1
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
2
|
Broustas CG, Mukherjee S, Pannkuk EL, Laiakis EC, Fornace AJ, Amundson SA. Effect of the p38 Mitogen-Activated Protein Kinase Signaling Cascade on Radiation Biodosimetry. Radiat Res 2022; 198:18-27. [PMID: 35353886 DOI: 10.1667/rade-21-00240.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Radiation biodosimetry based on transcriptomic analysis of peripheral blood is a valuable tool to detect radiation exposure after a radiological/nuclear event and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation or immune suppression, can potentially obscure the predictive power of the method. Members of the p38 mitogen-activated protein kinase (MAPK) family respond to pro-inflammatory signals and environmental stresses, whereas genetic ablation of the p38 signaling pathway in mice leads to reduced susceptibility to collagen-induced arthritis and experimental autoimmune encephalomyelitis that model human rheumatoid arthritis and multiple sclerosis, respectively. p38 is normally regulated by the MAP3K-MAP2K pathway in mammalian cells. However, in T cells there is an alternative pathway for p38 activation that plays an important role in antigen-receptor-activated T cells and participates in immune and inflammatory responses. To examine the role of p38 in response to radiation, we used two mouse models expressing either a p38α dominant negative (DN) mutation that globally suppresses p38 signaling or a p38αβ double-knock-in (DKI) mutant, which inhibits specifically T-cell receptor activation. We exposed p38 wild-type (p38WT) and mutant male mice to 7 Gy X rays and 24 h later whole blood was isolated subjected to whole-genome microarray and gene ontology analysis. Irradiation of p38WT mice led to a significant overrepresentation of pathways associated with morbidity and mortality, as well as organismal cell death. In contrast, these pathways were significantly underrepresented in p38DN and p38DKI mutant mice, suggesting that p38 attenuation may protect blood cells from the deleterious effects of radiation. Furthermore, radiation exposure in p38 mutant mice resulted in an enrichment of phagocytosis-related pathways, suggesting a role for p38 signaling in restricting phagocytosis of apoptotic cells after irradiation. Finally, despite the significant changes in gene expression, it was still feasible to identify a panel of genes that could accurately distinguish between irradiated and control mice, irrespective of p38 status.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Sanjay Mukherjee
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Song Y, Okazaki R, Yoshida Y. Senescence-associated secretory phenotype and activation of NF-κB in splenocytes of old mice exposed to irradiation at a young age. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104124. [PMID: 33974965 DOI: 10.1016/j.dci.2021.104124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
DNA damage-induced cellular senescence is involved in aging. We reported previously that p53+/- mice subjected to irradiation at a young age exhibited an increased number of splenic lymphocytes in the S and G2/M phases. However, the detailed nature of splenic disorders in these mice is not fully understood. In this study, we investigated the effects on molecules in splenocytes, especially on senescence factors after early exposure of mice to radiation. Mice, 8- (young) or 17-, 30-, and 41-week-old (old) p53+/- were subjected to 3-Gy whole-body irradiation. Splenocytes were prepared at 56 weeks of age. Immunoblot showed that irradiation at 8 weeks enhanced the expression and phosphorylation of p53, cyclin-dependent kinase 2, cell division cycle 6, and the MDM2 proto-oncogene in splenocytes. However, these molecules were not affected by irradiation at 17, 30, and 41 weeks of age. Similarly, irradiation at 8, but not 17, 30, or 41 weeks, induced phosphorylation of IKKα, NF-κB inhibitor alpha, and p65. Electrophoretic mobility shift assay demonstrated that active forms of NF-κB were increased. In addition, enzyme-linked immunosorbent assay showed that lipopolysaccharide-induced IL-6 production was enhanced in splenocytes of mice irradiated at 8 weeks. ATP levels were increased in splenocytes of mice irradiated at 8, but not 17, 30, or 41 weeks. CDK2 expression and p65 phosphorylation were induced in CD45R/B220+ cells from irradiated mice. Overall, irradiation induced a NF-κB-related immune response in the spleen with an increase in senescence marker proteins, such as CDKs and IL-6, which are known to be typical senescence-associated secretory phenotype factors related to stresses, such as DNA damage.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, No. 169 Tian Shan Street, Shijiazhuang, 050035, China
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences Group for Environmental Evaluation, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
4
|
Hayashi T, Furukawa K, Morishita Y, Hayashi I, Kato N, Yoshida K, Kusunoki Y, Kyoizumi S, Ohishi W. Intracellular reactive oxygen species level in blood cells of atomic bomb survivors is increased due to aging and radiation exposure. Free Radic Biol Med 2021; 171:126-134. [PMID: 33992676 DOI: 10.1016/j.freeradbiomed.2021.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Although reactive oxygen species (ROS) play important roles in immune responses, excessive ROS production and accumulation might enhance the risk of inflammation-related diseases. Moreover, impaired immune function and the acceleration of pre-clinically persistent inflammation due to aging and radiation exposure have been observed in atomic bomb (A-bomb) survivors more than 60 years post-exposure. Meanwhile, the effects of aging and radiation exposure on ROS production in immune cells have not been characterized. This study investigated the relationship between intracellular ROS (H2O2 and O2•-) levels in blood cells or T cell subsets and serum iron, ferritin, and C-reactive protein (CRP) levels, as well as how these variables are affected by age and radiation exposure in A-bomb survivors. We examined 2495 Hiroshima A-bomb survivors. Multiple linear regression models adjusted for confounding factors indicated that intracellular O2•- levels in monocytes, granulocytes, and lymphocytes, and particularly in memory CD8+ T cells, including effector memory and terminally differentiated effector memory CD8+ T cells, increased with radiation dose. Additionally, serum iron, ferritin, and CRP levels affected intracellular ROS levels in specific blood cell types and T cell subsets. Serum CRP levels increased significantly with increasing age and radiation dose. Finally, when divided into three groups according to serum CRP levels, dose-dependent increases in the intracellular O2•- levels in blood cells and central memory and effector memory CD8+ T cells were most prominently observed in the high-CRP group. These results suggest that an increase in the levels of certain intracellular ROS, particularly after radiation exposure, might be linked to enhanced inflammatory status, including elevated serum CRP levels and reduced serum iron levels. This study reveals that aging and radiation exposure increase oxidative stress in blood cells, which is involved in impaired immune function and accelerated pre-clinically persistent inflammation in radiation-exposed individuals.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan.
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Kurume, 830-0011, Japan
| | - Yukari Morishita
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Ikue Hayashi
- Central Research Laboratory, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Naohiro Kato
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| |
Collapse
|
5
|
Sun L, Inaba Y, Sogo Y, Ito A, Bekal M, Chida K, Moritake T. Total body irradiation causes a chronic decrease in antioxidant levels. Sci Rep 2021; 11:6716. [PMID: 33762608 PMCID: PMC7990969 DOI: 10.1038/s41598-021-86187-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 01/06/2023] Open
Abstract
Ionizing radiation exposure may not only cause acute radiation syndrome, but also an increased risk of late effects. It has been hypothesized that induction of chronic oxidative stress mediates the late effects of ionizing radiation. However, only a few reports have analyzed changes in long-term antioxidant capacity after irradiation in vivo. Our previous study demonstrated changes in whole-blood antioxidant capacity and red blood cell (RBC) glutathione levels within 50 days after total body irradiation (TBI). In this study, seven-week-old, male, C57BL/6J mice exposed to total body irradiation by X-ray and changes in whole-blood antioxidant capacity and RBC glutathione levels at ≥ 100 days after TBI were investigated. Whole-blood antioxidant capacity was chronically decreased in the 5-Gy group. The RBC reduced glutathione (GSH) level and the GSH/oxidative glutathione (GSSG) ratio were chronically decreased after ≥ 1 Gy of TBI. Interestingly, the complete blood counts (CBC) changed less with 1-Gy exposure, suggesting that GSH and the GSH/GSSG ratio were more sensitive radiation exposure markers than whole-blood antioxidant capacity and CBC counts. It has been reported that GSH depletion is one of the triggers leading to cataracts, hypertension, and atherosclerosis, and these diseases are also known as radiation-induced late effects. The present findings further suggest that chronic antioxidant reduction may contribute to the pathogenesis of late radiation effects.
