1
|
Xu B, Xia ZM, Zhan R, Yang KK. Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate- co-Terephthalate). Polymers (Basel) 2024; 16:2280. [PMID: 39204500 PMCID: PMC11359266 DOI: 10.3390/polym16162280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol-epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications.
Collapse
Affiliation(s)
| | | | | | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China; (B.X.); (Z.-M.X.); (R.Z.)
| |
Collapse
|
2
|
Yu H, Liu X, Qiu X, Sun T, Cao J, Lv M, Sui Z, Wang Z, Jiao S, Xu Y, Wang F. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134176. [PMID: 38569347 DOI: 10.1016/j.jhazmat.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased β-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.
Collapse
Affiliation(s)
- Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xin Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoguo Qiu
- Shandong Provincial Eco-Environment Monitoring Center, Jinan 250101, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianfeng Cao
- Taian Ecological Environment Monitoring Center of Shandong Province, Taian 271000, China
| | - Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyuan Sui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhizheng Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuying Jiao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuxin Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
3
|
Gollan M, Black G, Munoz-Munoz J. A computational approach to optimising laccase-mediated polyethylene oxidation through carbohydrate-binding module fusion. BMC Biotechnol 2023; 23:18. [PMID: 37415113 PMCID: PMC10324223 DOI: 10.1186/s12896-023-00787-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Plastic pollution is a major global concern to the health and wellbeing of all terrestrial and marine life. However, no sustainable method for waste management is currently viable. This study addresses the optimisation of microbial enzymatic polyethylene oxidation through rational engineering of laccases with carbohydrate-binding module (CBM) domains. An explorative bioinformatic approach was taken for high-throughput screening of candidate laccases and CBM domains, representing an exemplar workflow for future engineering research. Molecular docking simulated polyethylene binding whilst a deep-learning algorithm predicted catalytic activity. Protein properties were examined to interpret the mechanisms behind laccase-polyethylene binding. The incorporation of flexible GGGGS(x3) hinges were found to improve putative polyethylene binding of laccases. Whilst CBM1 family domains were predicted to bind polyethylene, they were suggested to detriment laccase-polyethylene associations. In contrast, CBM2 domains reported improved polyethylene binding and may thus optimise laccase oxidation. Interactions between CBM domains, linkers, and polyethylene hydrocarbons were heavily reliant on hydrophobicity. Preliminary polyethylene oxidation is considered a necessity for consequent microbial uptake and assimilation. However, slow oxidation and depolymerisation rates inhibit the large-scale industrial implementation of bioremediation within waste management systems. The optimised polyethylene oxidation of CBM2-engineered laccases represents a significant advancement towards a sustainable method of complete plastic breakdown. Results of this study offer a rapid, accessible workflow for further research into exoenzyme optimisation whilst elucidating mechanisms behind the laccase-polyethylene interaction.
Collapse
Affiliation(s)
- Michael Gollan
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne and Wear, England, United Kingdom.
| | - Gary Black
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne and Wear, England, United Kingdom
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne and Wear, England, United Kingdom
| |
Collapse
|
4
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
5
|
Ali S, Bukhari DA, Rehman A. Call for biotechnological approach to degrade plastic in the era of COVID-19 pandemic. Saudi J Biol Sci 2023; 30:103583. [PMID: 36748033 PMCID: PMC9893805 DOI: 10.1016/j.sjbs.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Plastic pollution is a global issue and has become a major concern since Coronavirus disease (COVID)-19. In developing nations, landfilling and illegal waste disposal are typical ways to dispose of COVID-19-infected material. These technologies worsen plastic pollution and other human and animal health problems. Plastic degrades in light and heat, generating hazardous primary and secondary micro-plastic. Certain bacteria can degrade artificial polymers using genes, enzymes, and metabolic pathways. Microorganisms including bacteria degrade petrochemical plastics slowly. High molecular weight, strong chemical bonds, and excessive hydrophobicity reduce plastic biodegradation. There is not enough study on genes, enzymes, and bacteria-plastic interactions. Synthetic biology, metabolic engineering, and bioinformatics methods have been created to biodegrade synthetic polymers. This review will focus on how microorganisms' degrading capacity can be increased using recent biotechnological techniques.
