1
|
Hoxhallari L, Katsikis K, Makri A, Pouliou M, Kanaki Z, Vatsellas G, Sonou C, Telios D, Giotakis E, Giotakis A, Makrythanasis P, Agelopoulos M, Psyrri A, Rampias T. Regulation of nucleotide excision repair by wild-type HRAS signaling in head and neck cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00902-y. [PMID: 40221503 DOI: 10.1038/s41417-025-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high rate of locoregional or distant relapse among patients. It is well established that resistance to chemotherapeutic drugs has an important role in the emergence of the recurrent and/or metastatic type of this malignancy which is associated with poor prognosis. Therefore, understanding the molecular basis of chemoresistance in head and neck cancer is required for the development of effective therapeutic strategies. Activating mutations in the HRAS gene are driver events in human cancer. Although numerous studies have demonstrated that oncogenic HRAS mutations promote chemoresistance in HNSCC, the molecular profile of HNSCC tumors that overexpress wild-type HRAS (wtHRASov) and their response to chemotherapy is poorly investigated. To gain deeper insights into the characteristics of wtHRASov tumors, we conducted a gene expression analysis using transcriptome data from The Cancer Genome Atlas (TCGA). This analysis revealed a distinct signature of overexpressed nucleotide excision repair (NER) genes in wtHRASov tumors, which are associated with chemoresistance. We further explored the role of these NER components in response to genotoxic stress, utilizing a diverse panel of HNSCC cell lines and patient-derived xenografts. Our findings indicate that in a specific cluster of head and neck tumors, ERK/cJun signaling activation is strongly reliant on HRAS activity. Inhibiting HRAS in these tumors results in a significant downregulation of the NER signature components, re-sensitizing cancer cells to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Lorena Hoxhallari
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Konstantinos Katsikis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Antigoni Makri
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marialena Pouliou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Christina Sonou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Dimitrios Telios
- 2nd Department of Otolaryngology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Aristeidis Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Periklis Makrythanasis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marios Agelopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Amanda Psyrri
- Internal Medicine/Medical Oncology Department, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodoros Rampias
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece.
| |
Collapse
|
2
|
Jemaà M, Setti Boubaker N, Kerkeni N, M. Huber S. JNK Inhibition Overcomes Resistance of Metastatic Tetraploid Cancer Cells to Irradiation-Induced Apoptosis. Int J Mol Sci 2025; 26:1209. [PMID: 39940976 PMCID: PMC11818936 DOI: 10.3390/ijms26031209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Tetraploidy is a condition in which the entire set of chromosomes doubles, most often due to errors during cell division. Tetraploidy can lead to genomic instability and significant consequences, in particular metastasis and treatment failure in tumours, including radiotherapy. The development of new strategies to sensitise these cells to treatment is of great importance. In our study, we investigated the in vitro combination of chemical treatment with the kinase inhibitor SP600125 and irradiation on diploid versus metastatic tetraploid RKO colon cancer clones. We assessed mitochondrial transmembrane potential, cell cycle and subG1 population by flow cytometry and performed clonogenic assays to evaluate cell sensitivity. We found that the combination overcomes irradiation resistance in metastatic tetraploid clones. To identify the main pathway involved in cell sensitivity, we screened the Harvard Medical School KINOMEscan library and performed a gene ontology biological process analysis. We found that the major kinases inhibited by SP600125 were ANKK1, BIKE, IKKA, JNK1, MP2K3, MP2K4, MKNK2, MYLK, PLK4, RPS6KA4(Kin,Dom,1), MYLK4 and TTK, and the pathways involved in clone sensitivity were DNA damage repair, radiation resistance and apoptosis, through JNK pathway inhibition. Finally, our main finding was that combined treatment with SP600125 and radiotherapy reduced the resistance of metastatic tetraploid cells to treatment, essentially by inhibiting the JNK pathway. This result supports a promising anti-cancer strategy to overcome the resistance of tetraploid cancer cells to irradiation.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
- Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules Laboratory LR18ES03, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
- Department of Biology, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Nouha Setti Boubaker
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine, Tunis El Manar University, Tunis 2092, Tunisia;
- Theranostic Biomarkers Laboratory, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Nesrine Kerkeni
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 2092, Tunisia
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Alradwan I, Zhi P, Zhang T, Lip H, Zetrini A, He C, Henderson JT, Rauth AM, Wu XY. Nanoparticulate drug combination inhibits DNA damage repair and PD-L1 expression in BRCA-mutant and wild type triple-negative breast cancer. J Control Release 2025; 377:661-674. [PMID: 39615752 DOI: 10.1016/j.jconrel.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The high mortality rate associated with metastatic breast cancer presents a significant global challenge. Inherent and chemotherapy-induced DNA damage repair, alongside immunosuppression, drastically contribute to triple-negative breast cancer (TNBC) relapse and metastasis. While poly (ADP-ribose) polymerase (PARP) inhibitors such as olaparib show effectiveness against BRCA1-mutant TNBC, they may lead to drug resistance and reduced efficacy due to increased programmed death-ligand 1 (PD-L1) expression. Our study explored the use of polymer-lipid nanoparticles (PLN) loaded with doxorubicin (DOX) and oligomeric hyaluronic acid (oHA), functionalized iRGD-peptide for integrins targeting (iRGD-DOX-oHA-PLN), to prevent TNBC immunosuppression, DNA repair, and metastasis. The results demonstrate that the iRGD-DOX-oHA-PLNs efficiently downregulated single and double-strand DNA repair proteins and enhanced DNA damage while decreasing PD-L1 expression compared to olaparib. Accordingly, iRGD-DOX-oHA-PLN treatment showed significantly higher efficiency in reducing levels of primary tumor growth and numbers of metastases to the lung and liver compared to olaparib in vitro and in vivo in both BRCA1-mutant and wild type TNBC orthotopic xenograft models.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada; Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Pei Zhi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto M5G 2M9, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada.
| |
Collapse
|
4
|
Lee SC, Shen CY, Wang WH, Lee YP, Liang KW, Chou YH, Tyan YS, Hwang JJ. Synergistic Effect of Ginsenoside Rh2 Combines with Ionizing Radiation on CT26/ luc Colon Carcinoma Cells and Tumor-Bearing Animal Model. Pharmaceuticals (Basel) 2023; 16:1188. [PMID: 37764996 PMCID: PMC10535731 DOI: 10.3390/ph16091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The local tumor control rate of colon cancer by radiotherapy is unsatisfactory due to recurrence and radioresistance. Ginsenoside Rh2 (Rh2), a panoxadiol saponin, possesses various antitumor effects. METHODS CT26/luc murine colon carcinoma cells and a CT26/luc tumor-bearing animal model were used to investigate the therapeutic efficacy of Rh2 combined with ionizing radiation and the underlying mechanisms. RESULTS Rh2 caused cell cycle arrest at the G1 phase in CT26/luc cells; however, when combined with ionizing radiation, the cells were arrested at the G2/M phase. Rh2 was found to suppress the activity of NF-κB induced by radiation by inhibiting the MAPK pathway, consequently affecting the expression of effector proteins. In an in vivo study, the combination treatment significantly increased tumor growth delay time and overall survival. Furthermore, the combination treatment significantly reduced NF-κB and NF-κB-related effector proteins, along with PD-1 receptor expression. Additionally, Rh2 administration led to increased levels of interleukin-12, -18, and interferon-γ in the mice's sera. Importantly, biochemical analysis revealed no toxicities associated with Rh2 alone or combined with radiation. CONCLUSIONS The combination of Rh2 with radiation may have potential as an alternative to improve the therapeutic efficacy of colorectal cancer.
