1
|
Collivignarelli MC, Gomez FH, Caccamo FM, Sorlini S. Reduction of pathogens in greywater with biological and sustainable treatments selected through a multicriteria approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38239-38254. [PMID: 36580251 DOI: 10.1007/s11356-022-24827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Non-potable reuse of greywater (GW) can represent a valid alternative to freshwater consumption, satisfying the Sustainable Development Goals promoted by United Nations. The Multi-Criteria Analysis (MCA) was applied to select the most suitable processes for the reduction of microbiological contamination in GW. A pilot plant, including horizontal flow constructed wetland (CW) and anaerobic filtration (AF) in parallel, best treatment options according to MCA results, was built to treat GW collected from a Venezuelan family. (i) The removal efficiency of microbiological parameters, and (ii) the turbidity as possible microbiological contamination indicator and possible influence factor of disinfection treatment, were investigated. Except for Escherichia coli (4.1 ± 0.9 log reduction with AF), CW achieved the best reductions yields for total coliforms, faecal coliforms, and Salmonella, respectively equal to 3.1 ± 0.5 log, 4.3 ± 0.5 log, and 2.9 ± 0.4 log. In accordance with Venezuelan legislation and WHO guidelines, GW treated with CW was found to be suitable for irrigation reuse for non-edible crops. However, the reduction of pathogens by CW should be considered as a preliminary and not complete disinfection treatment. To reuse GW, especially in the irrigation of edible crops, stronger disinfection treatment should be considered as a complement to the preliminary disinfection performed by CW, to avoid any kind of risk. No significant correlation was found for turbidity either as a possible predictor of microbiological contamination or as an influence on biological disinfection.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy.
| | - Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
2
|
Shaikh IN, Ahammed MM. Granular media filtration for on-site treatment of greywater: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:992-1016. [PMID: 36358042 DOI: 10.2166/wst.2022.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have put pressure on water resources and centralized wastewater treatment facilities and the need for greywater treatment at decentralized levels is increasing. This paper reviews the studies that used granular filtration for the treatment of greywater. Filter media characteristics that helps in the selection of suitable sustainable and environmental friendly materials without compromising the quality of treated greywater is first reported. The effect of type of filter media, media size and media depth along with the effect of operating conditions are discussed in detail. The choice, role and effect of different pre-treatment alternatives to granular media filtration are also presented. The efficiency of the filters to remove different physicochemical and microbial parameters was compared with different reuse guidelines and standards. Reported studies indicate that not only filter media characteristics and operating conditions but also the quality of raw greywater significantly influence the filter performance. Based on the source of greywater and desired reuse option, different granular media filtration alternatives are suggested. Operation of filters with properly selected media at optimum conditions based on the source of greywater helps filter in achieve the different reuse standards.
Collapse
Affiliation(s)
- Irshad N Shaikh
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| |
Collapse
|
3
|
Al Arni S, Elwaheidi M, Salih AAM, Ghernaout D, Matouq M. Greywater reuse: an assessment of the Jordanian experience in rural communities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1952-1963. [PMID: 35358081 DOI: 10.2166/wst.2022.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water conservation is a critical issue, particularly in arid countries and countries that suffer a lack of natural water resources. Jordan is one of the most water-scarce countries in the world; this fact has forced the search for alternative sustainable solutions. With the support of several regional and international organizations, tens of projects were implemented across the country over the past 30 years that aimed to reuse greywater in rural communities. The current review provides a wide overview of Jordan's experience in greywater treatment and its reuse for non-potable purposes in rural areas. To the best knowledge of the authors, the present review is the first to assess the Jordanian experience in this field. Many governmental authorities and non-governmental organizations have been involved in Jordan's experience. The greywater reuse systems were established to achieve advantageous environmental and socio-economic consequences on the rural communities. The strategy of greywater treatment was based on a local on-site greywater treatment system in households or the so-called 'autonomous water management'. The applied greywater treatment technologies in households were found efficient in rendering greywater adequate for agricultural uses. However, further improvements and territorial expansion of the experiment are needed.