Collapse
Key Words
- BHET, bis(2-hydroxyethyl
- Bacteria
- COVID-19
- COVID-19, Coronavirus disease-19
- FTIR, Fourier-transform infrared
- HDPE, High-density polyethene
- LDPE, Low-density polyethene
- MHET, Mono(2-hydroxyethyl
- MP, Microplastics
- Microorganisms
- NP, Nanoplastics
- PE, Polyethene
- PES, Polyethylene succinate
- PET, Polyethylene terephthalate
- PP, Polypropylene
- PPE, Personal protective equipment
- PS, Polystyrene
- PVC, Polyvinyl chloride
- Plastic degradation
- Plastic pollution
- TCA, Tricarboxylic acid
- TPA, Terephthalic acid
Collapse
Affiliation(s)
- Shakir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
6
|
Fournier E, Ratel J, Denis S, Leveque M, Ruiz P, Mazal C, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Engel E, Lagarde F, Etienne-Mesmin L, Mercier-Bonin M, Blanquet-Diot S. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130383. [PMID: 36444070 DOI: 10.1016/j.jhazmat.2022.130383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Carine Mazal
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Erwan Engel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| | | |
Collapse
|
7
|
Sönmez VZ, Akarsu C, Sivri N. Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120922. [PMID: 36574808 DOI: 10.1016/j.envpol.2022.120922] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study aims to understand the influence of wastewater treatment plant discharge on the microplastic status in the surface seawater of Istanbul. For this purpose, for the first time, the distribution, composition, and ecological risk of microplastics at nine sampling stations on the southern coast of Istanbul, Marmara, were investigated at monthly intervals over a one-year period. The results showed that the microplastic abundance ranged from 0 to over 1000 particles per liter. Fibers were the dominant form at all stations. Microplastics 249-100 μm were the dominant size, and transparency was the color most found at all stations. Polyethylene and ethylene-vinyl acetate were the major types of microplastics, accounting for 50% overall. The pollution load index revealed that over 70% of sampling stations were at hazard level I. However, the hazardous index was categorized as level III with a value of 662.3 due to the presence of the most hazardous polymer named polyurethane. Further investigations into the risk assessment of MP can reveal crucial knowledge for understanding the microplastic cycle.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey.
| | - Ceyhun Akarsu
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| | - Nüket Sivri
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| |
Collapse
|
8
|
Fournier E, Leveque M, Ruiz P, Ratel J, Durif C, Chalancon S, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Lagarde F, Engel E, Etienne-Mesmin L, Blanquet-Diot S, Mercier-Bonin M. Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130010. [PMID: 36182891 DOI: 10.1016/j.jhazmat.2022.130010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085, Le Mans Cedex 9, France
| | - Erwan Engel
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| |
Collapse
|
9
|
Isolation of Thermophilic Bacteria and Investigation of Their Microplastic Degradation Ability Using Polyethylene Polymers. Microorganisms 2022; 10:microorganisms10122441. [PMID: 36557694 PMCID: PMC9787896 DOI: 10.3390/microorganisms10122441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Microplastics (MPs) pose potential public health challenges because of their widespread occurrences in all environmental compartments. While most studies have focused on the occurrence fate of microplastics in wastewater treatment systems, the biodegradation of microplastics in wastewater is generally little understood. Therefore, we used two Gram-positive and thermophilic bacteria, called strain ST3 and ST6, which were identified by morphological, biochemical, physiological, and molecular analyses, to assess the growth and biodegradation potential of two different sized (50 and 150 m) polyethylene particles. The degradation was monitored based on structural and surface morphological changes. According to 16S rRNA analyses, ST3 and ST6 were identified as Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6, respectively. The occurrence of cracks, holes, and dimensional changes was detected by scanning electron microscopy. Moreover, critical characteristic absorption band formation and modifications were determined by Fourier transform infrared spectroscopy. In addition to these, it was found that Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6 produced high level of alpha-Amylase. These results showed that thermophilic bacteria are capable of the biodegradation of microplastics and production of alpha-Amylase.
Collapse
|
10
|
Akbay HEG, Akarsu C, Isik Z, Belibagli P, Dizge N. Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|