Collapse
Affiliation(s)
- Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
| | - Chao-Yu Shen
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 50044, Taiwan;
| | - Yen-Po Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Hsinchu City 30010, Taiwan;
| | - Keng-Wei Liang
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Ying-Hsiang Chou
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yeu-Sheng Tyan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| |
Collapse
|
5
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity. Oncol Lett 2020; 20:993-1000. [PMID: 32724338 PMCID: PMC7377092 DOI: 10.3892/ol.2020.11684] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR) is an important cancer treatment approach. However, radioresistance eventually occurs, resulting in poor outcomes in patients with cancer. Radioresistance is associated with multiple signaling pathways, particularly pro-survival signaling pathways. The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is an important signaling pathway that initiates several cellular processes and is regulated by various stimuli, including IR. Although numerous studies have demonstrated the pro-survival effects of active ERK, activation of ERK has also been associated with cell death, indicating that radiosensitization may occur by ERK stimulation. In this context, the present review describes the associations between ERK signaling, cancer and IR, and discusses the association between ERK and its pro-survival function in cancer cells, including stimuli, molecular mechanisms, clinical use of inhibitors and underlying limitations. Additionally, the present review introduces the view that active ERK may induce cell death, and describes the potential factors associated with this process. This review describes the various outcomes induced by active ERK to prompt future studies to aim to enhance radiosensitivity in the treatment of cancer.
Collapse
Affiliation(s)
- Yinliang Lu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinyue Yu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanghui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
7
|
Chen JC, Ko JC, Yen TC, Chen TY, Lin YC, Ma PF, Lin YW. Capsaicin enhances erlotinib-induced cytotoxicity via AKT inactivation and excision repair cross-complementary 1 (ERCC1) down-regulation in human lung cancer cells. Toxicol Res (Camb) 2019; 8:459-470. [PMID: 31160978 DOI: 10.1039/c8tx00346g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Capsaicin, a natural active ingredient of green and red peppers, has been demonstrated to exhibit anti-cancer properties in several malignant cell lines. Excision repair cross-complementary 1 (ERCC1) has a leading role in the nucleotide excision repair (NER) process because of its involvement in the excision of DNA adducts. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating ERCC1 expression is unknown. In this study, capsaicin decreased the ERCC1 expression in an AKT inactivation dependent manner in two human lung adenocarcinoma cells, namely, A549 and H1975. Enhancement of AKT activity by transfection with constitutive active AKT vectors increased the ERCC1 protein level as well as the cell survival by capsaicin. Moreover, capsaicin synergistically enhanced the cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of ERCC1 expression and inactivation of AKT in A549 and H1975 cells. Together, these results may provide a rationale to combine capsaicin with erlotinib for lung cancer treatment.
Collapse
Affiliation(s)
- Jyh-Cheng Chen
- Department of Food Science , National Chiayi University , Chiayi , Taiwan
| | - Jen-Chung Ko
- Department of Internal Medicine , National Taiwan University Hospital , Hsin-Chu Branch , Taiwan
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yuan-Cheng Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Peng-Fang Ma
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| |
Collapse
|
8
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Cho M, Gong J, Frankel P, Synold TW, Lim D, Chung V, Chao J, Li D, Chen Y, Sentovich S, Melstrom K, Singh G, Luevanos E, Fakih M. A phase I clinical trial of binimetinib in combination with FOLFOX in patients with advanced metastatic colorectal cancer who failed prior standard therapy. Oncotarget 2017; 8:79750-79760. [PMID: 29108355 PMCID: PMC5668088 DOI: 10.18632/oncotarget.19336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background This was a first in-human, open-label, dose-escalation phase I study conducted to evaluate the maximum tolerated dose (MTD), safety, and efficacy of the combination of oral binimetinib and FOLFOX. Materials and Methods Patients with metastatic colorectal cancer (mCRC) who progressed on prior standard therapies received twice daily binimetinib continuously or intermittently with FOLFOX. Dose-limiting toxicities (DLTs) were assessed in the first 2 cycles of study treatment. Pharmacokinetic (PK) analysis of 5-FU and oxaliplatin was performed at the MTD in an expanded 6 patient cohort. Results Twenty-six patients were enrolled and assessed for safety. In the dose-escalation phase, no DLTs were noted in all binimetinib dosing schedules and the MTD of binimetinib in with FOLFOX was 45 mg orally twice daily. There were no significant differences in the PKs of 5-FU or oxaliplatin with or without binimetinib. Continuous dosing of binimetinib produced SD at 2 months in 9 of 13 evaluable patients and a median PFS of 3.5 months. Nine of 10 patients had PD at 2 months on the intermittent arm. Conclusions Oral binimetinib and FOLFOX has a manageable toxicity profile and showed some evidence of antitumor activity in heavily pretreated mCRC patients.
Collapse
Affiliation(s)
- May Cho
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Frankel
- Department of Statistics, City of Hope National Medical Center, Duarte, CA, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Dean Lim
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joseph Chao
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte,CA, USA
| | - Stephen Sentovich
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Kurt Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Gagandeep Singh
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Eloise Luevanos
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
10
|
Huang S, Peter Rodemann H, Harari PM. Molecular Targeting of Growth Factor Receptor Signaling in Radiation Oncology. Recent Results Cancer Res 2016; 198:45-87. [PMID: 27318681 DOI: 10.1007/978-3-662-49651-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionizing radiation has been shown to activate and interact with multiple growth factor receptor pathways that can influence tumor response to therapy. Among these receptor interactions, the epidermal growth factor receptor (EGFR) has been the most extensively studied with mature clinical applications during the last decade. The combination of radiation and EGFR-targeting agents using either monoclonal antibody (mAb) or small-molecule tyrosine kinase inhibitor (TKI) offers a promising approach to improve tumor control compared to radiation alone. Several underlying mechanisms have been identified that contribute to improved anti-tumor capacity after combined treatment. These include effects on cell cycle distribution, apoptosis, tumor cell repopulation, DNA damage/repair, and impact on tumor vasculature. However, as with virtually all cancer drugs, patients who initially respond to EGFR-targeted agents may eventually develop resistance and manifest cancer progression. Several potential mechanisms of resistance have been identified including mutations in EGFR and downstream signaling molecules, and activation of alternative member-bound tyrosine kinase receptors that bypass the inhibition of EGFR signaling. Several strategies to overcome the resistance are currently being explored in preclinical and clinical models, including agents that target the EGFR T790 M resistance mutation or target multiple EGFR family members, as well as agents that target other receptor tyrosine kinase and downstream signaling sites. In this chapter, we focus primarily on the interaction of radiation with anti-EGFR therapies to summarize this promising approach and highlight newly developing opportunities.
Collapse
Affiliation(s)
- Shyhmin Huang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, WIMR 3136, 1111 Highland Ave Madison, Madison, WI, 53705, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg, 72076, Tübingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA.
| |
Collapse
|
11
|
Perego P, Robert J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol 2015; 77:5-18. [PMID: 26589793 DOI: 10.1007/s00280-015-2901-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
Oxaliplatin is a third-generation platinum compound approved for clinical use relatively recently as compared to other drugs of the same class. Its main cellular target is DNA, where similarly to cisplatin and carboplatin it forms cross-links. However, due to a unique indication for colorectal cancer, synergistic interaction with fluoropyrimidines and peculiar toxicity profile, oxaliplatin is different from those compounds. Multiple lines of evidence indicate differences in transport and metabolism, consequences of DNA platination, as well as DNA repair and transduction of DNA damage. Here, we explore the preclinical features that may explain the unique properties of oxaliplatin in the clinics. Among them, the capability to accumulate in tumor cells via organic cation transporters, to kill KRAS mutant cells and to activate immunogenic cell death appears helpful to explain in part its clinical behavior. The continuous investigation of the molecular pharmacology of oxaliplatin is expected to provide clues to the definitions of predictors of drug activity and toxicity to translate to the clinical setting.
Collapse
Affiliation(s)
- Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Jacques Robert
- INSERM U916, Institut Bergonié, University of Bordeaux, 229 Cours de l'Argonne, 33000, Bordeaux, France
| |
Collapse
|
12
|
Guthrie OW. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal. Acta Histochem 2015; 117:688-95. [PMID: 26493720 DOI: 10.1016/j.acthis.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
Abstract
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage.
