbia St, 27516, Chapel Hill, NC, USA
| | | | - Stephen R Dager
- University of Washington, 1701 NE Columbia Rd, 98195, Seattle, WA, USA
| | - Annette M Estes
- University of Washington, 1701 NE Columbia Rd, 98195, Seattle, WA, USA
| | - Heather C Hazlett
- University of North Carolina at Chapel Hill, 321 S Columbia St, 27516, Chapel Hill, NC, USA
| | - Robert T Schultz
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd, 19104, Philadelphia, PA, USA
| | - Joseph Piven
- University of North Carolina at Chapel Hill, 321 S Columbia St, 27516, Chapel Hill, NC, USA
| | - Jason J Wolff
- University of Minnesota, 56 East River Road, 55455, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Estes A, Hillman A, Chen ML. Sleep and Autism: Current Research, Clinical Assessment, and Treatment Strategies. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:162-169. [PMID: 38680972 PMCID: PMC11046719 DOI: 10.1176/appi.focus.20230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder is associated with a high rate of sleep problems, affecting over 80% of autistic individuals. Sleep problems have pervasive negative effects on health, behavior, mood, and cognition but are underrecognized in autistic children. Problems initiating and maintaining sleep-hallmarks of insomnia-are common. Sleep-disordered breathing and restless legs syndrome have also been described in autism at a higher prevalence than in community populations. The authors describe current research on sleep in autistic children and potential pathophysiologic mechanisms. They describe practical approaches to sleep assessment and synthesize approaches to addressing sleep problems in autistic children.
Collapse
Affiliation(s)
- Annette Estes
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| | - Arianna Hillman
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| | - Maida Lynn Chen
- Department of Speech and Hearing Sciences (Estes) and Department of Pediatrics, Division of Pulmonary and Sleep Medicine (Chen), University of Washington, Seattle; University of Washington Autism Center (Estes, Hillman); Pediatric Sleep Disorders Center and Pulmonary and Sleep Medicine Division, Seattle Children's Hospital (Chen)
| |
Collapse
|
3
|
Wolff B, Franco VR, Magiati I, Pestell CF, Glasson EJ. Neurocognitive and self-reported psychosocial and behavioral functioning in siblings of individuals with neurodevelopmental conditions: a study using remote self-administered testing. J Clin Exp Neuropsychol 2023; 45:513-536. [PMID: 37779193 DOI: 10.1080/13803395.2023.2259042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE This study compared and explored the neurocognitive profiles of siblings of persons with and without neurodevelopmental conditions (NDCs) and associations between objective test performance and self-reported psychosocial functioning. METHODS Siblings of persons with and without NDCs (64 NDC and 64 control siblings; mean age 19.88 years, range 11-27 years, 73.44% female, 75.78% White Caucasian) completed self-report questionnaires and self-administered computerized neurocognitive tests of executive functioning (EF). Using Bayesian analyses, we examined cross-sectional associations between self-reported psychosocial functioning and cognitive test performance, and predictors of EF over 15 months. RESULTS NDC siblings had poorer working memory, inhibition, attention, and shifting compared to controls, as measured by experimental paradigms on the backward Corsi span, N-Back 2-back task, Stop Signal Task, Sustained Attention to Response Task, and the Wisconsin Card Sorting Test (effect size δ ranging 0.49 to 0.64). Bayesian cross-sectional networks revealed negative emotion reactivity and working memory difficulties were central to the NDC sibling network. Over 15 months, poorer EF (k low test scores) was predicted by negative emotion reactivity, sleep problems, and anxiety, over and above effects of age and subclinical autistic and ADHD traits. Siblings of autistic individuals and persons with fetal alcohol spectrum disorder had higher rates of neurocognitive and psychiatric difficulties than other NDCs and controls (Bayes factors >20). CONCLUSIONS Neurocognitive difficulties were associated with transdiagnostic vulnerability to poorer wellbeing in NDC siblings. These findings demonstrate the feasibility of remote online cognitive testing and highlight the importance of individualized prevention and intervention for NDC siblings.
Collapse
Affiliation(s)
- Brittany Wolff
- School of Psychological Science, The University of Western Australia, Perth, Australia
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | | | - Iliana Magiati
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - Carmela F Pestell
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - Emma J Glasson
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
- Discipline of Psychiatry, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Bojanek EK, Kelly SE, Schmitt LM, White SP, Sweeney JA, Sprenger A, Unruh KE, Mosconi MW. Sensorimotor Behavior in Individuals with Autism Spectrum Disorder and Their Unaffected Biological Parents. RESEARCH SQUARE 2023:rs.3.rs-2973214. [PMID: 37293056 PMCID: PMC10246285 DOI: 10.21203/rs.3.rs-2973214/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Sensorimotor impairments are common in autism spectrum disorder (ASD) and evident in unaffected first-degree relatives, suggesting that they may serve as important endophenotypes associated with inherited risk. We tested the familiality of sensorimotor impairments in ASD across multiple motor behaviors and effector systems and in relation to parental broader autism phenotypic (BAP) characteristics. Methods Fifty-eight autistic individuals (probands), 109 parents, and 89 control participants completed tests of manual motor and oculomotor control. Sensorimotor tests varied in their involvement of rapid, feedforward control and sustained, sensory feedback control processes. Subgroup analyses compared families with at least one parent showing BAP traits (BAP+) and those in which neither parent showed BAP traits (BAP-). Results Probands with BAP- parents (BAP- probands) showed rapid manual motor and oculomotor deficits, while BAP+ probands showed sustained motor impairments compared to controls. BAP- parents showed impaired rapid oculomotor and sustained manual motor abilities relative to BAP+ parents and controls. Atypical rapid oculomotor impairments also were familial. Limitations Larger samples of ASD families including greater samples of probands with BAP+ parents are needed. Genetic studies also are needed to link sensorimotor endophenotype findings directly to genes. Conclusions Results indicate rapid sensorimotor behaviors are selectively impacted in BAP- probands and their parents and may reflect familial liabilities for ASD that are independent of familial autistic traits. Sustained sensorimotor behaviors were affected in BAP+ probands and BAP- parents re ecting familial traits that may only confer risk when combined with parental autistic trait liabilities. These findings provide new evidence that rapid and sustained sensorimotor alterations represent strong but separate familial pathways of ASD risk that demonstrate unique interactions with mechanisms related to parental autistic traits.