Collapse
Affiliation(s)
- Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-0845, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-0845, Japan
| | - Takashi Moritake
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
6
|
Kim YM, Cologne JB, Jang E, Lange T, Tatsukawa Y, Ohishi W, Utada M, Cullings HM. Causal mediation analysis in nested case-control studies using conditional logistic regression. Biom J 2020; 62:1939-1959. [PMID: 32608110 DOI: 10.1002/bimj.201900120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
The paper proposes an approach to causal mediation analysis in nested case-control study designs, often incorporated with countermatching schemes using conditional likelihood, and we compare the method's performance to that of mediation analysis using the Cox model for the full cohort with a continuous or dichotomous mediator. Simulation studies are conducted to assess our proposed method and investigate the efficiency relative to the cohort. We illustrate the method using actual data from two studies of potential mediation of radiation risk conducted within the Adult Health Study cohort of atomic-bomb survivors. The performance becomes comparable to that based on the full cohort, illustrating the potential for valid mediation analysis based on the reduced data obtained through the nested case-control design.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Statistics, Kyungpook National University, 80 Daehak-ro, Daegu, Republic of Korea
| | - John B Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Hiroshima Prefecture, Japan
| | - Euna Jang
- Department of Statistics, Kyungpook National University, 80 Daehak-ro, Daegu, Republic of Korea
| | - Theis Lange
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Yoshimi Tatsukawa
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Hiroshima Prefecture, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Hiroshima Prefecture, Japan
| | - Mai Utada
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Hiroshima Prefecture, Japan
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Hiroshima Prefecture, Japan
| |
Collapse
|
7
|
Takahashi N, Misumi M, Murakami H, Niwa Y, Ohishi W, Inaba T, Nagamachi A, Suzuki G. Association between low doses of ionizing radiation, administered acutely or chronically, and time to onset of stroke in a rat model. JOURNAL OF RADIATION RESEARCH 2020; 61:666-673. [PMID: 32748938 PMCID: PMC7482173 DOI: 10.1093/jrr/rraa050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Indexed: 06/10/2023]
Abstract
Exposure to high-doses of ionizing radiation has been reported to be associated with the risk of stroke. However, risks associated with lower dose exposures remain unclear, and there is little information available for the risk modification according to the dose-rate. There are few studies using animal models which might be able to provide complementary information on this association. In this study, the male stroke-prone spontaneously hypertensive rat (SHRSP) was used as a model animal. The rats were acutely irradiated with doses between 0 and 1.0 Gy or chronically irradiated with a cumulative dose of 0.5 or 1.0 Gy (at a dose rate of 0.05 or 0.1 Gy/day, respectively). The onset time of stroke related symptoms in SHRSP was used as an endpoint for evaluating the effects of low dose and the low dose-rate gamma-ray exposures. With respect to acute exposure, the time to the onset of stroke in the irradiated rats suggested the presence of a threshold around 0.1 Gy. For the low dose-rate chronically exposed, no significant increase in stroke symptom was observed. These findings are novel and demonstrate that the SHRSP system can be used to determine the association between the risk of stroke and radiation exposure with high sensitivity. Moreover, these studies provide important information regarding the association between the low dose and low dose-rate radiation exposure and circulatory diseases, especially stroke.
Collapse
Affiliation(s)
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Hideko Murakami
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasuharu Niwa
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Clinical Studies (Hiroshima), Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Gen Suzuki
- International University of Health and Welfare Clinic, Otawara, Tochigi, Japan
| |
Collapse
|
8
|
Azzam EI. What does radiation biology tell us about potential health effects at low dose and low dose rates? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S28-S39. [PMID: 31216522 DOI: 10.1088/1361-6498/ab2b09] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The health risks to humans exposed to low dose and low dose rate ionising radiation remain ambiguous and are the subject of debate. The need to establish risk assessment standards based on the mechanisms underlying low dose/low fluence radiation exposures has been recognised by scholarly and regulatory bodies as critical for reducing the uncertainty in predicting adverse health risks of human exposure to low doses of radiation. Here, a brief review of laboratory-based evidence of molecular and biochemical changes induced by low doses and low dose rates of radiation is presented. In particular, two phenomena, namely bystander effects and adaptive responses that may impact low-level radiation health risks, are discussed together with the need for further studies. The expansion of this knowledge by considering the important variables that affect the radiation response (e.g. genetic susceptibility, time after exposure), and using the latest advances in experimental models and bioinformatics tools, may guide epidemiological studies towards reducing the uncertainty in predicting the potential health hazards of exposure to low-dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- Departments of Radiology, RUTGERS New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
9
|
Mukherjee S, Laiakis EC, Fornace AJ, Amundson SA. Impact of inflammatory signaling on radiation biodosimetry: mouse model of inflammatory bowel disease. BMC Genomics 2019; 20:329. [PMID: 31046668 PMCID: PMC6498469 DOI: 10.1186/s12864-019-5689-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ionizing Radiation (IR) is a known pro-inflammatory agent and in the process of development of biomarkers for radiation biodosimetry, a chronic inflammatory disease condition could act as a confounding factor. Hence, it is important to develop radiation signatures that can distinguish between IR-induced inflammatory responses and pre-existing disease. In this study, we compared the gene expression response of a genetically modified mouse model of inflammatory bowel disease (Il10−/−) with that of a normal wild-type mouse to potentially develop transcriptomics-based biodosimetry markers that can predict radiation exposure in individuals regardless of pre-existing inflammatory condition. Results Wild-type (WT) and Il10−/− mice were exposed to whole body irradiation of 7 Gy X-rays. Gene expression responses were studied using high throughput whole genome microarrays in peripheral blood 24 h post-irradiation. Analysis resulted in identification of 1962 and 1844 genes differentially expressed (p < 0.001, FDR < 10%) after radiation exposure in Il10−/− and WT mice respectively. A set of 155 genes was also identified as differentially expressed between WT and Il10−/− mice at the baseline pre-irradiation level. Gene ontology analysis revealed that the 155 baseline differentially expressed genes were mainly involved in inflammatory response, glutathione metabolism and collagen deposition. Analysis of radiation responsive genes revealed that innate immune response and p53 signaling processes were strongly associated with up-regulated genes, whereas B-cell development process was found to be significant amongst downregulated genes in the two genotypes. However, specific immune response pathways like MHC based antigen presentation, interferon signaling and hepatic fibrosis were associated with radiation responsive genes in Il10−/− mice but not WT mice. Further analysis using the IPA prediction tool revealed significant differences in the predicted activation status of T-cell mediated signaling as well as regulators of inflammation between WT and Il10−/− after irradiation. Conclusions Using a mouse model we established that an inflammatory disease condition could affect the expression of many radiation responsive genes. Nevertheless, we identified a panel of genes that, regardless of disease condition, could predict radiation exposure. Our results highlight the need for consideration of pre-existing conditions in the population in the process of development of reliable biodosimetry markers. Electronic supplementary material The online version of this article (10.1186/s12864-019-5689-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanjay Mukherjee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC, 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC, 20057, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
10
|
Desai P, Roboz GJ. Clonal Hematopoiesis and therapy related MDS/AML. Best Pract Res Clin Haematol 2019; 32:13-23. [DOI: 10.1016/j.beha.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
|
11
|
Micewicz ED, Iwamoto KS, Ratikan JA, Nguyen C, Xie MW, Cheng G, Boxx GM, Deriu E, Damoiseaux RD, Whitelegge JP, Ruchala PP, Avetisyan R, Jung ME, Lawson G, Nemeth E, Ganz T, Sayre JW, McBride WH, Schaue D. The Aftermath of Surviving Acute Radiation Hematopoietic Syndrome and its Mitigation. Radiat Res 2019; 191:323-334. [PMID: 30730284 DOI: 10.1667/rr15231.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.