Collapse
|
13
|
Ko JC, Syu JJ, Chen JC, Wang TJ, Chang PY, Chen CY, Jian YT, Jian YJ, Lin YW. Resveratrol Enhances Etoposide-Induced Cytotoxicity through Down-Regulating ERK1/2 and AKT-Mediated X-ray Repair Cross-Complement Group 1 (XRCC1) Protein Expression in Human Non-Small-Cell Lung Cancer Cells. Basic Clin Pharmacol Toxicol 2015; 117:383-91. [PMID: 26046675 DOI: 10.1111/bcpt.12425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/26/2015] [Indexed: 11/27/2022]
Abstract
Etoposide (VP-16), a topoisomerase II inhibitor, is an effective anti-cancer drug used for the treatment of non-small-cell lung cancer (NSCLC). Resveratrol is a naturally occurring polyphenolic compound that has been proved to have anti-cancer activity. XRCC1 is an important scaffold protein involved in base excision repair that is regulated by ERK1/2 and AKT signals and plays an important role in the development of lung cancer. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in etoposide treatment alone or combined with resveratrol-induced cytotoxicity in NSCLC cells has not been identified. In this study, etoposide treatment increased XRCC1 mRNA and protein expression through AKT and ERK1/2 activation in two NSCLC cells, H1703 and H1975. Knockdown of XRCC1 in NSCLC cells by transfection of XRCC1 siRNA or inactivation of ERK1/2 and AKT resulted in enhancing cytotoxicity and cell growth inhibition induced by etoposide. Resveratrol inhibited the expression of XRCC1 and enhanced the etoposide-induced cell death and anti-proliferation effect in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors could rescue the XRCC1 protein level and also the cell survival suppressed by co-treatment with etoposide and resveratrol. These findings suggested that down-regulation of XRCC1 expression by resveratrol can enhance the chemosensitivity of etoposide in NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan.,Department of Nursing, Yuanpei University, Hsinchu, Taiwan
| | - Jhan-Jhang Syu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chien-Yu Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ting Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jun Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
14
|
Chen N, Wu L, Yuan H, Wang J. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell. Int J Biol Sci 2015; 11:833-44. [PMID: 26078725 PMCID: PMC4466464 DOI: 10.7150/ijbs.10564] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.
Collapse
Affiliation(s)
- Ni Chen
- 1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, PR China; ; 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Lijun Wu
- 1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, PR China; ; 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Hang Yuan
- 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Jun Wang
- 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| |
Collapse
|
15
|
Geiger-Maor A, Guedj A, Even-Ram S, Smith Y, Galun E, Rachmilewitz J. Macrophages Regulate the Systemic Response to DNA Damage by a Cell Nonautonomous Mechanism. Cancer Res 2015; 75:2663-73. [DOI: 10.1158/0008-5472.can-14-3635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/29/2015] [Indexed: 11/16/2022]
|
16
|
Tung CL, Jian YJ, Syu JJ, Wang TJ, Chang PY, Chen CY, Jian YT, Lin YW. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 2015; 334:126-35. [DOI: 10.1016/j.yexcr.2015.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 01/21/2023]
|
17
|
Lattanzio L, Tonissi F, Monteverde M, Vivenza D, Russi E, Milano G, Merlano M, Lo Nigro C. Treatment effect of buparlisib, cetuximab and irradiation in wild-type or PI3KCA-mutated head and neck cancer cell lines. Invest New Drugs 2015; 33:310-20. [PMID: 25603975 DOI: 10.1007/s10637-015-0210-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
Abstract
Introduction In complement to anti-EGFR therapy, the targeting of PI3K/AKT/mTOR signaling pathway is of particular interest in the management of Head and Neck Squamous Cell Carcinoma (HNSCC). Here, we assess the effects of PI3K inhibition combined with anti-EGFR monoclonal antibody cetuximab and/or irradiation (RT). Material and methods Anti-proliferative effects of the combination of buparlisib (a specific PI3K inhibitor), cetuximab and RT was determined in two HNSCC cell lines (CAL33, PI3KCA H1047R-mutated and CAL27, PI3KCA wild-type). We examined biochemical factors related to proliferation, apoptosis (caspases), DNA repair (ERCC1, XRCC1) and the PI3K pathway (pEGFR/EGFR, pAKT/AKT, p-p70, p4EBP1). Results The best synergistic combined treatment in inhibiting cell proliferation was sequence 2 (cetuximab followed by buparlisib) in both cell lines. Addition of RT increased sequence 2 anti-proliferative effect only in CAL27. Data on protein expression indicated a possible activation of mTORC2 complex and caspases proteins in CAL27 not seen in CAL33. In CAL33, the synergistic anti-proliferative effect of the two drugs may derive from the higher sensitivity of mutated cells to PI3K targeting. Conclusions Our study demonstrates a synergistic effect of cetuximab followed by buparlisib in both PI3KCA wild-type and mutated cells, even with different intracellular signaling cross-talk depending on mutational status.
Collapse
Affiliation(s)
- Laura Lattanzio
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce University Hospital, Via Carle 25, 12100, Cuneo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Holck S, Nielsen HJ, Hammer E, Christensen IJ, Larsson LI. IQGAP1 in rectal adenocarcinomas: Localization and protein expression before and after radiochemotherapy. Cancer Lett 2015; 356:556-60. [DOI: 10.1016/j.canlet.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/13/2023]
|
19
|
|
20
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS, Mirshahidi S. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol 2013; 50:19-26. [PMID: 24269532 DOI: 10.1016/j.oraloncology.2013.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023]
Abstract
Tumor angiogenesis is a hallmark of advanced cancers and promotes invasion and metastasis. Over 90% of head and neck squamous cell carcinomas (HNSCC) express angiogenic factors such as vascular endothelial growth factor (VEGF). Several preclinical studies support the prognostic implications of angiogenic markers for HNSCC and currently this is an attractive treatment target in solid tumors. Since radiotherapy is one of the most commonly used treatments for HNSCC, it is imperative to identify the interactions between antiangiogenic therapy and radiotherapy, and to develop combination therapy to improve clinical outcome. The mechanisms between antiangiogenic agents and ionizing radiation are complicated and involve many interactions between the vasculature, tumor stroma and tumor cells. The proliferation and metastasis of tumor cells rely on angiogenesis/blood vessel formation. Rapid growing tumors will cause hypoxia, which up-regulates tumor cell survival factors, such as hypoxia-inducing factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), giving rise to more tumor proliferation, angiogenesis and increased radioresistance. Thus, agents that target tumor vasculature and new tumor vessel formation can modulate the tumor microenvironment to improve tumor blood flow and oxygenation, leading to enhanced radiosensitivity. In this review, we discuss the mechanisms of how antiangiogenic therapies improve tumor response to radiation and data that support this combination strategy as a promising method for the treatment of HNSCC in the future.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Department of Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA; Department of Biochemistry, Loma Linda University, Loma Linda, CA, USA
| | - Chung-Tsen Hsueh
- Division of Oncology & Hematology, Loma Linda University, Loma Linda, CA, USA
| | - Seungwon Kim
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Shing Chen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA; Division of Oncology & Hematology, Loma Linda University, Loma Linda, CA, USA
| | - Saied Mirshahidi
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Induction of apoptosis and suppression of ERCC1 expression by the potent amonafide analogue 8-c in human colorectal carcinoma cells. Anticancer Drugs 2013; 24:355-65. [PMID: 23426174 DOI: 10.1097/cad.0b013e32835df8b5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have reported that 8-c [6-(2-(2-(dimethylamino)ethylamino)ethylamino)-2-octyl-1H-benzo[de]isoquinoline-1,3(2H)-dione], a novel amonafide analogue, was generated as a new anticancer candidate. However, little is known about its activity in chemoresistant cells. In this study, the antitumor effects of 8-c on the multi-drug-resistant human colorectal carcinoma cancer cell lines HCT-116/L-OHP and HCT-8/VCR have been investigated for the first time. 8-c showed similar concentration-dependent inhibitory activities against multi-drug-resistant cells and corresponding parental cell lines by the MTT assay after 48 h of treatment. 8-c treatment resulted in the induction of apoptosis, as evidenced by fluorescent staining analysis, comet assay data, and the increase in the number of apoptotic cells as detected by flow cytometry. Western blot, qPCR, and siRNA techniques were used to elucidate the molecular mechanism. Our study suggested that the apoptotic effect of 8-c can be attributed to the upregulation of p53, caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) and the downregulation of Bcl-2. Furthermore, ERCC1 is essential for nucleotide excision repair. ERCC1 expression was correlated with sensitivity to chemotherapy in various colon cancer cell lines. It is intriguing that decreases in ERCC1 protein and mRNA levels were also observed in the HCT-116/L-OHP and HCT-8/VCR cells after exposure to 8-c. Further transient transfection of multi-drug-resistant cells with ERCC1 siRNA enhanced 8-c-induced cytotoxicity. In contrast, epidermal growth factor-induced increase in ERCC1 protein levels was shown to rescue cell viability upon 8-c treatment. These findings suggest that 8-c has a strong potential to be developed as a new antitumor agent for the treatment of multi-drug-resistant colon cancer cells, and is worthy of further studies.