Collapse
Affiliation(s)
- Erin K Bojanek
- University of Rochester, University of Rochester Medical Center
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Peters JM, Fox MD. Tubers Affecting the Fusiform Face Area Are Associated with Autism Diagnosis. Ann Neurol 2023; 93:577-590. [PMID: 36394118 PMCID: PMC9974824 DOI: 10.1002/ana.26551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana Wall
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arina Ovchinnikova
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y Wu
- Division of Neurology & Epilepsy, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
6
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Li Y, Sun C, Guo Y, Qiu S, Li Y, Liu Y, Zhong W, Wang H, Cheng Y, Liu Y. DIP2C polymorphisms are implicated in susceptibility and clinical phenotypes of autism spectrum disorder. Psychiatry Res 2022; 316:114792. [PMID: 35987071 DOI: 10.1016/j.psychres.2022.114792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Disco-interacting protein 2 C (DIP2C) has recently been reported as a new susceptibility gene for autism spectrum disorder (ASD) in a genome-wide association study. METHODS We evaluated associations between single nucleotide polymorphisms (SNPs) of DIP2C and ASD susceptibility in a case-control study (715 ASD cases and 728 controls) from Chinese Han. RESULTS We identified a significant association between SNPs (rs3740304, rs2288681, rs7088729, rs4242757, rs10795060, and rs10904083) and ASD susceptibility. Of note, rs3740304, rs2288681, and rs7088729 are positively associated with ASD under inheritance models; moreover, haplotypes with any two marker SNPs (rs3740304 [G], rs2288681 [C], rs7088729 [T], rs4242757 [C], rs10795060 [G], and rs10904083 [A]) are also significantly associated with ASD. Additionally, rs10795060 and rs10904083 are associated with "visual reaction" phenotypes of ASD. CONCLUSIONS DIP2C polymorphisms sort out the susceptibility and clinical phenotypes of autism spectrum disorder.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China; Institute of Health Sciences, China Medical University, Shengyang 110000, China
| | - Chuanyong Sun
- Northeast Asian Studies Center, Jilin University, Changchun 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China
| | - Weijing Zhong
- Chunguang Rehabilitation Hospital, Changchun, Jilin 130021, China
| | - Hedi Wang
- Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Tye C, Bussu G, Gliga T, Elsabbagh M, Pasco G, Johnsen K, Charman T, Jones EJH, Buitelaar J, Johnson MH. Understanding the nature of face processing in early autism: A prospective study. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2022; 131:542-555. [PMID: 35901386 PMCID: PMC9330670 DOI: 10.1037/abn0000648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022]
Abstract
Dimensional approaches to psychopathology interrogate the core neurocognitive domains interacting at the individual level to shape diagnostic symptoms. Embedding this approach in prospective longitudinal studies could transform our understanding of the mechanisms underlying neurodevelopmental disorders. Such designs require us to move beyond traditional group comparisons and determine which domain-specific alterations apply at the level of the individual, and whether they vary across distinct phenotypic subgroups. As a proof of principle, this study examines how the domain of face processing contributes to the emergence of autism spectrum disorder (ASD). We used an event-related potentials (ERPs) task in a cohort of 8-month-old infants with (n = 148) and without (n = 68) an older sibling with ASD, and combined traditional case-control comparisons with machine-learning techniques for prediction of social traits and ASD diagnosis at 36 months, and Bayesian hierarchical clustering for stratification into subgroups. A broad profile of alterations in the time-course of neural processing of faces in infancy was predictive of later ASD, with a strong convergence in ERP features predicting social traits and diagnosis. We identified two main subgroups in ASD, defined by distinct patterns of neural responses to faces, which differed on later sensory sensitivity. Taken together, our findings suggest that individual differences between infants contribute to the diffuse pattern of alterations predictive of ASD in the first year of life. Moving from group-level comparisons to pattern recognition and stratification can help to understand and reduce heterogeneity in clinical cohorts, and improve our understanding of the mechanisms that lead to later neurodevelopmental outcomes. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Charlotte Tye
- Department of Child and Adolescent Psychiatry and MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Giorgia Bussu
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center
| | - Teodora Gliga
- Centre for Brain and Cognitive Development, Birkbeck College, University of London
| | | | - Greg Pasco
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | | | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck College, University of London
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck College, University of London
| |
Collapse
|
9
|
Wong A, Zhou A, Cao X, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. MicroRNA and MicroRNA-Target Variants Associated with Autism Spectrum Disorder and Related Disorders. Genes (Basel) 2022; 13:1329. [PMID: 35893067 PMCID: PMC9329941 DOI: 10.3390/genes13081329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (A.W.); (A.Z.); (X.C.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Uljarević M, Bott NT, Libove RA, Phillips JM, Parker KJ, Hardan AY. Characterizing Emotion Recognition and Theory of Mind Performance Profiles in Unaffected Siblings of Autistic Children. Front Psychol 2022; 12:736324. [PMID: 35283803 PMCID: PMC8907847 DOI: 10.3389/fpsyg.2021.736324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Emotion recognition skills and the ability to understand the mental states of others are crucial for normal social functioning. Conversely, delays and impairments in these processes can have a profound impact on capability to engage in, maintain, and effectively regulate social interactions. Therefore, this study aimed to compare the performance of 42 autistic children (Mage = 8.25 years, SD = 2.22), 45 unaffected siblings (Mage = 8.65 years, SD = 2.40), and 41 typically developing (TD) controls (Mage = 8.56 years, SD = 2.35) on the Affect Recognition (AR) and Theory of Mind (TOM) subtests of the Developmental Neuropsychological Assessment Battery. There were no significant differences between siblings and TD controls. Autistic children showed significantly poorer performance on AR when compared to TD controls and on TOM when compared to both TD controls and unaffected siblings. An additional comparison of ASD, unaffected sibling and TD control subsamples, matched on full-scale IQ, revealed no group differences for either AR or TOM. AR and TOM processes have received less research attention in siblings of autistic children and remain less well characterized. Therefore, despite limitations, findings reported here contribute to our growing understanding of AR and TOM abilities in siblings of autistic children and highlight important future research directions.
Collapse
Affiliation(s)
- Mirko Uljarević
- Faculty of Medicine, Dentistry, and Health Sciences, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Psychology and Counseling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nicholas T. Bott
- Department of Medicine, Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, United States
- PGSP-Stanford Consortium, Department of Psychology, Palo Alto University, Palo Alto, CA, United States
| | - Robin A. Libove
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer M. Phillips
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Karen J. Parker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Chisholm AK, Haebich KM, Pride NA, Walsh KS, Lami F, Ure A, Maloof T, Brignell A, Rouel M, Granader Y, Maier A, Barton B, Darke H, Dabscheck G, Anderson VA, Williams K, North KN, Payne JM. Delineating the autistic phenotype in children with neurofibromatosis type 1. Mol Autism 2022; 13:3. [PMID: 34983638 PMCID: PMC8729013 DOI: 10.1186/s13229-021-00481-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Existing research has demonstrated elevated autistic behaviours in children with neurofibromatosis type 1 (NF1), but the autistic phenotype and its relationship to other neurodevelopmental manifestations of NF1 remains unclear. To address this gap, we performed detailed characterisation of autistic behaviours in children with NF1 and investigated their association with other common NF1 child characteristics. Methods Participants were drawn from a larger cross-sectional study examining autism in children with NF1. The population analysed in this study scored above threshold on the Social Responsiveness Scale-Second Edition (T-score ≥ 60; 51% larger cohort) and completed the Autism Diagnostic Interview-Revised (ADI-R) and/or the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2). All participants underwent evaluation of their intellectual function, and behavioural data were collected via parent questionnaires. Results The study cohort comprised 68 children (3–15 years). Sixty-three per cent met the ADOS-2 ‘autism spectrum’ cut-off, and 34% exceeded the more stringent threshold for ‘autistic disorder’ on the ADI-R. Social communication symptoms were common and wide-ranging, while restricted and repetitive behaviours (RRBs) were most commonly characterised by ‘insistence on sameness’ (IS) behaviours such as circumscribed interests and difficulties with minor changes. Autistic behaviours were weakly correlated with hyperactive/impulsive attention deficit hyperactivity disorder (ADHD) symptoms but not with inattentive ADHD or other behavioural characteristics. Language and verbal IQ were weakly related to social communication behaviours but not to RRBs. Limitations Lack of genetic validation of NF1, no clinical diagnosis of autism, and a retrospective assessment of autistic behaviours in early childhood. Conclusions Findings provide strong support for elevated autistic behaviours in children with NF1. While these behaviours were relatively independent of other NF1 comorbidities, the importance of taking broader child characteristics into consideration when interpreting data from autism-specific measures in this population is highlighted. Social communication deficits appear similar to those observed in idiopathic autism and are coupled with a unique RRB profile comprising prominent IS behaviours. This autistic phenotype and its relationship to common NF1 comorbidities such as anxiety and executive dysfunction will be important to examine in future research. Current findings have important implications for the early identification of autism in NF1 and clinical management. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00481-3.