Collapse
Affiliation(s)
- Ewa D Micewicz
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Keisuke S Iwamoto
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Josephine A Ratikan
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Christine Nguyen
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Michael W Xie
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Genhong Cheng
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Gayle M Boxx
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Elisa Deriu
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Robert D Damoiseaux
- g Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California
| | - Julian P Whitelegge
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Piotr P Ruchala
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Rozeta Avetisyan
- c Department of Anesthesiology, University of California at Los Angeles, Los Angeles, California
| | - Michael E Jung
- d Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Greg Lawson
- e Department of Laboratory Animal Medicine, University of California at Los Angeles, Los Angeles, California
| | - Elizabeta Nemeth
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Tomas Ganz
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - James W Sayre
- i School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California
| | - William H McBride
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Dörthe Schaue
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
12
|
Yoshida K, French B, Yoshida N, Hida A, Ohishi W, Kusunoki Y. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomic‐bomb survivors. Br J Haematol 2019; 185:107-115. [DOI: 10.1111/bjh.15750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences Radiation Effects Research FoundationHiroshima Japan
| | - Benjamin French
- Department of Statistics Radiation Effects Research FoundationHiroshima Japan
| | - Noriaki Yoshida
- Department of Clinical Studies Radiation Effects Research Foundation Hiroshima Japan
- Department of Pathology Kurume University School of Medicine Kurume Fukuoka
| | - Ayumi Hida
- Department of Clinical Studies Radiation Effects Research Foundation Nagasaki Japan
| | - Waka Ohishi
- Department of Clinical Studies Radiation Effects Research Foundation Hiroshima Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences Radiation Effects Research FoundationHiroshima Japan
| |
Collapse
|
13
|
Mothersill C, Seymour C. Old Data-New Concepts: Integrating "Indirect Effects" Into Radiation Protection. HEALTH PHYSICS 2018; 115:170-178. [PMID: 29787443 DOI: 10.1097/hp.0000000000000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To address the following key question, what are the consequences of nontargeted and delayed effects for linear nonthreshold models of radiation risk? This paper considers low-dose "indirect" or nontargeted effects and how they might impact radiation protection, particularly at the level of the environment. Nontargeted effects refer to effects in cells, tissues, or organisms that were not targeted by irradiation and that did not receive direct energy deposition. They include genomic instability and lethal mutations in progeny of irradiated cells and bystander effects in neighboring cells, tissues, or organisms. Low-dose hypersensitivity and adaptive responses are sometimes included under the nontargeted effects umbrella, but these are not considered in this paper. Some concepts emerging in the nontargeted effects field that could be important include historic dose. This suggests that the initial exposure to radiation initiates the instability phenotype which is passed to progeny leading to a transgenerational radiation-response phenotype, which suggests that the system response rather than the individual response is critical in determining outcome. CONCLUSION Nontargeted effects need to be considered, and modeling, experimental, and epidemiological approaches could all be used to determine the impact of nontargeted effects on the currently used linear nonthreshold model in radiation protection.
Collapse
Affiliation(s)
- Carmel Mothersill
- 1Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
14
|
Gulay KCM, Tanaka IB, Komura J, Tanaka S. Effects of Continuous Gamma-Ray Exposure In Utero in B6C3F1 Mice on Gestation Day 18 and at 10 Weeks of Age. Radiat Res 2018; 189:425-440. [PMID: 29437533 DOI: 10.1667/rr14863.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pregnant C57BL/6JJcl mice were exposed to γ rays at low dose rate (20 mGy/day, LDR) or medium dose rate (200 and 400 mGy/day, MDR) from gestation day (GD) 0-18 to total accumulated doses of 360, 3,600 and 7,200 mGy, respectively. An additional group of pregnant mice were acutely exposed to 2 Gy at high dose rate (HDR) of 0.77 Gy/min on GD 11. In experiment 1, fetuses collected via cesarean section on GD 18 were examined for external and skeletal abnormalities. While the results of LDR exposure (20 mGy/day) did not significantly differ from the nonirradiated controls in all parameters examined, MDR (200 and 400 mGy/day) and acute HDR (2 Gy) exposure caused growth retardation and significantly increased incidence of unossified bones. Increased incidence of external abnormalities was observed only in the acute HDR group. In experiment 2, the dams were allowed to give birth and the pups were clinically monitored and weighed periodically until 10 weeks of age when they were sacrificed and subjected to pathological examination. Pups exposed at MDRs of 200 and 400 mGy/dayand at acute HDR of 0.77 Gy/min had lower bodyweights from weaning (3 weeks) to 10 weeks of age except for females exposed to 400 mGy/day MDR. None of the pups exposed to an acute 2 Gy dose on GD 11 survived to 10 weeks of age. Histopathological changes were not significantly different between the nonirradiated control and the 20 mGy/day LDR groups. However, at both MDR exposures of 200 and 400 mGy/day. gonadal (testes and ovary) hypoplasia/atrophy was observed in all the 10-week-old pups. Our results show that in utero LDR exposure to 20 mGy/day for the entire gestation period did not cause any significant effect in pups when compared to the nonirradiated controls up to 10 weeks of age. However, pups exposed in utero to MDRs showed dose-related growth retardation with delayed ossifications (400 mGy/day) and gonadal hypoplasia/atrophy. These findings suggest that increased post-implantation loss in dams exposed at MDR is due to early embryonic deaths resulting in early resorption.
Collapse
Affiliation(s)
- K C M Gulay
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - I B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - J Komura
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - S Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| |
Collapse
|
15
|
Li D, Chen R, Wang YW, Fornace AJ, Li HH. Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells. Int J Radiat Biol 2017; 94:488-494. [PMID: 29108460 DOI: 10.1080/09553002.2017.1400192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. MATERIALS AND METHODS Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. RESULTS Our results showed that prior irradiation resulted in significant elevated expression of programmed cell death protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. CONCLUSION Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the programmed death-ligand 1 (PD-L1)/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.