Collapse
|
23
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
24
|
Kfoury A, Le Corf K, El Sabeh R, Journeaux A, Badran B, Hussein N, Lebecque S, Manié S, Renno T, Coste I. MyD88 in DNA repair and cancer cell resistance to genotoxic drugs. J Natl Cancer Inst 2013; 105:937-46. [PMID: 23766530 DOI: 10.1093/jnci/djt120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND MyD88 is an adaptor molecule in Toll-like receptor and interleukin 1 receptor signaling implicated in tumorigenesis through proinflammatory mechanisms. We have recently reported that MyD88 also directly promotes optimal activation of the Ras/Erk pathway. Here we investigate MyD88 implication in the maintenance of the transformation of Ras-dependent tumors. METHODS RNA interference was used to inhibit MyD88 expression in the colon cancer cell lines HCT116 and LS513. Apoptosis, DNA damage, p53 function, ERCC1 levels, and Ras and inflammatory signaling pathways were analyzed. Using in vitro assays and xenotransplantation in nude mice (five per group), HCT116 tumor growth was assessed following MyD88 knockdown in presence or absence of chemotherapy. RESULTS MyD88 exerts antiapoptotic functions in colon cancer cells via the Ras/Erk, but not the NF-κB, pathway. MyD88 inhibition leads to defective ERCC1-dependent DNA repair and to accumulation of DNA damage, resulting in cancer cell death via p53. Furthermore, we show that knocking down MyD88 sensitizes cancer cells to genotoxic agents such as platinum salts in vitro and in vivo. Indeed, HCT116 tumor growth following treatment with a combination of suboptimal MyD88 inhibition and suboptimal doses of cisplatin (fold tumor increase = 5.4 ± 1.6) was statistically significantly reduced in comparison to treatment with doxycycline alone (12.4 ± 3.1) or with cisplatin alone (12.5 ± 2.6) (P = .005 for both, one-sided Student t test). CONCLUSIONS Collectively, these results indicate a novel and original link between inflammation, DNA repair, and cancer, and provide further rationale for MyD88 as a potential therapeutic target in Ras-dependent cancers, in the context of concomitant genotoxic chemotherapy.
Collapse
|
25
|
Ozcan MF, Dizdar O, Dincer N, Balcı S, Guler G, Gok B, Pektas G, Seker MM, Aksoy S, Arslan C, Yalcin S, Balbay MD. Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum-based neoadjuvant chemotherapy. Urol Oncol 2012; 31:1709-15. [PMID: 22863869 DOI: 10.1016/j.urolonc.2012.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Excision repair cross-complementation group 1 enzyme (ERCC1) plays a key role in the removal of platinum induced DNA adducts and cisplatin resistance. Prognostic role of ERCC1 expression in the neoadjuvant setting in bladder cancer has not been reported before. We evaluated the prognostic role of ERCC1 expression in bladder cancer receiving platinum-based neoadjuvant chemotherapy. MATERIALS AND METHODS Thirty-eight patients with muscle invasive bladder cancer who received neoadjuvant platinum-based chemotherapy were included. Clinical and histopathologic parameters along with immunohistochemical ERCC1 staining were examined and correlated with response rates and survival. RESULTS Pathologic complete response rates were similar between patients with low and high ERCC1 expression. Median disease-free survival (DFS) was 9.3 vs. 20.5 months (P = 0.186) and median overall survival (OS) was 9.3 vs. 26.7 months (P = 0.058) in patients with high ERCC1 expression compared with those with low expression, respectively. In multivariate Cox regression analysis: pathological complete response (pCR) after chemotherapy (hazard ratio (HR) 0.1, 95% CI 0.012-0.842, P = 0.034) and high ERCC1 expression (HR 3.7, 95% CI 1.2-11.2, P = 0.019) were significantly associated with DFS. Patient age (>60 vs. ≤ 60 years) (HR 3.4, 95% CI 1.2-9.4, P = 0.018), the presence of pCR (HR 0.11, 95% CI 0.014-0.981, P = 0.048) and high ERCC expression (HR 6.1, 95 CI 1.9-19.9, P = 0.002) were significantly associated with OS. CONCLUSIONS Our results showed that high ERCC1 expression was independently associated with shorter disease-free and overall survival in patients with bladder cancer who received neoadjuvant platinum-based chemotherapy. ERCC1 may represent a potential predictive marker for platinum-based treatment in bladder cancer.
Collapse
Affiliation(s)
- Muhammet Fuat Ozcan
- Department of Urology, Ankara Ataturk Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Valencia T, Joseph A, Kachroo N, Darby S, Meakin S, Gnanapragasam VJ. Role and expression of FRS2 and FRS3 in prostate cancer. BMC Cancer 2011; 11:484. [PMID: 22078327 PMCID: PMC3231952 DOI: 10.1186/1471-2407-11-484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background FGF receptor substrates (FRS2 and FRS3) are key adaptor proteins that mediate FGF-FGFR signalling in benign as well as malignant tissue. Here we investigated FRS2 and FRS3 as a means of disrupting global FGF signalling in prostate cancer. Methods FRS2 and FRS3 manipulation was investigated in vitro using over-expression, knockdown and functional assays. FRS2 and FRS3 expression was profiled in cell lines and clinical tumors of different grades. Results In a panel of cell lines we observed ubiquitous FRS2 and FRS3 transcript and protein expression in both benign and malignant cells. We next tested functional redundancy of FRS2 and FRS3 in prostate cancer cells. In DU145 cells, specific FRS2 suppression inhibited FGF induced signalling. This effect was not apparent in cells stably over-expressing FRS3. Indeed FRS3 over-expression resulted in enhanced proliferation (p = 0.005) compared to control cells. Given this functional redundancy, we tested the therapeutic principle of dual targeting of FRS2 and FRS3 in prostate cancer. Co-suppression of FRS2 and FRS3 significantly inhibited ERK activation with a concomitant reduction in cell proliferation (p < 0.05), migration and invasion (p < 0.05). Synchronous knockdown of FRS2 and FRS3 with exposure to cytotoxic irradiation resulted in a significant reduction in prostate cancer cell survival compared to irradiation alone (p < 0.05). Importantly, this synergistic effect was not observed in benign cells. Finally, we investigated expression of FRS2 and FRS3 transcript in a cohort of micro-dissected tumors of different grades as well as by immunohistochemistry in clinical biopsies. Here, we did not observe any difference in expression between benign and malignant biopsies. Conclusions These results suggest functional overlap of FRS2 and FRS3 in mediating mitogenic FGF signalling in the prostate. FRS2 and FRS3 are not over-expressed in tumours but targeted dual inhibition may selectively adversely affect malignant but not benign prostate cells.