Collapse
Affiliation(s)
- Anita K Chisholm
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alex Ure
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Tiba Maloof
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Amanda Brignell
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Yael Granader
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Michigan Avenue NW, Washington, DC, 20310, USA
| | - Alice Maier
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Belinda Barton
- Kids Neuroscience Centre, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Children's Hospital Education Research Institute, The Children's Hospital at Westmead, 178A Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gabriel Dabscheck
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Vicki A Anderson
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Katrina Williams
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Developmental Paediatrics, Monash Children's Hospital, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
13
|
Cable J, Purcell RH, Robinson E, Vorstman JAS, Chung WK, Constantino JN, Sanders SJ, Sahin M, Dolmetsch RE, Shah B, Thurm A, Martin CL, Bearden CE, Mulle JG. Harnessing rare variants in neuropsychiatric and neurodevelopment disorders-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:5-17. [PMID: 34342000 PMCID: PMC8688183 DOI: 10.1111/nyas.14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants" a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.
Collapse
Affiliation(s)
| | - Ryan H. Purcell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Elise Robinson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jacob A. S. Vorstman
- Department of Psychiatry and The Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, New York
- Simons Foundation, New York, New York
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Stephan J. Sanders
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Bina Shah
- Project 8p Foundation, Commission on Novel Technologies for Neurodevelopmental CNVs, New York, New York
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Christa L. Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Carrie E. Bearden
- Integrative Center for Neurogenetics, Departments of Psychiatry and Biobehavioral Science and Psychology, University of California Los Angeles, Los Angeles, California
| | - Jennifer G. Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Chun J, Bong G, Han JH, Oh M, Yoo HJ. Validation of Social Responsiveness Scale for Korean Preschool Children With Autism. Psychiatry Investig 2021; 18:831-840. [PMID: 34500507 PMCID: PMC8473854 DOI: 10.30773/pi.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This cross-cultural study aims to examine the psychometric properties of the Social Responsiveness Scale (SRS) and to determine the best-estimate-cut-off scores for the diagnosis of autism spectrum disorder (ASD) in Korean preschool children. METHODS A total of 563 children was recruited from multiple sources, including Seoul National University Bundang Hospital. Participants were assessed by a multidisciplinary research team using multiple diagnostic tools based on DSM-5 diagnostic criteria. Discriminative validity was tested by comparing the difference in SRS scores between ASD and non-ASD groups. Convergent validity was tested by examining correlations between SRS scores with other diagnostic instruments. A receiver operation characteristic curve analysis was conducted to test the sensitivity and specificity of SRS and to determine the best-estimate-cut-off scores for screening ASD in Korean preschool children. RESULTS There were significant differences in the total SRS scores between the ASD (n=242) and non-ASD group (n=321) (p<0.01, 95% confidence interval [CI]: 14.08-17.24). The differences were significant even after adjusting for age. SRS scores were significantly correlated with other prescreening diagnostic tools for ASD. The best-estimate cut-off score to screen ASD was 55 (area under curve=0.88, sensitivity 78.1%, specificity 86.6%). CONCLUSION The SRS is a valid and reliable instrument to screen and aid in the diagnosis of ASD in Korean preschool children. The adjusted cut-off scores, notably lower than in the original U.S. version, may yield a more accurate diagnosis by reflecting transcultural differences.
Collapse
Affiliation(s)
- Jeeyoung Chun
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Guiyoung Bong
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Miae Oh
- Department of Psychiatry, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Unruh KE, McKinney WS, Bojanek EK, Fleming KK, Sweeney JA, Mosconi MW. Initial action output and feedback-guided motor behaviors in autism spectrum disorder. Mol Autism 2021; 12:52. [PMID: 34246292 PMCID: PMC8272343 DOI: 10.1186/s13229-021-00452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sensorimotor issues are common in autism spectrum disorder (ASD), related to core symptoms, and predictive of worse functional outcomes. Deficits in rapid behaviors supported primarily by feedforward mechanisms, and continuous, feedback-guided motor behaviors each have been reported, but the degrees to which they are distinct or co-segregate within individuals and across development are not well understood. METHODS We characterized behaviors that varied in their involvement of feedforward control relative to feedback control across skeletomotor (precision grip force) and oculomotor (saccades) control systems in 109 individuals with ASD and 101 age-matched typically developing controls (range: 5-29 years) including 58 individuals with ASD and 57 controls who completed both grip and saccade tests. Grip force was examined across multiple force (15, 45, and 85% MVC) and visual gain levels (low, medium, high). Maximum grip force also was examined. During grip force tests, reaction time, initial force output accuracy, variability, and entropy were examined. For the saccade test, latency, accuracy, and trial-wise variability of latency and accuracy were examined. RESULTS Relative to controls, individuals with ASD showed similar accuracy of initial grip force but reduced accuracy of saccadic eye movements specific to older ages of our sample. Force variability was greater in ASD relative to controls, but saccade gain variability (across trials) was not different between groups. Force entropy was reduced in ASD, especially at older ages. We also find reduced grip strength in ASD that was more severe in dominant compared to non-dominant hands. LIMITATIONS Our age-related findings rely on cross-sectional data. Longitudinal studies of sensorimotor behaviors and their associations with ASD symptoms are needed. CONCLUSIONS We identify reduced accuracy of initial motor output in ASD that was specific to the oculomotor system implicating deficient feedforward control that may be mitigated during slower occurring behaviors executed in the periphery. Individuals with ASD showed increased continuous force variability but similar levels of trial-to-trial saccade accuracy variability suggesting that feedback-guided refinement of motor commands is deficient specifically when adjustments occur rapidly during continuous behavior. We also document reduced lateralization of grip strength in ASD implicating atypical hemispheric specialization.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Erin K Bojanek
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | | | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, USA.
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
16
|
Ferreira ML, Loyacono N. Rationale of an Advanced Integrative Approach Applied to Autism Spectrum Disorder: Review, Discussion and Proposal. J Pers Med 2021; 11:jpm11060514. [PMID: 34199906 PMCID: PMC8230111 DOI: 10.3390/jpm11060514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
The rationale of an Advanced Integrative Model and an Advanced Integrative Approach is presented. In the context of Allopathic Medicine, this model introduces the evaluation, clinical exploration, diagnosis, and treatment of concomitant medical problems to the diagnosis of Autism Spectrum Disorder. These may be outside or inside the brain. The concepts of static or chronic, dynamic encephalopathy and condition for Autism Spectrum Disorder are defined in this model, which looks at the response to the treatments of concomitant medical problemsto the diagnosis of Autism Spectrum Disorder. (1) Background: Antecedents and rationale of an Advanced Integrative Model and of an Advanced Integrative Approach are presented; (2) Methods: Concomitant medical problems to the diagnosis of Autism Spectrum Disorder and a discussion of the known responses of their treatments are presented; (3) Results: Groups in Autism are defined and explained, related to the responses of the treatments of the concomitant medical problems to ASD and (4) Conclusions: The analysis in the framework of an Advanced Integrative Model of three groups including the concepts of static encephalopathy; chronic, dynamic encephalopathy and condition for Autism Spectrum Disorder explains findings in the field, previously not understood.
Collapse
Affiliation(s)
| | - Nicolás Loyacono
- TEA-Enfoque Integrador Group, Bahía Blanca 8000, Argentina;
- SANyTA (Sociedad Argentina de Neurodesarrollo y Trastornos Asociados), Migueletes 681, Piso 2, Departamento 2, BUE-Ciudad Autónoma de Buenos Aires C1426, Argentina
- Correspondence: ; Tel.: +54-911-5825-5209
| |
Collapse
|
17
|
Johnson MH, Charman T, Pickles A, Jones EJH. Annual Research Review: Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND)-a systems neuroscience approach to common developmental disorders. J Child Psychol Psychiatry 2021; 62:610-630. [PMID: 33432656 PMCID: PMC8609429 DOI: 10.1111/jcpp.13372] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
We present the Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND) framework, designed to reframe the field of prospective studies of neurodevelopmental disorders. In AMEND we propose conceptual, statistical and methodological approaches to separating markers of early-stage perturbations from later developmental modifiers. We describe the evidence for, and features of, these interacting components before outlining analytical approaches to studying how different profiles of early perturbations and later modifiers interact to produce phenotypic outcomes. We suggest this approach could both advance our theoretical understanding and clinical approach to the emergence of developmental psychopathology in early childhood.