Collapse
Affiliation(s)
- Deguan Li
- a Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , China
| | - Renxiang Chen
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA
| | - Yi-Wen Wang
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA
| | - Albert J Fornace
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA.,c Department of Oncology , Georgetown University , Washington , DC , USA
| | - Heng-Hong Li
- b Department of Biochemistry and Molecular & Cellular Biology , Georgetown University , Washington , DC , USA.,c Department of Oncology , Georgetown University , Washington , DC , USA
| |
Collapse
|
16
|
Ding CY, Gao L. Low Dose Radiation Exposure and Cardiovascular Diseases: A Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2017. [DOI: 10.21859/ijcp-030103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Mohye El-Din AA, Abdelrazzak AB, Ahmed MT, El-Missiry MA. Radiation induced bystander effects in the spleen of cranially-irradiated rats. Br J Radiol 2017; 90:20170278. [PMID: 28937261 DOI: 10.1259/bjr.20170278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the radiation-induced abscopal effect in terms of oxidative stress, apoptosis and DNA damage in the spleen cells following cranial X-rays irradiation of rats. METHODS Rats were cranially irradiated using 2 Gy X-rays. Another group was whole-body irradiated with 2 Gy X-rays and a third group was exposed to scattered radiation (measured to be 3 mGy). 24 hours following irradiation, sections from the spleen of the rats were dissected as well as plasma samples. The samples were examined for the desired endpoints. RESULTS The cranially irradiated animals showed a significant increase in the levels of glutathione, superoxide dismutase and catalase with no significant change in the lipid peroxidation product in the spleen cells with a significant increase in the C-reactive protein level the plasma. Apoptotic cell death in the spleen cells was demonstrated as indicated by the decrease of Bcl-2; the increase of p53, Bax, caspase-3 and caspase-8 and induction of DNA damage in the spleen in both of the cranially irradiated rats and whole body exposed rats. The exposure to 3 mGy scattered radiation increased the plasma level of C-RP and also induced apoptosis in the spleen cells. CONCLUSION Cranial irradiation-induced abscopal effect in distant spleen cells. Very low doses of radiation can induce apoptosis in the spleen cells. Advances in knowledge: This paper provides an evidence on the incidence of radiation abscopal effect. Also, the results shed light of the effect very low doses of radiation as low as 3 mGy.
Collapse
Affiliation(s)
- Amal A Mohye El-Din
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | | | - Moustafa T Ahmed
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | - Mohamed A El-Missiry
- 3 Department of Zoology, Faculty of Science, Mansoura University , Mansoura , Egypt
| |
Collapse
|
18
|
Philipp J, Azimzadeh O, Subramanian V, Merl-Pham J, Lowe D, Hladik D, Erbeldinger N, Ktitareva S, Fournier C, Atkinson MJ, Raj K, Tapio S. Radiation-Induced Endothelial Inflammation Is Transferred via the Secretome to Recipient Cells in a STAT-Mediated Process. J Proteome Res 2017; 16:3903-3916. [PMID: 28849662 DOI: 10.1021/acs.jproteome.7b00536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Radiation is the most common treatment of cancer. Minimizing the normal tissue injury, especially the damage to vascular endothelium, remains a challenge. This study aimed to analyze direct and indirect radiation effects on the endothelium by investigating mechanisms of signal transfer from irradiated to nonirradiated endothelial cells by means of secreted proteins. Human coronary artery endothelial cells (HCECest2) undergo radiation-induced senescence in vitro 14 days after exposure to 10 Gy X-rays. Proteomics analysis was performed on HCECest2 14 days after irradiation with X-ray doses of 0 Gy (control) or 10 Gy using label-free technology. Additionally, the proteomes of control and radiation-induced secretomes, and those of nonirradiated HCECest2 exposed for 24 h to secreted proteins of either condition were measured. Key changes identified by proteomics and bioinformatics were validated by immunoblotting, ELISA, bead-based multiplex assays, and targeted transcriptomics. The irradiated cells, their secretome, and the nonirradiated recipient cells showed similar inflammatory response, characterized by induction of interferon type I-related proteins and activation of the STAT3 pathway. These data indicate that irradiated endothelial cells may adversely affect nonirradiated surrounding cells via senescence-associated secretory phenotype. This study adds to our knowledge of the pathological background of radiation-induced cardiovascular disease.
Collapse
Affiliation(s)
- Jos Philipp
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Vikram Subramanian
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Research Unit Protein Science , D-80939 Munich, Germany
| | - Donna Lowe
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England , OX11 0RQ Chilton, United Kingdom
| | - Daniela Hladik
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Nadine Erbeldinger
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Svetlana Ktitareva
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Zentrum für Schwerionenforschung , 64291 Darmstadt, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| | - Ken Raj
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England , OX11 0RQ Chilton, United Kingdom
| | - Soile Tapio
- Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Institute of Radiation Biology , D-85764 Neuherberg, Germany
| |
Collapse
|
19
|
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev 2017; 36:375-393. [DOI: 10.1007/s10555-017-9669-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Assessing liver proteins and enzymes of medical workers exposed to ionizing radiation (IR). Clin Exp Med 2017; 18:89-99. [PMID: 28493150 DOI: 10.1007/s10238-017-0462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
The cross-sectional study was conducted to examine hepatic function via liver enzymes/proteins assessments, along with the estimation of an inflammatory response from C-reactive protein (CRP)-which is a liver-synthesized protein. The liver function tests with aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin (BBN), and CRP test were conducted for radiation-exposed workers-REW (n = 32) and radiation-unexposed workers-RUW (n = 21). The annual average effective doses (AAED) were measured from thermoluminescent dosimeter. A t test and bivariate correlation analyses were applied. Only one worker had a high AST value (50 U/L), one worker had a negligible high ALT value (43 U/L) and only one worker had a negligible high bilirubin value (1.3 g/dL). There were normal levels of CRP (up to 6 mg/L) in all individuals. There existed a nonsignificant difference (p < 0.050) between the mean values of liver enzymes and proteins in all exposed and unexposed workers. Nonsignificant weak correlations are reported in liver enzymes/proteins parameters: AST, ALT, ALP, BBN, CRP with the AAED range (whole-body: 0.91-3.39 mSv) during 2011-2015. The normal values of liver enzymes/proteins' (AST, ALT, ALP, BBN, CRP) values may ensure a good hepatic health of radiation-exposed medical workers with AAED range mentioned. We found that low ionizing radiation doses did not alter the liver function test parameters and did not affect the concentration of an inflammatory response protein, i.e., CRP.
Collapse
|
21
|
Heuskin AC, Osseiran AI, Tang J, Costes SV. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata. Radiat Res 2016; 186:27-38. [PMID: 27333083 DOI: 10.1667/rr14338.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
UNLABELLED Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. POPULATION We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation scenarios.
Collapse
Affiliation(s)
- A C Heuskin
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.,c NAmur Research Institute for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR), University of Namur, Namur, Belgium
| | - A I Osseiran
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - J Tang
- b Exogen Biotechnology Inc., Berkeley, California
| | - S V Costes
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
22
|
Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:59-65. [PMID: 27169377 DOI: 10.1016/j.mrgentox.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023]
Abstract
Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AX (γH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure.