Collapse
Affiliation(s)
- Tania Valencia
- Translational Prostate Cancer Group, Department of Oncology, Hutchison/MRC research centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
27
|
Pei XY, Dai Y, Youssefian LE, Chen S, Bodie WW, Takabatake Y, Felthousen J, Almenara JA, Kramer LB, Dent P, Grant S. Cytokinetically quiescent (G0/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood 2011; 118:5189-5200. [PMID: 21911831 PMCID: PMC3217403 DOI: 10.1182/blood-2011-02-339432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/30/2011] [Indexed: 02/05/2023] Open
Abstract
Effects of Chk1 and MEK1/2 inhibition were investigated in cytokinetically quiescent multiple myeloma (MM) and primary CD138(+) cells. Coexposure to the Chk1 and MEK1/2 inhibitors AZD7762 and selumetinib (AZD6244) robustly induced apoptosis in various MM cells and CD138(+) primary samples, but spared normal CD138(-) and CD34(+) cells. Furthermore, Chk1/MEK1/2 inhibitor treatment of asynchronized cells induced G(0)/G(1) arrest and increased apoptosis in all cell-cycle phases, including G(0)/G(1). To determine whether this regimen is active against quiescent G(0)/G(1) MM cells, cells were cultured in low-serum medium to enrich the G(0)/G(1) population. G(0)/G(1)-enriched cells exhibited diminished sensitivity to conventional agents (eg, Taxol and VP-16) but significantly increased susceptibility to Chk1 ± MEK1/2 inhibitors or Chk1 shRNA knock-down. These events were associated with increased γH2A.X expression/foci formation and Bim up-regulation, whereas Bim shRNA knock-down markedly attenuated lethality. Immunofluorescent analysis of G(0)/G(1)-enriched or primary MM cells demonstrated colocalization of activated caspase-3 and the quiescent (G(0)) marker statin, a nuclear envelope protein. Finally, Chk1/MEK1/2 inhibition increased cell death in the Hoechst-positive (Hst(+)), low pyronin Y (PY)-staining (2N Hst(+)/PY(-)) G(0) population and in sorted small side-population (SSP) MM cells. These findings provide evidence that cytokinetically quiescent MM cells are highly susceptible to simultaneous Chk1 and MEK1/2 inhibition.
Collapse
Affiliation(s)
- Xin-Yan Pei
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yadav A, Kumar B, Teknos TN, Kumar P. Sorafenib enhances the antitumor effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 DNA repair proteins. Mol Cancer Ther 2011; 10:1241-51. [PMID: 21551262 PMCID: PMC3132282 DOI: 10.1158/1535-7163.mct-11-0004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma remains a challenging clinical problem because of the persisting high rate of local and distant failure due to the acquisition of chemo- and radioresistance. In this study, we examined if treatment with sorafenib, a potent inhibitor of Raf kinase and VEGF receptor, could reverse the resistant phenotype in tumor and tumor-associated endothelial cells, thereby enhancing the therapeutic efficacy of currently used chemoradiation treatment. We used both in vitro and in vivo models to test the efficacy of sorafenib either as a single agent or in combination with chemoradiation. Sorafenib, as a single agent, showed antitumor and angiogenesis properties, but the effects were more pronounced when used in combination with chemoradiation treatment. Sorafenib significantly enhanced the antiproliferative effects of chemoradiation treatment by downregulating DNA repair proteins (ERCC-1 and XRCC-1) in a dose-dependent manner. In addition, combination treatment significantly inhibited tumor cell colony formation, tumor cell migration, and tumor cell invasion. Combination treatment was also very effective in inhibiting VEGF-mediated angiogenesis in vitro. In a severe combined immunodeficient mouse xenograft model, combination treatment was very well tolerated and significantly inhibited tumor growth and tumor angiogenesis. Interestingly, following combination treatment, low-dose sorafenib treatment alone was highly effective as a maintenance regimen. Taken together, our results suggest a potentially novel strategy to use sorafenib to overcome chemo- and radioresistance in tumor and tumor-associated endothelial to enhance the effectiveness of the chemoradiation therapy.
Collapse
Affiliation(s)
- Arti Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA 43210
| | - Bhavna Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA 43210
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA 43210
| | - Theodoros N. Teknos
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA 43210
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA 43210
| | - Pawan Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA 43210
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
29
|
Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 2010; 9:889-97. [DOI: 10.1016/j.dnarep.2010.05.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/28/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
30
|
Kargiotis O, Geka A, Rao JS, Kyritsis AP. Effects of irradiation on tumor cell survival, invasion and angiogenesis. J Neurooncol 2010; 100:323-38. [PMID: 20449629 DOI: 10.1007/s11060-010-0199-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/13/2010] [Indexed: 12/19/2022]
Abstract
Ionizing irradiation is a widely applied therapeutic method for the majority of solid malignant neoplasms, including brain tumors where, depending on localization, this might often be the only feasible primary intervention.Without doubt, it has been proved to be a fundamental tool available in the battlefield against cancer, offering a clear survival benefit in most cases. However, numerous studies have associated tumor irradiation with enhanced aggressive phenotype of the remaining cancer cells. A cell population manages to survive after the exposure, either because it receives sublethal doses and/or because it successfully utilizes the repair mechanisms. The biology of irradiated cells is altered leading to up-regulation of genes that favor cell survival, invasion and angiogenesis. In addition, hypoxia within the tumor mass limits the cytotoxicity of irradiation, whereas irradiation itself may worsen hypoxic conditions, which also contribute to the generation of resistant cells. Activation of cell surface receptors, such as the epidermal growth factor receptor, utilization of signaling pathways, and over-expression of cytokines, proteases and growth factors, for example the matrix metalloproteinases and vascular endothelial growth factor, protect tumor and non-tumor cells from apoptosis, increase their ability to invade to adjacent or distant areas, and trigger angiogenesis. This review will try to unfold the various molecular events and interactions that control tumor cell survival, invasion and angiogenesis and which are elicited or influenced by irradiation of the tumor mass, and to emphasize the importance of combining irradiation therapy with molecular targeting.
Collapse
Affiliation(s)
- Odysseas Kargiotis
- Neurosurgical Research Institute, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
31
|
Quéro L, Giocanti N, Hennequin C, Favaudon V. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells. Prostate 2010; 70:401-11. [PMID: 19902473 DOI: 10.1002/pros.21074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Bicalutamide (Casodex) reportedly improves high-risk prostate cancer survival as an adjuvant treatment following radiotherapy. However, biological data for the interaction between bicalutamide and ionizing radiation in concomitant association are lacking. METHODS To explore this issue, androgen-dependent (LNCaP) and -independent (DU145) human prostate cancer cells were exposed for 48 hr to 20, 40, or 80 microM bicalutamide introduced before (neoadjuvant), during (concomitant), or following (adjuvant) radiation. Growth inhibition and cytotoxicity, cell cycle distribution and expression of the prostate serum antigen (PSA) and androgen receptor (AR), were measured as endpoints. RESULTS Bicalutamide-induced cytotoxic and cytostatic effects were found to be correlated with a marked G1 phase arrest and S phase depression. The drug down-regulated PSA and AR proteins and psa mRNA in LNCaP cells. However, transient up-regulation of the expression of ar mRNA was observed in the presence of 40 microM drug. DU145 cells did not express PSA and proved to be comparatively resistant to the drug from both cytostatic and cytotoxic effects. Bicalutamide dose-dependently induced a significant decrease of radiation susceptibility among drug survivors in LNCaP cells, whilst the interaction appeared to be additive in DU145 cells. CONCLUSIONS The antagonistic radiation-drug interaction observed in LNCaP cells is of significance in relation to combined radiotherapy-bicalutamide treatments directed against tumors expressing the AR. The results suggest that bicalutamide is amenable to combined schedule with radiotherapy provided the drug and radiation are not given in close temporal proximity.