Collapse
Affiliation(s)
- Mark H. Johnson
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Tony Charman
- Department of PsychologyInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Andrew Pickles
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| |
Collapse
|
18
|
Nair A, Jalal R, Liu J, Tsang T, McDonald NM, Jackson L, Ponting C, Jeste SS, Bookheimer SY, Dapretto M. Altered Thalamocortical Connectivity in 6-Week-Old Infants at High Familial Risk for Autism Spectrum Disorder. Cereb Cortex 2021; 31:4191-4205. [PMID: 33866373 DOI: 10.1093/cercor/bhab078] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Converging evidence from neuroimaging studies has revealed altered connectivity in cortical-subcortical networks in youth and adults with autism spectrum disorder (ASD). Comparatively little is known about the development of cortical-subcortical connectivity in infancy, before the emergence of overt ASD symptomatology. Here, we examined early functional and structural connectivity of thalamocortical networks in infants at high familial risk for ASD (HR) and low-risk controls (LR). Resting-state functional connectivity and diffusion tensor imaging data were acquired in 52 6-week-old infants. Functional connectivity was examined between 6 cortical seeds-prefrontal, motor, somatosensory, temporal, parietal, and occipital regions-and bilateral thalamus. We found significant thalamic-prefrontal underconnectivity, as well as thalamic-occipital and thalamic-motor overconnectivity in HR infants, relative to LR infants. Subsequent structural connectivity analyses also revealed atypical white matter integrity in thalamic-occipital tracts in HR infants, compared with LR infants. Notably, aberrant connectivity indices at 6 weeks predicted atypical social development between 9 and 36 months of age, as assessed with eye-tracking and diagnostic measures. These findings indicate that thalamocortical connectivity is disrupted at both the functional and structural level in HR infants as early as 6 weeks of age, providing a possible early marker of risk for ASD.
Collapse
Affiliation(s)
- Aarti Nair
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rhideeta Jalal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Janelle Liu
- Interdepartmental Neuroscience Program, University of California, Los Angeles, CA 90095, USA
| | - Tawny Tsang
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Nicole M McDonald
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Lisa Jackson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Carolyn Ponting
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Shafali S Jeste
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Nayar K, Sealock JM, Maltman N, Bush L, Cook EH, Davis LK, Losh M. Elevated Polygenic Burden for Autism Spectrum Disorder Is Associated With the Broad Autism Phenotype in Mothers of Individuals With Autism Spectrum Disorder. Biol Psychiatry 2021; 89:476-485. [PMID: 33229037 PMCID: PMC7901138 DOI: 10.1016/j.biopsych.2020.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder that encompasses a complex and heterogeneous set of traits. Subclinical traits that mirror the core features of ASD, referred to as the broad autism phenotype (BAP), have been documented repeatedly in unaffected relatives and are believed to reflect underlying genetic liability to ASD. The BAP may help inform the etiology of ASD by allowing the stratification of families into more phenotypically and etiologically homogeneous subgroups. This study explores polygenic scores related to the BAP. METHODS Phenotypic and genotypic information were obtained from 2614 trios from the Simons Simplex Collection. Polygenic scores of ASD (ASD-PGSs) were generated across the sample to determine the shared genetic overlap between the BAP and ASD. Maternal and paternal ASD-PGSs were explored in relation to BAP traits and their child's ASD symptomatology. RESULTS Maternal pragmatic language was related to child's social communicative atypicalities. In fathers, rigid personality was related to increased repetitive behaviors in children. Maternal (but not paternal) ASD-PGSs were related to the pragmatic language and rigid BAP domains. CONCLUSIONS Associations emerged between parent and child phenotypes, with more associations emerging in mothers than in fathers. ASD-PGS associations emerged with BAP in mothers only, highlighting the potential for a female protective factor, and implicating the polygenic etiology of ASD-related phenotypes in the BAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois.
| |
Collapse
|
20
|
Vivanti G, Messinger DS. Theories of Autism and Autism Treatment from the DSM III Through the Present and Beyond: Impact on Research and Practice. J Autism Dev Disord 2021; 51:4309-4320. [PMID: 33491120 DOI: 10.1007/s10803-021-04887-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
The purely descriptive definition of autism introduced by the DSM III in 1980 marked a departure from previous DSM editions, which mixed phenomenological descriptions with psychoanalytic theories of etiology. This provided a blank slate upon which a variety of novel theories emerged to conceptualize autism and its treatment in the following four decades. In this article we examine the contribution of these different theoretical orientations with a focus on their impact on research and practice, areas of overlap and conflict between current theories, and their relevance in the context of the evolving landscape of scientific knowledge and societal views of autism.
Collapse
Affiliation(s)
- Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104, USA.
| | - Daniel S Messinger
- Departments of Psychology, Pediatrics, Music Engineering, Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
21
|
Genetic architecture of reciprocal social behavior in toddlers: Implications for heterogeneity in the early origins of autism spectrum disorder. Dev Psychopathol 2021; 32:1190-1205. [PMID: 33161906 DOI: 10.1017/s0954579420000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment in reciprocal social behavior (RSB), an essential component of early social competence, clinically defines autism spectrum disorder (ASD). However, the behavioral and genetic architecture of RSB in toddlerhood, when ASD first emerges, has not been fully characterized. We analyzed data from a quantitative video-referenced rating of RSB (vrRSB) in two toddler samples: a community-based volunteer research registry (n = 1,563) and an ethnically diverse, longitudinal twin sample ascertained from two state birth registries (n = 714). Variation in RSB was continuously distributed, temporally stable, significantly associated with ASD risk at age 18 months, and only modestly explained by sociodemographic and medical factors (r2 = 9.4%). Five latent RSB factors were identified and corresponded to aspects of social communication or restricted repetitive behaviors, the two core ASD symptom domains. Quantitative genetic analyses indicated substantial heritability for all factors at age 24 months (h2 ≥ .61). Genetic influences strongly overlapped across all factors, with a social motivation factor showing evidence of newly-emerging genetic influences between the ages of 18 and 24 months. RSB constitutes a heritable, trait-like competency whose factorial and genetic structure is generalized across diverse populations, demonstrating its role as an early, enduring dimension of inherited variation in human social behavior. Substantially overlapping RSB domains, measurable when core ASD features arise and consolidate, may serve as markers of specific pathways to autism and anchors to inform determinants of autism's heterogeneity.