Collapse
|
23
|
Gyuleva IM, Penkova KI, Rupova IT, Panova DY, Djounova JN. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plant Workers: Flow Cytometry Measurements of T Lymphocyte Subpopulations and Immunoglobulin Determination. Dose Response 2015; 13:1559325815611901. [PMID: 26740807 PMCID: PMC4679204 DOI: 10.1177/1559325815611901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A 10-year survey of immune status of nuclear power plant (NPP) workers was assessed by cellular and humoral immune parameters. The cumulative doses of NPP workers were in the range of 0.06 to 766.36 mSv. The results did not show significant deviations in the studied parameters of cellular and humoral immunity, but a tendency of elevated values in CD3+4+ helper inducers cells, especially its CD4+62L+ subpopulation, regulatory CD4+25+ cells, CD8+28+ cytotoxic subpopulation, and immunoglobulin M, was established. The observed trend of the above-mentioned parameters could be interpreted by assumption that while the adaptation processes are dominated with low prevalence of T-helper (Th) 1 immune response to cumulative doses less than 100 mSv, a switch to Th-2 response occurred at doses above 100 mSv. The impact of a number of other confounding factors on the immune system does not allow definitive conclusions about the direct radiation-induced changes in immune parameters.
Collapse
|
24
|
Persistent Activation of the Innate Immune Response in Adult Drosophila Following Radiation Exposure During Larval Development. G3-GENES GENOMES GENETICS 2015; 5:2299-306. [PMID: 26333838 PMCID: PMC4632050 DOI: 10.1534/g3.115.021782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT.
Collapse
|
25
|
Li HH, Wang YW, Chen R, Zhou B, Ashwell JD, Fornace AJ. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming. Int J Biol Sci 2015; 11:726-36. [PMID: 26078715 PMCID: PMC4466454 DOI: 10.7150/ijbs.12009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/10/2015] [Indexed: 11/05/2022] Open
Abstract
Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.
Collapse
Affiliation(s)
- Heng-Hong Li
- 1. Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA ; 2. Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yi-Wen Wang
- 1. Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Renxiang Chen
- 1. Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA ; 2. Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Bin Zhou
- 3. Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jonathan D Ashwell
- 4. Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albert J Fornace
- 1. Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA ; 3. Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA ; 5. Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
26
|
Mezzaroma E, Mikkelsen RB, Toldo S, Mauro AG, Sharma K, Marchetti C, Alam A, Van Tassell BW, Gewirtz DA, Abbate A. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy. Mol Med 2015; 21:210-8. [PMID: 25822795 DOI: 10.2119/molmed.2014.00243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/25/2015] [Indexed: 01/14/2023] Open
Abstract
Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO-or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America.,School of Pharmacy, VCU, Richmond, Virginia, United States of America
| | - Ross B Mikkelsen
- Radiation Oncology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Stefano Toldo
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Adolfo G Mauro
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Khushboo Sharma
- Pharmacology and Toxicology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Carlo Marchetti
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Asim Alam
- Radiation Oncology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Benjamin W Van Tassell
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America.,School of Pharmacy, VCU, Richmond, Virginia, United States of America
| | - David A Gewirtz
- Pharmacology and Toxicology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Antonio Abbate
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| |
Collapse
|
27
|
Rybkina VL, Azizova TV, Scherthan H, Meineke V, Doerr H, Adamova GV, Teplyakova OV, Osovets SV, Bannikova MV, Zurochka AV. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:659-70. [PMID: 25073961 DOI: 10.1007/s00411-014-0556-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/08/2014] [Indexed: 05/20/2023]
Abstract
This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic occupational IR exposure of workers induced a depletion of immune cells in peripheral blood of the individuals involved.
Collapse
|
28
|
Local and systemic pathogenesis and consequences of regimen-induced inflammatory responses in patients with head and neck cancer receiving chemoradiation. Mediators Inflamm 2014; 2014:518261. [PMID: 24757285 PMCID: PMC3976778 DOI: 10.1155/2014/518261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Treatment-related toxicities are common among patients with head and neck cancer, leading to poor clinical outcomes, reduced quality of life, and increased use of healthcare resources. Over the last decade, much has been learned about the pathogenesis of cancer regimen-related toxicities. Historically, toxicities were separated into those associated with tissue injury and those with behavioural or systemic changes. However, it is now clear that tissue-specific damage such as mucositis, dermatitis, or fibrosis is no longer the sole consequence of direct clonogenic cell death, and a relationship between toxicities that results in their presentation as symptom clusters has been documented and attributed to a common underlying pathobiology. In addition, the finding that patients commonly develop toxicities representing tissue injury outside radiation fields and side effects such as fatigue or cognitive dysfunction suggests the generation of systemic as well as local mediators. As a consequence, it might be appropriate to consider toxicity syndromes, rather than the traditional approach, in which each side effect was considered as an autonomous entity. In this paper, we propose a biologically based explanation which forms the basis for the diverse constellation of toxicities seen in response to current regimens used to treat cancers of the head and neck.
Collapse
|
29
|
Mukherjee D, Coates PJ, Lorimore SA, Wright EG. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol 2014; 232:289-99. [PMID: 24254983 DOI: 10.1002/path.4299] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/20/2023]
Abstract
Since the early years of the twentieth century, the biological consequences of exposure to ionizing radiation have been attributed solely to mutational DNA damage or cell death induced in irradiated cells at the time of exposure. However, numerous observations have been at variance with this dogma. In the 1950s, attention was drawn to abscopal effects in areas of the body not directly irradiated. In the 1960s reports began appearing that plasma factors induced by irradiation could affect unirradiated cells, and since 1990 a growing literature has documented an increased rate of DNA damage in the progeny of irradiated cells many cell generations after the initial exposure (radiation-induced genomic instability) and responses in non-irradiated cells neighbouring irradiated cells (radiation-induced bystander effects). All these studies have in common the induction of effects not in directly irradiated cells but in unirradiated cells as a consequence of intercellular signalling. Recently, it has become clear that all the various effects demonstrated in vivo may reflect an ongoing inflammatory response to the initial radiation-induced injury that, in a genotype-dependent manner, has the potential to contribute primary and/or ongoing damage displaced in time and/or space from the initial insult. Importantly, there is direct evidence that non-steroidal anti-inflammatory drug treatment reduces such damage in vivo. These new findings highlight the importance of tissue responses and indicate additional mechanisms of radiation action, including the likelihood that radiation effects are not restricted to the initiation stage of neoplastic diseases, but may also contribute to tumour promotion and progression. The various developments in understanding the responses to radiation exposures have implications not only for radiation pathology but also for therapeutic interventions.