Collapse
Affiliation(s)
- Laurent Quéro
- Institut Curie, Bât. 110-112, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
32
|
Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM, Lin YW. Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol 2010; 79:655-64. [PMID: 19799875 DOI: 10.1016/j.bcp.2009.09.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 01/20/2023]
Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. Emodin exhibits anticancer effects against a variety of cancer cells, including lung cancer cells. ERCC1 and Rad51 proteins are essential for nucleotide excision repair and homologous recombination, respectively. Furthermore, ERCC1 and Rad51 overexpression induces resistance to DNA-damaging agents that promote DNA double-strand breaks. Accordingly, the aim of this study was to determine the role of ERCC1 and Rad51 in emodin-mediated cytotoxicity in human non-small cell lung cancer (NSCLC) cells. Both ERCC1 and Rad51 protein levels as well as mRNA levels were decreased in four different NSCLC cell lines after exposure to emodin. These decreases correlated with the inactivation of the MKK1/2-ERK1/2 pathway. Moreover, cellular ERCC1 and Rad51 protein and mRNA levels were specifically inhibited by U0126, a MKK1/2 inhibitor. We found that transient transfection of human NSCLC cells with si-ERCC1 or si-Rad51 RNA and cotreatment with U0126 could enhance emodin-induced cytotoxicity. In contrast, overexpression of constitutively active MKK1/2 vectors (MKK1/2-CA) was shown to significantly recover reduced phospho-ERK1/2, ERCC1, and Rad51 protein levels and to rescue cell viability upon emodin treatment. These results demonstrate that activation of the MKK1/2-ERK1/2 pathway is the upstream signal regulating the expressions of ERCC1 and Rad51, which are suppressed by emodin to induce cytotoxicity in NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Department of Health, The Executive Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyn RE, Munshi A, Haymach JV, Milas L, Ang KK. Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol 2009; 92:316-22. [PMID: 19615770 PMCID: PMC2754282 DOI: 10.1016/j.radonc.2009.06.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 12/29/2022]
Abstract
Radiotherapy plays a crucial role in the treatment of many malignancies; however, locoregional disease progression remains a critical problem. This has stimulated laboratory research into understanding the basis for tumor cell resistance to radiation and the development of strategies for overcoming such resistance. We know that some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer and that these pathways also invoke cell survival mechanisms that lead to resistance to radiation. For example, abnormal activation of the epidermal growth factor receptor (EGFR) promotes unregulated growth and is believed to contribute to clinical radiation resistance. Molecular blockade of EGFR signaling is an attractive strategy for enhancing the cytotoxic effects of radiotherapy and, as shown in numerous reports, the radiosensitizing effects of EGFR antagonists correlate with a suppression of the ability of the cells to repair radiation-induced DNA double strand breaks (DSBs). The molecular connection between the EGFR and its governance of DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this review is to highlight what is currently known regarding EGFR signaling and the processes responsible for repairing radiation-induced DNA lesions that would explain the radiosensitizing effects of EGFR antagonists.
Collapse
Affiliation(s)
- Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
34
|
Pejchal J, Österreicher J, Vilasová Z, Tichý A, Vávrová J. Expression of activated ATF-2, CREB and c-Myc in rat colon transversum after whole-body γ-irradiation and its contribution to pathogenesis and biodosimetry. Int J Radiat Biol 2009; 84:315-24. [DOI: 10.1080/09553000801953367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Singh B, Schneider M, Knyazev P, Ullrich A. UV-induced EGFR signal transactivation is dependent on proligand shedding by activated metalloproteases in skin cancer cell lines. Int J Cancer 2008; 124:531-9. [PMID: 19003995 DOI: 10.1002/ijc.23974] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to extensive ultraviolet (UV) rays is a major cause of skin cancer, which is thought to be initiated by DNA mutations. Members of the epidermal growth factor receptor (EGFR) family are important in various pathophysiologic processes like cancer and are shown to be phosphorylated upon UV exposure. Here we show that EGFR phosphorylation by modest UV doses is dependent on metalloprotease activity and resultant epidermal growth factor (EGF) family proligand shedding. This proligand cleavage releases the mature ligand, which then binds to and activates EGFR. We show that UV induced EGFR phosphorylation in transformed cell lines of melanocyte and keratinocyte origin, which was reduced upon preincubation with a broad-spectrum metalloprotease inhibitor, BB94. UV also activated EGFR downstream signaling via Erk and Akt pathways in a BB94-sensitive manner. Furthermore, using neutralizing antibodies we found that proligand amphiregulin was required for UV-induced EGFR activation in SCC-9 cells. Using RNAi this EGFR activation was further shown to depend on the metalloproteases ADAM9 and ADAM17 in SCC-9 cells. cDNA array hybridization and RT-PCR analysis showed overexpression of a Disintegrin and a Metalloproteases (ADAMs) and EGF family proligands in melanoma cell lines. Additionally, blocking EGFR signal transactivation by BB94 led to increased apoptosis in UV-irradiated cells. EGFR signal transactivation also led to increased stability of the DNA repair protein, PARP, under UV stress. Thus, both antiapoptotic and DNA repair pathways are activated simultaneously by EGFR signal transactivation. Together, our data provide novel insights into the mechanism of UV-induced EGFR activation, suggesting broad relevance of the UV-ADAM-proligand-EGFR-Erk/Akt pathway and its significance in skin cancer.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | |
Collapse
|
36
|
Chen D, Yu Z, Zhu Z, Lopez CD. E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair. J Biol Chem 2008; 283:15381-9. [PMID: 18348985 PMCID: PMC2397471 DOI: 10.1074/jbc.m710296200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/12/2008] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor activates S-phase-promoting genes, mediates apoptosis, and stimulates DNA repair through incompletely understood mechanisms. XRCC1 (x-ray repair cross-complementing group 1) protein is important for efficient single strand break/base excision repair. Although both damage and proliferative signals increase XRCC1 levels, the mechanisms regulating XRCC1 transcription remain unclear. To study these upstream mechanisms, the XRCC1 promoter was cloned into a luciferase reporter. Ectopic expression of wild-type E2F1, but not an inactive mutant E2F1(132E), activated the XRCC1 promoter-luciferase reporter, and deletion of predicted E2F1 binding sites in the promoter attenuated E2F1-induced activation. Endogenous XRCC1 expression increased in cells conditionally expressing wild-type, but not mutant E2F1, and methyl methanesulfonate-induced DNA damage stimulated XRCC1 expression in E2F1(+/+) but not E2F1(-/-) mouse embryo fibroblasts (MEFs). Additionally, E2F1(-/-) MEFs displayed attenuated DNA repair after methyl methanesulfonate-induced damage compared with E2F1(+/+) MEFs. Moreover, Chinese hamster ovary cells with mutant XRCC1 (EM9) were more sensitive to E2F1-induced apoptosis compared with Chinese hamster ovary cells with wild-type XRCC1 (AA8). These results provide new mechanistic insight into the role of the E2F pathway in maintaining genomic stability.
Collapse
Affiliation(s)
| | | | | | - Charles D. Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
37
|
Hagan MP, Yacoub A, Dent P. Radiation-induced PARP activation is enhanced through EGFR-ERK signaling. J Cell Biochem 2008; 101:1384-93. [PMID: 17295209 DOI: 10.1002/jcb.21253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the impact of EGFR-ERK signaling on poly (ADP-ribose) polymerase (PARP) activation following ionizing irradiation of human prostate cancer (PCa) cell lines displaying marked differences in ERK dependence. PARP activation was indicated by the appearance of polyADP-ribose, the incorporation of P32-labelled NADH, and by cellular NADH. EGFR-ERK signaling was manipulated through ligand activation or signal interruption using the tyrphostin AG1478, or MEK inhibitor PD 184352. EGF activation of ERK prior to irradiation was associated with a marked increase in PARP activation and decreased survival in both cell lines. Prior inactivation of PARP protected both cell lines from the initial decrease in NAD+ and improved the survival of LNCaP cells following combined EGF and IR treatment. MEK inhibitor PD 184352 also reduced PARP activation and improved LNCaP survival following EGF and IR treatment. These data imply that PARP activation following exposure to ionizing radiation is enhanced through EGFR-ERK signaling.