Collapse
|
22
|
Sifre R, Berry D, Wolff JJ, Elison JT. Longitudinal change in restricted and repetitive behaviors from 8-36 months. J Neurodev Disord 2021; 13:7. [PMID: 33423667 PMCID: PMC7798225 DOI: 10.1186/s11689-020-09335-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Restricted and repetitive behaviors (RRBs) are core features of autism spectrum disorder (ASD) and one of the earliest behavioral signs of ASD. However, RRBs are also present in typically developing (TD) infants, toddlers, and preschool-aged children. Past work suggests that examining change in these behaviors over time is essential to distinguish between normative manifestations of these behaviors and behaviors that denote risk for a neurodevelopmental disorder. One challenge in examining changes in these behaviors over time is that most measures of RRBs have not established longitudinal measurement invariance. The aims of this study were to (1) establish measurement invariance in the Repetitive Behavior Scales for Early Childhood (RBS-EC), a parent-report questionnaire of RRBs, and (2) model developmental change in RRBs from 8 to 36 months. METHODS We collected RBS-EC responses from parents of TD infants (n = 180) from 8 to 36 months (n = 606 responses, with participants contributing an average of 3-time points). We leverage a novel methodological approach to measurement invariance testing (Bauer, Psychological Models, 22(3), 507-526, 2017), moderated nonlinear factor analysis (MNLFA), to determine whether the RBS-EC was invariant across age and sex. We then generated adjusted factor score estimates for each subscale of the RBS-EC (repetitive motor, self-directed, and higher-order behaviors), and used linear mixed effects models to estimate between- and within-person changes in the RBS-EC over time. RESULTS The RBS-EC showed some non-invariance as a function of age. We were able to adjust for this non-invariance in order to more accurately model changes in the RBS-EC over time. Repetitive motor and self-directed behaviors showed a linear decline from 8 to 36 months, while higher-order behaviors showed a quadratic trajectory such that they began to decline later in development at around 18 months. Using adjusted factor scores as opposed to unadjusted raw mean scores provided a number of benefits, including increased within-person variability and precision. CONCLUSIONS The RBS-EC is sensitive enough to measure the presence of RRBs in a TD sample, as well as their decline with age. Using factor score estimates of each subscale adjusted for non-invariance allowed us to more precisely estimate change in these behaviors over time.
Collapse
Affiliation(s)
- Robin Sifre
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Daniel Berry
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN, 55455, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, 51 East River Parkway, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Minio-Paluello I, Porciello G, Pascual-Leone A, Baron-Cohen S. Face individual identity recognition: a potential endophenotype in autism. Mol Autism 2020; 11:81. [PMID: 33081830 PMCID: PMC7576748 DOI: 10.1186/s13229-020-00371-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Face individual identity recognition skill is heritable and independent of intellectual ability. Difficulties in face individual identity recognition are present in autistic individuals and their family members and are possibly linked to oxytocin polymorphisms in families with an autistic child. While it is reported that developmental prosopagnosia (i.e., impaired face identity recognition) occurs in 2-3% of the general population, no prosopagnosia prevalence estimate is available for autism. Furthermore, an autism within-group approach has not been reported towards characterizing impaired face memory and to investigate its possible links to social and communication difficulties. METHODS The present study estimated the prevalence of prosopagnosia in 80 autistic adults with no intellectual disability, investigated its cognitive characteristics and links to autism symptoms' severity, personality traits, and mental state understanding from the eye region by using standardized tests and questionnaires. RESULTS More than one third of autistic participants showed prosopagnosia. Their face memory skill was not associated with their symptom's severity, empathy, alexithymia, or general intelligence. Face identity recognition was instead linked to mental state recognition from the eye region only in autistic individuals who had prosopagnosia, and this relationship did not depend on participants' basic face perception skills. Importantly, we found that autistic participants were not aware of their face memory skills. LIMITATIONS We did not test an epidemiological sample, and additional work is necessary to establish whether these results generalize to the entire autism spectrum. CONCLUSIONS Impaired face individual identity recognition meets the criteria to be a potential endophenotype in autism. In the future, testing for face memory could be used to stratify autistic individuals into genetically meaningful subgroups and be translatable to autism animal models.
Collapse
Affiliation(s)
- Ilaria Minio-Paluello
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Rome, Italy.
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Giuseppina Porciello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Libero LE, Schaer M, Li DD, Amaral DG, Nordahl CW. A Longitudinal Study of Local Gyrification Index in Young Boys With Autism Spectrum Disorder. Cereb Cortex 2020; 29:2575-2587. [PMID: 29850803 DOI: 10.1093/cercor/bhy126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Local gyrification index (LGI), a metric quantifying cortical folding, was evaluated in 105 boys with autism spectrum disorder (ASD) and 49 typically developing (TD) boys at 3 and 5 years-of-age. At 3 years-of-age, boys with ASD had reduced gyrification in the fusiform gyrus compared with TD boys. A longitudinal evaluation from 3 to 5 years revealed that while TD boys had stable/decreasing LGI, boys with ASD had increasing LGI in right inferior temporal gyrus, right inferior frontal gyrus, right inferior parietal lobule, and stable LGI in left lingual gyrus. LGI was also examined in a previously defined neurophenotype of boys with ASD and disproportionate megalencephaly. At 3 years-of-age, this subgroup exhibited increased LGI in right dorsomedial prefrontal cortex, cingulate cortex, and paracentral cortex, and left cingulate cortex and superior frontal gyrus relative to TD boys and increased LGI in right paracentral lobule and parahippocampal gyrus, and left precentral gyrus compared with boys with ASD and normal brain size. In summary, this study identified alterations in the pattern and development of LGI during early childhood in ASD. Distinct patterns of alterations in subgroups of boys with ASD suggests that multiple neurophenotypes exist and boys with ASD and disproportionate megalencephaly should be evaluated separately.
Collapse
Affiliation(s)
- Lauren E Libero
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - Marie Schaer
- Office Medico-Pedagogique, Universite de Geneve, Rue David Dafour 1, Geneva 8, Switzerland
| | - Deana D Li
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - David G Amaral
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| | - Christine Wu Nordahl
- UC Davis MIND Institute and the UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, 2230 Stockton Blvd., Sacramento, CA, USA
| |
Collapse
|
25
|
Lasch C, Wolff JJ, Elison JT. Examining criterion-oriented validity of the Repetitive Behavior Scales for Early Childhood (RBS-EC) and the Video-Referenced Rating of Reciprocal Social Behavior (vrRSB). Dev Psychopathol 2020; 32:779-789. [PMID: 31455435 PMCID: PMC7047542 DOI: 10.1017/s0954579419001159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improved characterization of quantitative traits and dimensionally distributed complex behaviors during toddlerhood may improve early identification of autism spectrum disorder and related neurodevelopmental disorders. Parents of 205 community-ascertained toddlers (age: mean = 20.2, SD = 2.6 months) completed the Repetitive Behavior Scales for Early Childhood (RBS-EC) and the Video-Referenced Rating of Reciprocal Social Behavior (vrRSB), with longitudinal follow-up of behavioral assessments and/or another round of parent-report questionnaires. Criterion validity was examined both concurrently and longitudinally using the Infant Toddler Social Emotional Assessment (ITSEA) as a criterion anchor. Reciprocal social behavior as measured by the vrRSB was significantly associated with social competence as measured by the ITSEA, longitudinally and concurrently. Reciprocal social behavior was not associated with the externalizing subscale on the ITSEA, providing evidence of discriminant validity. Higher-order repetitive behaviors (restricted interests; rituals and routines) as measured by RBS-EC subscales were associated with the dysregulation and internalizing subscales of the ITSEA, longitudinally and concurrently. All RBS-EC subscales (excepting repetitive motor) were associated concurrently and longitudinally with the dysregulation subscale of the ITSEA. We report evidence of criterion-oriented and discriminant validity for the constructs/domains captured by the RBS-EC and vrRSB. These instruments may be particularly useful in characterizing dimensional variability across the typical-to-atypical continuum.