Collapse
Affiliation(s)
- Debayan Mukherjee
- Centre for Oncology and Molecular Medicine, University of Dundee Medical School, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
30
|
Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, Hudson MM, Kremer LC, Landy DC, Miller TL, Oeffinger KC, Rosenthal DN, Sable CA, Sallan SE, Singh GK, Steinberger J, Cochran TR, Wilkinson JD. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 2013; 128:1927-95. [PMID: 24081971 DOI: 10.1161/cir.0b013e3182a88099] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Borghini A, Luca Gianicolo EA, Picano E, Andreassi MG. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013; 230:40-7. [DOI: 10.1016/j.atherosclerosis.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/16/2022]
|
32
|
Howell EK, Gaschak SP, Griffith KDW, Rodgers BE. Radioadaptive Response Following In Utero Low-Dose Irradiation. Radiat Res 2012. [DOI: 10.1667/rr3029.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Eric K. Howell
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| | - Sergey P. Gaschak
- International Radioecology Laboratory, Slavutych, Kyiv Region 07100, Ukraine
| | - Kenneth D. W. Griffith
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| | - Brenda E. Rodgers
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| |
Collapse
|
33
|
Hayashi T, Morishita Y, Khattree R, Misumi M, Sasaki K, Hayashi I, Yoshida K, Kajimura J, Kyoizumi S, Imai K, Kusunoki Y, Nakachi K. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J 2012; 26:4765-73. [PMID: 22872680 DOI: 10.1096/fj.12-215228] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past exposure to atomic bomb (A-bomb) radiation has exerted various long-lasting deleterious effects on the health of survivors. Some of these effects are seen even after >60 yr. In this study, we evaluated the subclinical inflammatory status of 442 A-bomb survivors, in terms of 8 inflammation-related cytokines or markers, comprised of plasma levels of reactive oxygen species (ROS), interleukin (IL)-6, tumor necrosis factor α (TNF-α), C-reactive protein (CRP), IL-4, IL-10, and immunoglobulins, and erythrocyte sedimentation rate (ESR). The effects of past radiation exposure and natural aging on these markers were individually assessed and compared. Next, to assess the biologically significant relationship between inflammation and radiation exposure or aging, which was masked by the interrelationship of those cytokines/markers, we used multivariate statistical analyses and evaluated the systemic markers of inflammation as scores being calculated by linear combinations of selected cytokines and markers. Our results indicate that a linear combination of ROS, IL-6, CRP, and ESR generated a score that was the most indicative of inflammation and revealed clear dependences on radiation dose and aging that were found to be statistically significant. The results suggest that collectively, radiation exposure, in conjunction with natural aging, may enhance the persistent inflammatory status of A-bomb survivors.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ward, Hiroshima 732-0815 Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Picano E, Vano E, Domenici L, Bottai M, Thierry-Chef I. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure. BMC Cancer 2012; 12:157. [PMID: 22540409 PMCID: PMC3495891 DOI: 10.1186/1471-2407-12-157] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/27/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND According to a fundamental law of radiobiology ("Law of Bergonié and Tribondeau", 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. RESULTS Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). CONCLUSIONS At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed.
Collapse
Affiliation(s)
- Eugenio Picano
- Institute Clinical Physiology of the National Research Council CNR, 56124, Pisa, Italy
| | - Eliseo Vano
- San Carlos University Hospital, Complutense University, Medical Physics Service, Madrid, Spain
| | - Luciano Domenici
- Neuroscience Institute of the National Research Council, CNR, Pisa, and Scienze e Tecnologie Biomediche Department, L'Aquila University, Pisa, Italy
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Karolinska, Sweden
| | - Isabelle Thierry-Chef
- Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
35
|
Sakata R, Grant EJ, Ozasa K. Long-term follow-up of atomic bomb survivors. Maturitas 2012; 72:99-103. [PMID: 22440534 DOI: 10.1016/j.maturitas.2012.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 11/29/2022]
Abstract
The Life Span Study (LSS) is a follow-up study of atomic bomb (A-bomb) survivors to investigate the radiation effects on human health and has collected data for over 60 years. The LSS cohort consists of 93,741 A-bomb survivors and another 26,580 age and sex-matched subjects who were not in either city at the time of the bombing. Radiation doses have been computed based on individual location and shielding status at the time of the bombings. Age at death and cause of death are gathered through the Japanese national family registry system and cancer incidence data have been collected through the Hiroshima and Nagasaki cancer registries. Noncancer disease incidence and health information are collected through biannual medical examinations among a subset of the LSS. Radiation significantly increases the risks of death (22% at 1 Gy), cancer incidence (47% at 1 Gy), death due to leukemia (310% at 1 Gy), as well as the incidence of several noncancer diseases (e.g. thyroid nodules, chronic liver disease and cirrhosis, uterine myoma, and hypertension). Significant effects on maturity (e.g. growth reduction and early menopause) were also observed. Long-term follow-up studies of the A-bomb survivors have provided reliable information on health risks for the survivors and form the basis for radiation protection standards for workers and the public.
Collapse
Affiliation(s)
- Ritsu Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | |
Collapse
|
36
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 846] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
37
|
Takahashi I, Abbott RD, Ohshita T, Takahashi T, Ozasa K, Akahoshi M, Fujiwara S, Kodama K, Matsumoto M. A prospective follow-up study of the association of radiation exposure with fatal and non-fatal stroke among atomic bomb survivors in Hiroshima and Nagasaki (1980-2003). BMJ Open 2012; 2:e000654. [PMID: 22307102 PMCID: PMC3274709 DOI: 10.1136/bmjopen-2011-000654] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Use of medical radiotherapy has increased markedly in recent decades. Whether the consequence includes an increased risk of cardiovascular disease remains to be determined. The purpose of this study was to examine the association between radiation exposure and the incidence of stroke among Japanese atomic bomb survivors. DESIGN A prospective follow-up study. SETTING AND PARTICIPANTS Radiation exposure from the atomic bombing was assessed in 9515 subjects (34.8% men) with 24-year follow-up from 1980. Subjects were free of prevalent stroke when follow-up began. OUTCOME MEASURES Stroke events and the underlying cause of death were reviewed to confirm the first-ever stroke. Subtypes (ischaemic and haemorrhagic events) were categorised based on established criteria according to the definitions of typical/atypical stroke symptoms. RESULTS Overall mean radiation dose (±SD) in units of gray (Gy) was 0.38±0.58 (range: 0-3.5). During the study period, 235 haemorrhagic and 607 ischaemic events were identified. For men, after adjusting for age and concomitant risk factors, the risk of haemorrhagic stroke rose consistently from 11.6 to 29.1 per 10 000 person-years as doses increased from <0.05 to ≥2 Gy (p=0.009). Incidence also rose within the dose range <1 Gy (p=0.004) with no dose threshold. In women, the risk of haemorrhagic stroke rose with increasing radiation exposure but not until doses reached a threshold of 1.3 Gy (95% CI 0.5 to 2.3). Among women, for doses <1.3 Gy, differences in stroke risk were modest (13.5 per 10 000 person-years), while it increased to 20.3 per 10 000 person-years for doses that ranged from 1.3 to <2.2 Gy and to 48.6 per 10 000 person-years for doses that were higher (p=0.002). In both sexes, dose was unrelated to ischaemic stroke. CONCLUSION While the risk of haemorrhagic stroke increases with rising radiation exposure for both sexes, effects in women are less apparent until doses exceed a threshold at 1.3 Gy.