Collapse
Affiliation(s)
- Michael P Hagan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | |
Collapse
|
38
|
Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2008; 83:781-91. [PMID: 18058366 DOI: 10.1080/09553000701769970] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Over the last decade evidence has accumulated indicating that cell membrane-bound growth factor receptor of the erbB family and especially the epidermal growth factor receptor EGFR (erbB1) mediates resistance of tumor cells to both chemo- and radiotherapy when mutated or overexpressed. More recently a novel link between EGFR signaling pathways and DNA repair mechanisms, especially non-homologous end joining (NHEJ) repair could be demonstrated. The following review summarizes the current knowledge on the role of EGFR and its downstream signaling pathways in the regulation of cellular radiation response and DNA repair. CONCLUSION The novel findings on radiation-induced EGFR-signaling and its involvement in regulating DNA-double strand break repair need further investigations of the detailed mechanisms involved. The results to be obtained may not only improve our knowledge on basic mechanisms of radiation sensitivity/resistance but also will promote translational approaches to test new strategies for clinically applicable molecular targeting.
Collapse
Affiliation(s)
- H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, Eberhard-Karls University Tuebingen, Germany.
| | | | | |
Collapse
|
39
|
Role of extracellular signal-regulated kinase (ERK) signaling in nucleotide excision repair and genotoxicity in response to As(III) and Pb(II). PURE APPL CHEM 2008. [DOI: 10.1351/pac200880122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Arsenic and lead can induce genetic injuries and epigenetic signaling pathways in cultured mammalian cells. To test whether signaling pathways affect the extent of genetic injuries, we explored the impacts of extracellular signal-regulated kinase 1 and 2 (ERK) on nucleotide excision repair (NER), cytotoxicity, and genotoxicity following sodium arsenite [As(III)] and lead acetate [Pb(II)]. Sustained ERK activation was observed in human cells exposed to As(III) and Pb(II). As(III) inhibited the cellular NER synthesis capability; conversely, Pb(II) stimulated it. ERK activation contributed to the As(III)-induced NER inhibition and micronucleus formation. In contrast, this signal was required for inducing cellular NER activity and preventing mutagenesis following Pb(II). ERK activation by Pb(II) was dependent on protein kinase C (PKCα) that also exhibited anti-mutagenicity. Enforced expression of ERK signaling markedly elevated the cellular NER activity, which was suppressed by As(III). Nonetheless, ERK activation could counteract the cytotoxicity caused by these two metals. Together, the results indicate that pro-survival ERK signaling exhibits dual and opposing impacts on NER process following As(III) and Pb(II) exposures. The findings also suggest that ERK is an important epigenetic signaling in the determination of metal genotoxicity.
Collapse
|
40
|
Casarez EV, Dunlap-Brown ME, Conaway MR, Amorino GP. Radiosensitization and modulation of p44/42 mitogen-activated protein kinase by 2-Methoxyestradiol in prostate cancer models. Cancer Res 2007; 67:8316-24. [PMID: 17804747 DOI: 10.1158/0008-5472.can-07-1755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h. This decrease correlated with in vitro radiosensitization measured by clonogenic assays, and these effects were blocked by the expression of constitutively active MEK. Male nude mice with subcutaneous PC3 xenografts in the hind leg were treated with 2ME2 (75 mg/kg) p.o. for 5 days, and 2 Gy radiation fractions were delivered each day at 4 h after drug treatment. A statistically significant super-additive effect between radiation and 2ME2 was observed in this subcutaneous model, using analysis of within-animal slopes. A PC-3M orthotopic model was also used, with bioluminescence imaging as an end point. PC-3M cells stably expressing the luciferase gene were surgically implanted into the prostates of male nude mice. Mice were given oral doses of 2ME2 (75 mg/kg), with radiation fractions (3 Gy) delivered 4 h later. Mice were then imaged weekly for 4 to 5 weeks with a Xenogen system. A significant super-additive effect was also observed in the orthotopic model. These data show that 2ME2 is an effective radiosensitizing agent against human prostate cancer xenografts, and that the mechanism may involve a decrease in mitogen-activated protein kinase phosphorylation by 2ME2.
Collapse
Affiliation(s)
- Eli V Casarez
- Department of Radiation Oncology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
41
|
Baumann M, Krause M, Dikomey E, Dittmann K, Dörr W, Kasten-Pisula U, Rodemann HP. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 2007; 83:238-48. [PMID: 17502118 DOI: 10.1016/j.radonc.2007.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed.
Collapse
Affiliation(s)
- Michael Baumann
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Scarlatti F, Sala G, Ricci C, Maioli C, Milani F, Minella M, Botturi M, Ghidoni R. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 2007; 253:124-30. [PMID: 17321671 DOI: 10.1016/j.canlet.2007.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 02/06/2023]
Abstract
Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.
Collapse
Affiliation(s)
- Francesca Scarlatti
- Laboratory of Biochemistry & Mol Biology, San Paolo Medical School, University of Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
ERK1/2 is an important subfamily of mitogen-activated protein kinases that control a broad range of cellular activities and physiological processes. ERK1/2 can be activated transiently or persistently by MEK1/2 and upstream MAP3Ks in conjunction with regulation and involvement of scaffolding proteins and phosphatases. Activation of ERK1/2 generally promotes cell survival; but under certain conditions, ERK1/2 can have pro-apoptotic functions.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
44
|
Christmann M, Fritz G, Kaina B. Induction of DNA Repair Genes in Mammalian Cells in Response to Genotoxic Stress. Genome Integr 2006. [DOI: 10.1007/7050_014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Mitra AK, Bhat N, Sarma A, Krishna M. Alteration in the expression of signaling parameters following carbon ion irradiation. Mol Cell Biochem 2006; 276:169-73. [PMID: 16132698 DOI: 10.1007/s11010-005-3903-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/16/2005] [Indexed: 11/28/2022]
Abstract
Ionizing radiation induces DNA damage, which generates a complex array of genotoxic responses. These responses depend on the type of DNA damage, which in turn can lead to unique cellular responses. High LET radiation results in clustered damages. This evokes specific signaling responses, which can be cytotoxic or cytoprotective in nature. In the present study the effect of carbon ion irradiation on p 44/42 MAPK and NF-kappaB, which are essentially survival factors, have been studied. Moreover, the effect of inhibition of DNA-PK, which is an important component of DNA repair mechanism, with wortmanin on these signaling factors has been studied. The expression of p 44/42 MAPK was different at 0.1 Gy and 1 Gy and wortmanin was found to inhibit its expression. NF-kappaB expression was higher at 1 Gy than at 0.1 Gy and its expression is unaffected by inhibition of DNA-PK. The notable findings of this study are that the responses to high and low dose of high LET radiation are essentially different and the 6 h time point post irradiation is crucial in deciding the response and needs further investigation.
Collapse
Affiliation(s)
- Anirban Kumar Mitra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | |
Collapse
|
46
|
Li JP, Lin JC, Yang JL. ERK activation in arsenite-treated G1-enriched CL3 cells contributes to survival, DNA repair inhibition, and micronucleus formation. Toxicol Sci 2005; 89:164-72. [PMID: 16207941 DOI: 10.1093/toxsci/kfj004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenite is known to induce chromosomal damage and extracellular signal-regulated kinases 1/2 (ERK) signaling transduction pathway. Arsenite also perturbs mitotic spindle and induces G2/M prolongation, leading to genomic instability. However, little is known concerning whether G1 phase is susceptible to arsenite in causing genomic instability and ERK activation. In this study, we investigate the roles of ERK activation in survival, micronucleus formation, and nucleotide excision repair (NER) synthesis in arsenite-treated G1-enriched CL3 human non-small-cell lung carcinoma cells. We found that G1 was the most insensitive phase to arsenite cytotoxicity, yet it was highly susceptible to arsenite in micronucleus induction. After arsenite exposure, the G1 cells exhibited a marked retard in the formation of binucleated cells when they were cultured in cytochalasin B, an inhibitor of cytokinesis, suggesting that arsenite delays the cell cycle progression. Arsenite activated sustained-ERK signal in G1 cells whose suppression further decreased cell proliferation and survival and could lower the micronucleus induction. The NER synthesis activity of G1 cells was inhibited by arsenite as a function of the extent of ERK activation. Intriguingly, blockage of ERK activation recovered NER synthesis activity in the arsenite-treated G1 cells. Together, these results suggest that ERK activation in arsenite-treated G1 cells counteracts cytotoxicity and contributes to genomic instability via NER synthesis inhibition and micronucleus induction.