Collapse
Affiliation(s)
- Carolyn Lasch
- Institute of Child Development, University of Minnesota
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota
- Department of Pediatrics, University of Minnesota
| |
Collapse
|
26
|
Girault JB, Swanson MR, Meera SS, Grzadzinski RL, Shen MD, Burrows CA, Wolff JJ, Pandey J, John TS, Estes A, Zwaigenbaum L, Botteron KN, Hazlett HC, Dager SR, Schultz RT, Constantino JN, Piven J. Quantitative trait variation in ASD probands and toddler sibling outcomes at 24 months. J Neurodev Disord 2020; 12:5. [PMID: 32024459 PMCID: PMC7003330 DOI: 10.1186/s11689-020-9308-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Background Younger siblings of children with autism spectrum disorder (ASD) are at increased likelihood of receiving an ASD diagnosis and exhibiting other developmental concerns. It is unknown how quantitative variation in ASD traits and broader developmental domains in older siblings with ASD (probands) may inform outcomes in their younger siblings. Methods Participants included 385 pairs of toddler siblings and probands from the Infant Brain Imaging Study. ASD probands (mean age 5.5 years, range 1.7 to 15.5 years) were phenotyped using the Autism Diagnostic Interview-Revised (ADI-R), the Social Communication Questionnaire (SCQ), and the Vineland Adaptive Behavior Scales, Second Edition (VABS-II). Siblings were assessed using the ADI-R, VABS-II, Mullen Scales of Early Learning (MSEL), and Autism Diagnostic Observation Schedule (ADOS) and received a clinical best estimate diagnosis at 24 months using DSM-IV-TR criteria (n = 89 concordant for ASD; n = 296 discordant). We addressed two aims: (1) to determine whether proband characteristics are predictive of recurrence in siblings and (2) to assess associations between proband traits and sibling dimensional outcomes at 24 months. Results Regarding recurrence risk, proband SCQ scores were found to significantly predict sibling 24-month diagnostic outcome (OR for a 1-point increase in SCQ = 1.06; 95% CI = 1.01, 1.12). Regarding quantitative trait associations, we found no significant correlations in ASD traits among proband-sibling pairs. However, quantitative variation in proband adaptive behavior, communication, and expressive and receptive language was significantly associated with sibling outcomes in the same domains; proband scores explained 9–18% of the variation in cognition and behavior in siblings with ASD. Receptive language was particularly strongly associated in concordant pairs (ICC = 0.50, p < 0.001). Conclusions Proband ASD symptomology, indexed by the SCQ, is a predictor of familial ASD recurrence risk. While quantitative variation in social communication and restricted and repetitive behavior were not associated among sibling pairs, standardized ratings of proband language and communication explained significant variation in the same domains in the sibling at 24 months, especially among toddlers with an ASD diagnosis. These data suggest that proband characteristics can alert clinicians to areas of developmental concern for young children with familial risk for ASD.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA.
| | - Meghan R Swanson
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Shoba S Meera
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA.,National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Rebecca L Grzadzinski
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tanya St John
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA
| | - Annette Estes
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA
| | | | - Kelly N Botteron
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John N Constantino
- Division of Child Psychiatry, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Campus Box 3376, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
27
|
Hawks ZW, Constantino JN. Neuropsychiatric "Comorbidity" as Causal Influence in Autism. J Am Acad Child Adolesc Psychiatry 2020; 59:229-235. [PMID: 31344460 PMCID: PMC9765409 DOI: 10.1016/j.jaac.2019.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Behavioral comorbidity is the rule rather than the exception in autism spectrum disorder (ASD), and the co-occurrence of autistic traits with subclinical manifestations of other psychiatric syndromes (eg, anxiety, developmental coordination disorder) extends to the general population, where there is strong evidence for overlap in the respective genetic causes. An ASD "comorbidity" can have several fundamentally distinct causal origins: it can arise due to shared genetic risk between ASD and non-ASD phenotypes (eg, ASD and microcephaly in the context of the MECP2 mutation), as a "secondary symptom" of ASD when engendered by the same causal influence (eg, epilepsy in channelopathies associated with ASD), due to chance co-occurrence of ASD with a causally independent liability (eg, ASD and diabetes), or as the late manifestation of an independent causal influence on ASD (eg, attention-deficit/hyperactivity disorder). Here, we review evidence for the latter, that is, the role of nonspecific causal influences on the development of ASD itself. The notion that nonspecific insults to neural development, either inherited or acquired, might augment the impact of ASD-specific genetic susceptibilities in contributing to its cause has not been appreciated in the literature on comorbidity, and has significant implications for both personalized intervention and future research. Prior biomarker studies of ASD have typically not accounted for variation in such traits. The statistical power of future studies, particularly in autism genetics and neuroimaging, can be enhanced by more comprehensive attention to the measurement of comorbid behavioral traits that index causal influences on the disorder, among not only cases but (importantly) controls.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Canitano R, Bozzi Y, Dhossche D. Editorial: Autism Spectrum Disorders: Developmental Trajectories, Neurobiological Basis, Treatment Update, Volume 2. Front Psychiatry 2020; 11:589. [PMID: 32670114 PMCID: PMC7326940 DOI: 10.3389/fpsyt.2020.00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Roberto Canitano
- Child Neuropsychiatry Unit, Siena University Hospital, Siena, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Dirk Dhossche
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
29
|
Hawks Z, Constantino JN, Weichselbaum C, Marrus N. Accelerating Motor Skill Acquisition for Bicycle Riding in Children with ASD: A Pilot Study. J Autism Dev Disord 2020; 50:342-348. [PMID: 31535342 PMCID: PMC6949415 DOI: 10.1007/s10803-019-04224-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Motor impairment is common in autism spectrum disorder (ASD) and, as such, a potential target for interventions to improve adaptive functioning. This study investigated motor skill acquisition in children with ASD (n = 15, 12 males; ages 7-16 years) during iCan Bike Camp, a 1-week, community-based intervention (5 × 75-min sessions) to teach independent bicycle riding. After completing the camp's task-oriented, individualized training program, all participants demonstrated motor skill acquisition on the bicycle, and nine participants rode independently at least 70 feet. Exploratory analyses showed that motor coordination and social communication correlated with rates of skill acquisition. These findings indicate the feasibility and efficacy of brief, community-based motor interventions to teach bicycle riding-an important developmental skill supporting adaptive functioning-to children with ASD.
Collapse
Affiliation(s)
- Zoë Hawks
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, 63105, USA
| | - John N Constantino
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, 63110, USA
| | | | - Natasha Marrus
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Schmitt LM, Bojanek E, White SP, Ragozzino ME, Cook EH, Sweeney JA, Mosconi MW. Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD). Mol Autism 2019; 10:47. [PMID: 31857874 PMCID: PMC6909569 DOI: 10.1186/s13229-019-0296-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Diminished cognitive control, including reduced behavioral flexibility and behavioral response inhibition, has been repeatedly documented in autism spectrum disorder (ASD). We evaluated behavioral flexibility and response inhibition in probands and their parents using a family trio design to determine the extent to which these cognitive control impairments represent familial traits associated with ASD. Methods We examined 66 individuals with ASD (probands), 135 unaffected biological parents, and 76 typically developing controls. Participants completed a probabilistic reversal learning task (PRL) and a stop-signal task (SST) to assess behavioral flexibility and response inhibition respectively. Rates of PRL and SST errors were examined across groups, within families, and in relation to clinical and subclinical traits of ASD. Based on prior findings that subclinical broader autism phenotypic (BAP) traits may co-segregate within families and reflect heritable risk factors, we also examined whether cognitive control deficits were more prominent in families in which parents showed BAP features (BAP+). Results Probands and parents each showed increased rates of PRL and SST errors relative to controls. Error rates across tasks were not related. SST error rates inter-correlated among probands and their parents. PRL errors were more severe in BAP+ parents and their children relative to BAP- parents and their children. For probands of BAP+ parents, PRL and SST error rates were associated with more severe social-communication abnormalities and repetitive behaviors, respectively. Conclusion Reduced behavioral flexibility and response inhibition are present among probands and their unaffected parents, but represent unique familial deficits associated with ASD that track with separate clinical issues. Specifically, behavioral response inhibition impairments are familial in ASD and manifest independently from parental subclinical features. In contrast, behavioral flexibility deficits are selectively present in families with BAP characteristics, suggesting they co-segregate in families with parental subclinical social, communication, and rigid personality traits. Together, these findings provide evidence that behavioral flexibility and response inhibition impairments track differentially with ASD risk mechanisms and related behavioral traits.