Collapse
Affiliation(s)
- Ikuno Takahashi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan
| | - Robert D Abbott
- Department of Statistics, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Tomohiko Ohshita
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Suiseikai Kajikawa Hospital, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Masazumi Akahoshi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), Nagasaki, Japan
| | - Saeko Fujiwara
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Kazunori Kodama
- Chief Scientist, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
38
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 962] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
39
|
Mukherjee D, Coates PJ, Lorimore SA, Wright EG. The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiat Res 2011; 177:18-24. [PMID: 22050452 DOI: 10.1667/rr2793.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation is unequivocally leukemogenic and carcinogenic, and this is generally attributed to DNA damage arising as a consequence of deposition of energy in the cell nucleus at the time of exposure. However, nontargeted effects, in which DNA damage is produced in nonirradiated cells as a consequence of cell signaling processes, indicate additional mechanisms. Radiation-induced chromosomal instability, a nontargeted effect with the potential to produce pathological consequences, is characterized by an increased rate of chromosome aberrations many generations after the initial insult. In this study, using a mouse model that has been well characterized with respect to its susceptibility to both radiation-induced chromosomal instability and acute myeloid leukemia, we investigated whether the underlying signaling mechanism was an inflammatory process by studying the effects of a nonsteroidal anti-inflammatory drug. Treated mice showed significant reduction in expression of the chromosomal instability phenotype 100 days postirradiation associated with reduced expression of inflammatory markers. The data support the hypothesis that the radiation-induced chromosomal instability phenotype is not an intrinsic property of the cells but a consequence of inflammatory processes having the potential to contribute secondary damage expressed as nontargeted and delayed radiation effects.
Collapse
Affiliation(s)
- Debayan Mukherjee
- University of Dundee, Centre for Oncology and Molecular Medicine, Division of Medical Science, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom DD1 9SY
| | | | | | | |
Collapse
|
40
|
Lorimore SA, Mukherjee D, Robinson JI, Chrystal JA, Wright EG. Long-lived inflammatory signaling in irradiated bone marrow is genome dependent. Cancer Res 2011; 71:6485-91. [PMID: 21903768 DOI: 10.1158/0008-5472.can-11-1926] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ionizing radiation is carcinogenic, but genotype is a key determinant of susceptibility. Mutational DNA damage is generally attributed to cause disease, but irradiation also affects multicellular interactions as a result of poorly understood bystander effects that may influence carcinogenic susceptibility. In this study, we show that the bone marrow of irradiated mice will retain the ability to kill hemopoietic clonogenic stem cells and to induce chromosomal instability for up to 3 months after irradiation. Chromosomal instability was induced in bone marrow cells derived from CBA/Ca mice, a strain that is susceptible to radiation-induced acute myeloid leukemia (r-AML), but not in C57BL6 mice that are resistant to r-AML. Similarly, clonogenic cell lethality was exhibited in C57BL/6 mice but not CBA/Ca mice. Mechanistic investigations revealed that these genotype-dependent effects involved cytokine-mediated signaling and were mediated by a cyclooxygenase-2-dependent mechanism. Thus, our results suggested that inflammatory processes were responsible for mediating and sustaining the durable effects of ionizing radiation observed on bone marrow cells. Because most exposures to ionizing radiation are directed to only part of the body, our findings imply that genotype-directed tissue responses may be important determinants of understanding the specific consequence of radiation exposure in different individuals.
Collapse
Affiliation(s)
- Sally A Lorimore
- University of Dundee Medical School, Centre for Oncology and Molecular Medicine, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Sabin RJ, Anderson RM. Cellular Senescence - its role in cancer and the response to ionizing radiation. Genome Integr 2011; 2:7. [PMID: 21834983 PMCID: PMC3169443 DOI: 10.1186/2041-9414-2-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/11/2011] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a normal biological process that is initiated in response to a range of intrinsic and extrinsic factors that functions to remove irreparable damage and therefore potentially harmful cells, from the proliferative pool. Senescence can therefore be thought of in beneficial terms as a tumour suppressor. In contrast to this, there is a growing body of evidence suggesting that senescence is also associated with the disruption of the tissue microenvironment and development of a pro-oncogenic environment, principally via the secretion of senescence-associated pro-inflammatory factors. The fraction of cells in a senescent state is known to increase with cellular age and from exposure to various stressors including ionising radiation therefore, the implications of the detrimental effects of the senescent phenotype are important to understand within the context of the increasing human exposure to ionising radiation. This review will discuss what is currently understood about senescence, highlighting possible associations between senescence and cancer and, how exposure to ionising radiation may modify this.
Collapse
Affiliation(s)
- Rebecca J Sabin
- Centre for Cell and Chromosome Biology and Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London, UB8 3PH, UK.
| | | |
Collapse
|
42
|
Zyuzikov NA, Coates PJ, Parry JM, Lorimore SA, Wright EG. Lack of Nontargeted Effects in Murine Bone Marrow after Low-DoseIn VivoX Irradiation. Radiat Res 2011; 175:322-7. [DOI: 10.1667/rr2386.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Douple EB, Mabuchi K, Cullings HM, Preston DL, Kodama K, Shimizu Y, Fujiwara S, Shore RE. Long-term radiation-related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster Med Public Health Prep 2011; 5 Suppl 1:S122-33. [PMID: 21402804 PMCID: PMC3907953 DOI: 10.1001/dmp.2011.21] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
For 63 years scientists in the Atomic Bomb Casualty Commission and its successor, the Radiation Effects Research Foundation, have been assessing the long-term health effects in the survivors of the atomic bombings of Hiroshima and Nagasaki and in their children. The identification and follow-up of a large population (approximately a total of 200,000, of whom more than 40% are alive today) that includes a broad range of ages and radiation exposure doses, and healthy representatives of both sexes; establishment of well-defined cohorts whose members have been studied longitudinally, including some with biennial health examinations and a high survivor-participation rate; and careful reconstructions of individual radiation doses have resulted in reliable excess relative risk estimates for radiation-related health effects, including cancer and noncancer effects in humans, for the benefit of the survivors and for all humankind. This article reviews those risk estimates and summarizes what has been learned from this historic and unique study.
Collapse
Affiliation(s)
- Evan B Douple
- Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Howell EK, Gaschak SP, Griffith KDW, Rodgers BE. The effects of environmental low-dose irradiation on tolerance to chemotherapeutic agents. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:640-649. [PMID: 21140382 DOI: 10.1002/etc.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/30/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
The nuclear disaster at Chernobyl, Ukraine, in April of 1986 continues to impact the environment on many different levels. Studies of epidemiological, environmental, and genetic impacts have been prolific since the accident, revealing interesting results concerning the effects of radiation. The long-tailed field mouse, Apodemus flavicollis, was collected from distinct localities near the Chernobyl site and evaluated based on in vivo responses to the current clinically employed chemotherapeutic agents bleomycin (BLM) and vinblastine (VBL), as well as the immune modulator lipopolysaccharide (LPS). Maximum tolerable doses of three different cancer drugs were administered to the rodents from three different lifestyles: native mice living and reproducing in a radioactive environment, native mice living and reproducing in an uncontaminated region, and laboratory-reared mice (Mus musculus BALB/c) with a known sensitivity to the chemical agents tested. The endpoints employed include micronucleus formation, immune cell induction, differential gene expression, and chemotherapeutic side effects such as lethargy and weight loss. In accordance with the well-studied phenomenon termed radio-adaptation, we observed varied tolerance to chemotherapeutic treatment dependent on history of ionizing radiation exposure. The results of the present study demonstrate a differential response to chemotherapeutic treatment with respect to previous levels of radiation exposure, suggesting a potential benefit associated with low-dose radiation exposure. Data reported herein could have a profound impact on the development of novel cancer treatments involving low-dose ionizing radiation.