Collapse
Affiliation(s)
- Ju-Pi Li
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology and Department of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | |
Collapse
|
47
|
Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, Cheng JF, Chen DJ. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res 2005; 164:17-26. [PMID: 15966761 DOI: 10.1667/rr3354] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several types of cellular responses to ionizing radiation, such as the adaptive response or the bystander effect, suggest that low-dose radiation may possess characteristics that distinguish it from its high-dose counterpart. Accumulated evidence also implies that the biological effects of low-dose and high-dose ionizing radiation are not linearly distributed. We have investigated, for the first time, global gene expression changes induced by ionizing radiation at doses as low as 2 cGy and have compared this to expression changes at 4 Gy. We applied cDNA microarray analyses to G1-arrested normal human skin fibroblasts subjected to X irradiation. Our data suggest that both qualitative and quantitative differences exist between gene expression profiles induced by 2 cGy and 4 Gy. The predominant functional groups responding to low-dose radiation are those involved in cell-cell signaling, signal transduction, development and DNA damage responses. At high dose, the responding genes are involved in apoptosis and cell proliferation. Interestingly, several genes, such as cytoskeleton components ANLN and KRT15 and cell-cell signaling genes GRAP2 and GPR51, were found to respond to low-dose radiation but not to high-dose radiation. Pathways that are specifically activated by low-dose radiation were also evident. These quantitative and qualitative differences in gene expression changes may help explain the non-linear correlation of biological effects of ionizing radiation from low dose to high dose.
Collapse
Affiliation(s)
- Liang-Hao Ding
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, Nemunaitis J, Cunningham C, Yacoub A, Dent P, Fisher PB. mda-7/IL-24: exploiting cancer's Achilles' heel. Mol Ther 2005; 11:4-18. [PMID: 15585401 DOI: 10.1016/j.ymthe.2004.08.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 12/17/2022] Open
Abstract
The mda-7/IL-24 cDNA was isolated almost a decade ago in a screen for genes differentially upregulated following growth arrest and terminal differentiation of a human melanoma cell line employed as an in vitro cell differentiation model. The underlying rationale for the screen was that oncogenesis arises from a cellular dedifferentiation process culminating in uncontrolled proliferation and acquisition of invasive and metastatic potential. Identification of genes upregulated during the process of reactivation of faulty or inoperational differentiation maintenance programs was postulated to have cancer gene therapeutic potential. In this context, it is heartening to note that mda-7/IL-24 has made a methodical and progressive journey, from an unidentified novel sequence with little homology to known genes at its time of isolation to currently having the status of a molecule belonging to the IL-10-related family of cytokines, with considerable cancer gene therapeutic potential. Extensive in vitro and in vivo human tumor xenograft studies have established its transformed cell apoptosis-inducing capacity in various model systems. It has recently taken an important step for a candidate cancer gene therapeutic molecule, in the ultimate goal of benchtop to clinic, by being currently utilized in human Phase I/II clinical trials. This review provides a current perspective of our understanding of mda-7/IL-24, including established and more recent information about the molecular properties, specificity of anti-tumor-cell apoptosis-inducing activity, and underlying mechanisms of this action relative to its cancer gene therapeutic potential.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schneider S, Uchida K, Brabender J, Baldus SE, Yochim J, Danenberg KD, Salonga D, Chen P, Tsao-Wei D, Groshen S, Hoelscher AH, Schneider PM, Danenberg PV. Downregulation of TS, DPD, ERCC1, GST-Pi, EGFR, and HER2 gene expression after neoadjuvant three-modality treatment in patients with esophageal cancer. J Am Coll Surg 2005; 200:336-44. [PMID: 15737843 DOI: 10.1016/j.jamcollsurg.2004.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 07/20/2004] [Accepted: 10/29/2004] [Indexed: 01/06/2023]
Abstract
BACKGROUND To find out if neoadjuvant therapy could alter tumor response determinants that might affect tumor sensitivity to the treatment, we investigated intratumoral expressions of genes associated with chemosensitivity, radiosensitivity, or both before and after radiochemotherapy. STUDY DESIGN Twenty-four patients with locally advanced, resectable esophageal cancer (cT2-4,Nx,M0) received neoadjuvant 5-FU/cisplatin/36 Gy treatment followed by transthoracic en bloc esophagectomy. Expression levels of thymidylate synthase, dihydropyrimidine dehydrogenase, excision repair cross-complementing gene 1 , glutathione S-transferase Pi, epidermal growth factor receptor, and HER2 were measured in matched preradiochemotherapy endoscopic tumor biopsies and in postradiochemotherapy resection specimens. mRNA was isolated from formalin-fixed, paraffin-embedded, laser microdissected tumor tissues, and a quantitative fluorescent dye real-time reverse transcription polymerase chain reaction system was used for gene expression measurement. RESULTS There was a significant reduction in the expression levels of thymidylate synthase (p < 0.01), dihydropyrimidine dehydrogenase (p = 0.03), excision repair cross-complementing gene 1 (p < 0.01), glutathione S-transferase Pi (p = 0.03), HER2 (p < 0.01), and epidermal growth factor receptor (p = 0.04). The change in the levels of epidermal growth factor receptor mRNA in post- compared with pretreatment specimens was significantly associated with the histopathologic grade of regression (p = 0.01). CONCLUSIONS The expression levels of a set of genes that are possible determinants of 5-FU/cisplatin/radiation therapy antitumor activity are significantly downregulated by neoadjuvant radiochemotherapy in esophageal cancer.
Collapse
Affiliation(s)
- Sylke Schneider
- Department of Molecular Biology and Biochemistry and Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Iyer R, Thames HD, Tealer JR, Mason KA, Evans SC. Effect of reduced EGFR function on the radiosensitivity and proliferative capacity of mouse jejunal crypt clonogens. Radiother Oncol 2005; 72:283-9. [PMID: 15450726 DOI: 10.1016/j.radonc.2004.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/26/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE Previous data indicate that the EGFR pathway is involved in the response of tumor cell lines to irradiation. To determine if this receptor plays a role in the response of the intestinal mucosa, the effect of a spontaneous mutation in EGFR (B6C3-a-wa-2) on radiosensitivity and proliferative capacity was investigated using in vivo clonogenic assays and immunohistochemistry. PATIENTS AND METHODS EGFR mutant mice were compared with wild-type mice using the in vivo jejunal microcolony assay using single and split doses to measure the radiosensitivity and repopulation of clonogenic jejunal mucosal cells. In addition, paraffin-embedded tissue sections were assessed for proliferation (PCNA), DNA repair (Ku70 and gamma H2AX), and apoptosis (TUNEL) by immunofluorescent staining (wild-type vs. heterozygous only) at various times after 5 Gy single dose. RESULTS After the high doses used in the split-dose experiments, EGFR heterozygous and homozygous mutant mice were significantly more radiosensitive than their wild-type littermates. There was no clear difference in split-dose repair based on EGFR function. After 5 Gy single dose there were significantly more apoptotic cells within the crypts of heterozygous mice than of wild-type mice, beginning at 3h post irradiation. Decreased proliferation was observed only in the homozygous mutant mice. PCNA staining was lower in the heterozygous mice than in wild-type mice at 1 and 3 h post-5 Gy. CONCLUSION The results indicate that after high doses the radiosensitivity of EGFR mutant mice is significantly higher than that of wild-type, and that this could be the result of an increase in apoptosis rather than reduced DNA repair. Proliferative capacity was modestly reduced, but only in the homozygous mutants.
Collapse
Affiliation(s)
- Radhika Iyer
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | | | | | | |
Collapse
|