Collapse
Affiliation(s)
- Lauren M Schmitt
- 1Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229 USA.,2Department of Psychiatry, University of Cincinnati College of Medicine, 260 Stetson St, Cincinnati, OH 45219 USA
| | - Erin Bojanek
- 3Schiefelbusch Institute for Life Span Studies/Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045 USA.,4Kansas Center for Autism Research and Training, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Stormi P White
- 5Emory Department of Pediatrics, Marcus Autism Center, 1920 Briarcliff Rd NE, Atlanta, GA 30329 USA
| | - Michael E Ragozzino
- 6Department of Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607 USA
| | - Edwin H Cook
- 7Institute for Juvenile Research, University of Illinois at Chicago, 1747 W Roosevelt Rd, Chicago, IL 60608 USA
| | - John A Sweeney
- 2Department of Psychiatry, University of Cincinnati College of Medicine, 260 Stetson St, Cincinnati, OH 45219 USA
| | - Matthew W Mosconi
- 3Schiefelbusch Institute for Life Span Studies/Clinical Child Psychology Program, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045 USA.,4Kansas Center for Autism Research and Training, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045 USA
| |
Collapse
|
31
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
32
|
Behavioral predictors of autism recurrence are genetically independent and influence social reciprocity: evidence that polygenic ASD risk is mediated by separable elements of developmental liability. Transl Psychiatry 2019; 9:202. [PMID: 31439834 PMCID: PMC6706410 DOI: 10.1038/s41398-019-0545-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 01/12/2023] Open
Abstract
The preponderance of causal influence on total population attributable risk for autism is polygenic in nature, but it is not known how such liability engenders the development of the syndrome. In 348 epidemiologically ascertained toddler twins, we explored associations between autistic traits and three robust, highly heritable predictors of familial autism recurrence: variation in attention, motor coordination, and parental autistic trait burden. We observed that these predictors-despite collectively accounting for over one third of variance in clinical recurrence-are genetically independent in early childhood, and jointly account for a comparable share of inherited influence on early reciprocal social behavior in the general population. Thus, combinations of what are otherwise discrete, inherited behavioral liabilities-some not specific to autism-appear to jointly mediate common genetic risk for autism. Linking genetic variants and neural signatures to these independent traits prior to the onset of the development of autism will enhance understanding of mechanisms of causation in familial autistic syndromes. Moreover, ongoing biomarker discovery efforts will benefit from controlling for the effects of these common liabilities, which aggregate in individuals with autism but are also continuously distributed in "controls". Finally, early inherited liabilities that participate in the early ontogeny of autistic syndromes represent parsimonious intervention targets for polygenic forms of the condition, and represent candidate trans-diagnostic endophenotypes of potential relevance to a diversity of neuropsychiatric syndromes.
Collapse
|
33
|
Baghdadli A, Miot S, Rattaz C, Akbaraly T, Geoffray MM, Michelon C, Loubersac J, Traver S, Mortamais M, Sonié S, Pottelette J, Robel L, Speranza M, Vesperini S, Maffre T, Falissard B, Picot MC. Investigating the natural history and prognostic factors of ASD in children: the multicEntric Longitudinal study of childrEN with ASD - the ELENA study protocol. BMJ Open 2019; 9:e026286. [PMID: 31221874 PMCID: PMC6588969 DOI: 10.1136/bmjopen-2018-026286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION There is global concern about the increasing prevalence of autism spectrum disorders (ASDs), which are early-onset and long-lasting disorders. Although ASDs are considered to comprise a unique syndrome, their clinical presentation and outcome vary widely. Large-scale and long-term cohort studies of well-phenotyped samples are needed to better understand the course of ASDs and their determinants. The primary objective of the multicEntric Longitudinal study of childrEN with ASD (ELENA) study is to understand the natural history of ASD in children and identify the risk and prognostic factors that affect their health and development. METHODS AND ANALYSIS This is a multicentric, longitudinal, prospective, observational cohort in which 1000 children with ASD diagnosed between 2 and 16 years of age will be recruited by 2020 and followed over 6 years. The baseline follow-up starts with the clinical examination to establish the ASD diagnosis. A battery of clinical tools consisting of the Autism Diagnostic Observation Schedule, the revised version of the Autism Diagnostic Interview, measures of intellectual functioning, as well as large-scale behavioural and developmental measurements will allow us to study the heterogeneity of the clinical presentation of ASD subtypes. Subsequent follow-up at 18 months and at 3, 4.5 and 6 years after the baseline examination will allow us to explore the developmental trajectories and variables associated with the severity of ASD. In addition to the children's clinical and developmental examinations, parents are invited to complete self-reported questionnaires concerning perinatal and early postnatal history, congenital anomalies, genetic factors, lifestyle factors, medical and psychiatric comorbidities, and the socioeconomic environment. As of 1 November 2018, a total of 766 participants have been included. ETHICS AND DISSEMINATION Ethical approval was obtained through the Marseille Mediterranean Ethics Committee (ID RCB: 2014-A01423-44), France. We aim to disseminate the findings through national and international conferences, international peer-reviewed journals, and social media. TRIAL REGISTRATION NUMBER NCT02625116; Pre-results.
Collapse
Affiliation(s)
- Amaria Baghdadli
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
- U1178, INSERM, Centre de recherche en Epidemiologie et Sante des Populations, Villejuif, France
| | - Stéphanie Miot
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
- U1178, INSERM, Centre de recherche en Epidemiologie et Sante des Populations, Villejuif, France
| | - Cécile Rattaz
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
| | - Tasnime Akbaraly
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
- U1198, MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marie-Maude Geoffray
- Department of Child and Adolescent Psychiatry, Centre Hospitalier le Vinatier, Bron, France
| | - Cécile Michelon
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
| | - Julie Loubersac
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
| | - Sabine Traver
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
| | - Marion Mortamais
- Department of Psychiatry and Autism Resources Center, Montpellier University and University Hospital (CHU) of Montpellier, Montpellier, France
| | - Sandrine Sonié
- Centre de Ressources autisme Rhône-Alpes, CH Le Vinatier, Bron, France
- UMR 5292, Centre de Recherche en Neurosciences de Lyon (CNRS), Lyon, France
| | - Julien Pottelette
- Service de Psychiatrie de L'Enfant et de l'Adolescent, Pole Psychiatrie, Santé Mentale et Addictologie, Centre Ressources Autisme, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurence Robel
- Service de Pédopsychiatrie, Hôpital Necker Enfants Malades, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Mario Speranza
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Centre Hospitalier de Versailles, Le Chesnay, France
- EA 4047 HANDIReSP, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Stéphanie Vesperini
- Child and Adolescent Psychiatry Department, University Hospital CHU-Lenval, Nice, France
| | - Thierry Maffre
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme Midi-Pyrénées, CHU de Toulouse, Toulouse, France
| | - Bruno Falissard
- U1178, INSERM, Centre de recherche en Epidemiologie et Sante des Populations, Villejuif, France
| | - Marie-Christine Picot
- Department of Medical Information, University Research and Hospital Center (CHU) of Montpellier, Montpellier, France
| |
Collapse
|
34
|
Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis. Front Psychiatry 2019; 10:416. [PMID: 31275178 PMCID: PMC6591651 DOI: 10.3389/fpsyt.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Autism is a genetically complex neurobehavioral disorder with a population prevalence of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, are consistently reported, and rodent models of cerebellar dysfunction exhibit features analogous to human autism. We previously analyzed the regulation and expression of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching morphogenesis and is strongly expressed in Purkinje cells. We previously showed that mouse Spry3 is not expressed in cerebellar vermis lobules VI-VII and X, regions which exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules have relatively high expression of p75NTR, which encodes a neurotrophin receptor implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression in these lobules could interact with TrkB and p75NTR signaling pathways resulting in Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-linked regulatory sequences upstream of SPRY3, which are polymorphic in the general population. We suggest that an OREG-annotated region on chromosome Yq12 ∼60 kb from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite repeat, or alterations in chromatin structure in this region due to trans-acting factors, could affect the proposed silencing function, leading to reactivation and inappropriate expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute to the male bias in autism prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Schmitt LM, Shaffer RC, Hessl D, Erickson C. Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sci 2019; 9:E15. [PMID: 30654486 PMCID: PMC6356760 DOI: 10.3390/brainsci9010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022] Open
Abstract
Executive function (EF) supports goal-directed behavior and includes key aspects such as working memory, inhibitory control, cognitive flexibility, attention, processing speed, and planning. Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and is phenotypically characterized by EF deficits beyond what is expected given general cognitive impairments. Yet, a systematic review of behavioral studies using performance-based measures is needed to provide a summary of EF deficits across domains in males and females with FXS, discuss clinical and biological correlates of these EF deficits, identify critical limitations in available research, and offer suggestions for future studies in this area. Ultimately, this review aims to advance our understanding of the underlying pathophysiological mechanisms contributing to EF in FXS and to inform the development of outcome measures of EF and identification of new treatment targets in FXS.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - David Hessl
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA.