Collapse
Affiliation(s)
- Eric K Howell
- Department of Biological Sciences and Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas, USA
| | | | | | | |
Collapse
|
45
|
Schonfeld SJ, Bhatti P, Brown EE, Linet MS, Simon SL, Weinstock RM, Hutchinson AA, Stovall M, Preston DL, Alexander BH, Doody MM, Sigurdson AJ. Polymorphisms in oxidative stress and inflammation pathway genes, low-dose ionizing radiation, and the risk of breast cancer among US radiologic technologists. Cancer Causes Control 2010; 21:1857-66. [PMID: 20711808 PMCID: PMC3076104 DOI: 10.1007/s10552-010-9613-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Ionizing radiation, an established breast cancer risk factor, has been shown to induce oxidative damage and chronic inflammation. Polymorphic variation in oxidative stress and inflammatory-mediated pathway genes may modify radiation-related breast cancer risk. METHODS We estimated breast cancer risk for 28 common variants in 16 candidate genes involved in these pathways among 859 breast cancer cases and 1,083 controls nested within the US Radiologic Technologists cohort. We estimated associations between occupational and personal diagnostic radiation exposures with breast cancer by modeling the odds ratio (OR) as a linear function in logistic regression models and assessed heterogeneity of the dose-response across genotypes. RESULTS There was suggestive evidence of an interaction between the rs5277 variant in PTGS2 and radiation-related breast cancer risk. The excess OR (EOR)/Gy from occupational radiation exposure = 5.5 (95%CI 1.2-12.5) for the GG genotype versus EOR/Gy < 0 (95%CI < 0-3.8) and EOR/Gy < 0 (95%CI < 0-14.8) for the GC and CC genotypes, respectively, (p (interaction) = 0.04). The association between radiation and breast cancer was not modified by other SNPs examined. CONCLUSIONS This study suggests that variation in PTGS2 may modify the breast cancer risk from occupational radiation exposure, but replication in other populations is needed to confirm this result.
Collapse
Affiliation(s)
- Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, 6120 Executive Blvd MSC 7238, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miles EF, Tatsukawa Y, Funamoto S, Kamada N, Nakashima E, Kodama Y, Seed T, Kusonoki Y, Nakachi K, Fujiwara S, Akahoshi M, Neriishi K. Biomarkers of radiosensitivity in a-bomb survivors pregnant at the time of bombings in hiroshima and nagasaki. ISRN OBSTETRICS AND GYNECOLOGY 2010; 2011:264978. [PMID: 21637355 PMCID: PMC3103073 DOI: 10.5402/2011/264978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
Purpose. There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods. We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions. Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximately 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.
Collapse
Affiliation(s)
- Edward F Miles
- Division of Radiation Oncology, Department of Radiology, Naval Medical Center Portsmouth, 620 John Paul Jones Circle, Portsmouth, VA 23314, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hsu WL, Tatsukawa Y, Neriishi K, Yamada M, Cologne J, Fujiwara S. Longitudinal trends of total white blood cell and differential white blood cell counts of atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2010; 51:431-439. [PMID: 20543527 DOI: 10.1269/jrr.09081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In studying the late health effects of atomic-bomb (A-bomb) survivors, earlier findings were that white blood cell (WBC) count increased with radiation dose in cross-sectional studies. However, a persistent effect of radiation on WBC count and other risk factors has yet to be confirmed. The objectives of the present study were 1) to examine the longitudinal relationship between A-bomb radiation dose and WBC and differential WBC counts among A-bomb survivors and 2) to investigate the potential confounding risk factors (such as age at exposure and smoking status) as well as modification of the radiation dose-response. A total of 7,562 A-bomb survivors in Hiroshima and Nagasaki were included in this study from 1964-2004. A linear mixed model was applied using the repeated WBC measurements. During the study period, a secular downward trend of WBC count was observed. Radiation exposure was a significant risk factor for elevated WBC and differential WBC counts over time. A significant increase of WBC counts among survivors with high radiation dose (> 2 Gy) was detected in men exposed below the age of 20 and in women regardless of age at exposure. Effects on WBC of low dose radiation remain unclear, however. Cigarette smoking produced the most pronounced effect on WBC counts and its impact was much larger than that of radiation exposure.
Collapse
Affiliation(s)
- Wan-Ling Hsu
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.
Collapse
Affiliation(s)
- Eric G Wright
- University of Dundee, Centre for Oncology and Molecular Medicine, Division of Medical Sciences, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
49
|
Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ 2010; 340:b5349. [PMID: 20075151 PMCID: PMC2806940 DOI: 10.1136/bmj.b5349] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the degree to which ionising radiation confers risk of mortality from heart disease and stroke. DESIGN Prospective cohort study with more than 50 years of follow-up. SETTING Atomic bomb survivors in Hiroshima and Nagasaki, Japan. PARTICIPANTS 86 611 Life Span Study cohort members with individually estimated radiation doses from 0 to >3 Gy (86% received <0.2 Gy). MAIN OUTCOME MEASURES Mortality from stroke or heart disease as the underlying cause of death and dose-response relations with atomic bomb radiation. RESULTS About 9600 participants died of stroke and 8400 died of heart disease between 1950 and 2003. For stroke, the estimated excess relative risk per gray was 9% (95% confidence interval 1% to 17%, P=0.02) on the basis of a linear dose-response model, but an indication of possible upward curvature suggested relatively little risk at low doses. For heart disease, the estimated excess relative risk per gray was 14% (6% to 23%, P<0.001); a linear model provided the best fit, suggesting excess risk even at lower doses. However, the dose-response effect over the restricted dose range of 0 to 0.5 Gy was not significant. Prospective data on smoking, alcohol intake, education, occupation, obesity, and diabetes had almost no impact on the radiation risk estimates for either stroke or heart disease, and misdiagnosis of cancers as circulatory diseases could not account for the associations seen. CONCLUSION Doses above 0.5 Gy are associated with an elevated risk of both stroke and heart disease, but the degree of risk at lower doses is unclear. Stroke and heart disease together account for about one third as many radiation associated excess deaths as do cancers among atomic bomb survivors.
Collapse
Affiliation(s)
- Yukiko Shimizu
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nagayama Y, Ichikawa T, Saitoh O, Abiru N. Induction of late-onset spontaneous autoimmune thyroiditis by a single low-dose irradiation in thyroiditis-prone non-obese diabetic-H2h4 mice. JOURNAL OF RADIATION RESEARCH 2009; 50:573-577. [PMID: 19755803 DOI: 10.1269/jrr.09067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The previous data regarding the effect of irradiation on thyroid autoimmunity are controversial. We have recently reported the exacerbation of autoimmune thyroiditis by a single low dose (0.5 Gy) of whole body irradiation in thyroiditis-prone non-obese diabetic (NOD)-H2(h4) mice treated with iodine for 8 weeks. However, it is uncertain in that report whether the results obtained by the provision of iodine in a relatively short period of time (8 weeks) accurately reflects the long-term consequences of low-dose irradiation on thyroid autoimmunity. Therefore, we repeated these experiments with mice that were monitored after irradiation without iodine treatment for up to 15 months. We found that a single low-dose (0.5 Gy) irradiation increased the incidence and severity of thyroiditis and the incidence and titers of anti-thyroglobulin autoantibodies at 15 months of age. The numbers of splenocytes and percentages of various lymphocyte subsets were not affected by irradiation. Thus, we conclude that low-dose irradiation also exacerbates late-onset spontaneous thyroiditis in NOD-H2(h4) mice; one plausible explanation for this may be the acceleration of immunological aging by irradiation.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Medical Gene Technology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | |
Collapse
|