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
36
|
Qiu S, Li Y, Bai Y, Shi J, Cui H, Gu Y, Ren Y, Zhao Q, Zhang K, Lu M, Wang Y, Li Y, Zhong W, Zhu X, Liu Y, Cheng Y, Qiao Y, Liu Y. SHANK1 polymorphisms and SNP-SNP interactions among SHANK family: A possible cue for recognition to autism spectrum disorder in infant age. Autism Res 2019; 12:375-383. [PMID: 30629339 DOI: 10.1002/aur.2065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023]
Abstract
Autism spectrum disorder (ASD) is a serious lifelong neurodevelopmental disorder. ASD is diagnosed for children at the age of two. ASD diagnosis, as early as possible, lays the foundation for treatment and much better prognosis. Notably, gene-based test is an inherent method to recognize the potential infants with ASD before the age of two. To investigate whether SHANK family contributes to ASD prediction, on the basis of our previous studies of SHANK2 and SHANK3, we further investigated associations between SHANK1 polymorphisms and ASD risk as well as SNP-SNP interactions among SHANK family. We enrolled 470 subjects (229 cases and 241 healthy controls) who were northeast Chinese Han. Four tag SNPs (rs73042561, rs3745521, rs4801846, and rs12461427) of SHANK1 were selected and genotyped. We used the SNPStats online analysis program to assess the associations between the four SNPs and ASD risk. The SNP-SNP interactions among SHANK family were analyzed using multifactor dimensionality reduction method. We found that the four SHANK1 SNPs were not associated with ASD risk in northeast Chinese Han population. There existed a strong synergistic interaction between rs11236697 [SHANK2] and rs74336682 [SHANK2], and moderate synergistic interactions (rs74336682 [SHANK2]-rs73042561 [SHANK1], rs11236697 [SHANK2]-rs77716438 [SHANK2], and rs11236697 [SHANK2]-rs75357229 [SHANK2]). These SHANK1 variants may not affect the susceptibility to ASD in Chinese Han population. SNP-SNP interactions in SHANK family may confer ASD risk. Autism Res 2019, 12: 375-383 © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: ASD is a serious lifelong neurodevelopmental disorder with strong genetic components. We investigated associations between SHANK1 polymorphisms and ASD risk as well as SNP-SNP interactions among SHANK family. Our results indicated that there exists no association between SHANK1 SNPs and ASD, and SNP-SNP interactions in SHANK family may confer ASD risk in the Northeast Han Chinese population. Future studies are needed to test more SHANK family SNPs in a large sample to demonstrate the associations.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ye Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Heran Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kaixin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Meihan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yihan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Weijing Zhong
- Chunguang Rehabilitation Hospital, Changchun, Jilin, China
| | - Xiaojuan Zhu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Yunkai Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
Beauchaine TP, Constantino JN, Hayden EP. Psychiatry and developmental psychopathology: Unifying themes and future directions. Compr Psychiatry 2018; 87:143-152. [PMID: 30415196 PMCID: PMC6296473 DOI: 10.1016/j.comppsych.2018.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the past 35 years, developmental psychopathology has grown into a flourishing discipline that shares a scientific agenda with contemporary psychiatry. In this editorial, which introduces the special issue, we describe the history of developmental psychopathology, including core principles that bridge allied disciplines. These include (1) emphasis on interdisciplinary research, (2) elucidation of multicausal pathways to seemingly single disorders (phenocopies), (3) description of divergent multifinal outcomes from common etiological start points (pathoplasticity), and (4) research conducted across multiple levels of analysis spanning genes to environments. Next, we discuss neurodevelopmental models of psychopathology, and provide selected examples. We emphasize differential neuromaturation of subcortical and cortical neural networks and connectivity, and how both acute and protracted environmental insults can compromise neural structure and function. To date, developmental psychopathology has placed greater emphasis than psychiatry on neuromaturational models of mental illness. However, this gap is closing rapidly as advances in technology render etiopathophysiologies of psychopathology more interrogable. We end with suggestions for future interdisciplinary research, including the need to evaluate measurement invariance across development, and to construct more valid assessment methods where indicated.
Collapse
Affiliation(s)
- Theodore P Beauchaine
- Department of Psychology, Nisonger Center for Excellence in Developmental Disabilities, The Ohio State University, United States of America.
| | - John N Constantino
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, United States of America
| | - Elizabeth P Hayden
- Department of Psychology, Brain and Mind Institute, Western University, Canada
| |
Collapse
|
38
|
Nayar K, Gordon PC, Martin GE, Hogan AL, La Valle C, McKinney W, Lee M, Norton ES, Losh M. Links between looking and speaking in autism and first-degree relatives: insights into the expression of genetic liability to autism. Mol Autism 2018; 9:51. [PMID: 30338047 PMCID: PMC6180594 DOI: 10.1186/s13229-018-0233-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background Rapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions. Deficits in RAN have been repeatedly observed in autism spectrum disorder (ASD), and also among first-degree relatives, suggesting that RAN may tap features that index genetic liability to ASD. This study used eye tracking to examine neurocognitive mechanisms related to RAN performance in ASD and first-degree relatives, and investigated links to broader language and clinical-behavioral features. Methods Fifty-one individuals with ASD, biological parents of individuals with ASD (n = 133), and respective control groups (n = 45 ASD controls; 58 parent controls) completed RAN on an eye tracker. Variables included naming time, frequency of errors, and measures of eye movement during RAN (eye-voice span, number of fixations and refixations). Results Both the ASD and parent-ASD groups showed slower naming times, more errors, and atypical eye-movement patterns (e.g., increased fixations and refixations), relative to controls, with differences persisting after accounting for spousal resemblance. RAN ability and associated eye movement patterns were correlated with increased social-communicative impairment and increased repetitive behaviors in ASD. Longer RAN times and greater refixations in the parent-ASD group were driven by the subgroup who showed clinical-behavioral features of the broad autism phenotype (BAP). Finally, parent-child dyad correlations revealed associations between naming time and refixations in parents with the BAP and increased repetitive behaviors in their child with ASD. Conclusions Differences in RAN performance and associated eye movement patterns detected in ASD and in parents, and links to broader social-communicative abilities, clinical features, and parent-child associations, suggest that RAN-related abilities might constitute genetically meaningful neurocognitive markers that can help bridge connections between underlying biology and ASD symptomatology.
Collapse
Affiliation(s)
| | - Peter C Gordon
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Abigail L Hogan
- Northwestern University, Evanston, USA
- University of South Carolina, Columbia, USA
| | - Chelsea La Valle
- Northwestern University, Evanston, USA
- Boston University, Boston, USA
| | - Walker McKinney
- Northwestern University, Evanston, USA
- University of Kansas, Lawrence, USA
| | | | | | | |
Collapse
|