Collapse
Affiliation(s)
- Saleh Al Arni
- Department of Chemical Engineering, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia E-mail: ;
| | - Mahmoud Elwaheidi
- Geology & Geophysics Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Alsamani A M Salih
- Department of Chemical Engineering, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia E-mail: ; ; Department of Chemical Engineering, Faculty of Engineering, Al Neelain University, Khartoum, Sudan
| | - Djamel Ghernaout
- Department of Chemical Engineering, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia E-mail: ; ; Chemical Engineering Department, Faculty of Engineering, University of Blida, P.O. Box 270, Blida 09000, Algeria
| | - Mohammed Matouq
- Faculty of Engineering Technology, Chemical Engineering Department, Al-Balqa Applied University, P.O. Box 4486, Amman-11131, Jordan
| |
Collapse
|
4
|
Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, a comprehensive review on greywater is presented. Emphasis is given to the techniques used to treat and recover greywater, and special emphasis is placed on the risk of the existence of the novel coronavirus “SARS-CoV-2” in greywater and the possibility of its spread via the reuse of this water. In general, greywater is considered wastewater collected from domestic sources, with the exclusion of toilet water (which is considered as blackwater). Greywater represents 50 to 80% of the total volume of wastewater all over the world. This review provides various aspects related to greywater, such as origins, characteristics, and existing guidelines for greywater proper treatment and reuse. Several approaches and techniques have been developed to study the performance of different greywater treatment systems. These methods are critically discussed in this article. In the context of sustainable development, water management, and taking into account the scarcity of water resources, particularly in arid and semi-arid areas, the use of treated greywater is one of the alternatives methods that can reduce the burden of withdrawals from the resource. In addition, some successful examples of greywater valuation experiences in Tunisia were examined.
Collapse
|
5
|
Nagarkar M, Keely SP, Brinkman NE, Garland JL. Human- and infrastructure-associated bacteria in greywater. J Appl Microbiol 2021; 131:2178-2192. [PMID: 33905584 PMCID: PMC8682149 DOI: 10.1111/jam.15118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Greywater, the wastewater from sinks, showers and laundry, is an understudied environment for bacterial communities. Most greywater studies focus on quantifying pathogens, often via proxies used in other wastewater, like faecal indicator bacteria; there is a need to identify more greywater-appropriate surrogates, like Staphylococcus sp. Sequencing-based studies have revealed distinct communities in different types of greywater as well as in different parts of greywater infrastructure, including biofilms on pipes, holding tanks and filtration systems. The use of metagenomic sequencing provides high resolution on both the taxa and genes present, which may be of interest in cases like identifying pathogens and surrogates relevant to different matrices, monitoring antibiotic resistance genes and understanding metabolic processes occurring in the system. Here, we review what is known about bacterial communities in different types of greywater and its infrastructure. We suggest that wider adoption of environmental sequencing in greywater research is important because it can describe the entire bacterial community along with its metabolic capabilities, including pathways for removal of nutrients and organic materials. We briefly describe a metagenomic dataset comparing different types of greywater samples in a college dormitory building to highlight the type of questions these methods can address. Metagenomic sequencing can help further the understanding of greywater treatment for reuse because it allows for identification of new pathogens or genes of concern.
Collapse
Affiliation(s)
- M Nagarkar
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - S P Keely
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - N E Brinkman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - J L Garland
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
6
|
Mahmoudi A, Mousavi SA, Darvishi P. Greywater as a sustainable source for development of green roofs: Characteristics, treatment technologies, reuse, case studies and future developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:112991. [PMID: 34346386 DOI: 10.1016/j.jenvman.2021.112991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Municipal activities are one of the most important water users worldwide; thus, the treatment and reuse of greywater for non-potable purposes helps to reduce a remarkable amount of consumed water within urban communities. To achieve greywater reuse standards, and remove surfactants, micropollutants, organic matters, microorganisms and other pollutants various methods including physical, chemical and biological processes have been used. Treated greywater can be used on site for different purposes: carwash, toilet flushing, fire protection, green roofs, green walls, non-food irrigation etc. Among them, the use of greywater is very important in the expansion of the green roofs. Green roofs offer many benefits to urban areas such as decreasing air pollution, reducing building cooling needs, promoting mental health of habitants, noise reduction and aesthetics improvement. Therefore, this article provides an overview mainly from two aspects, the possibilities of greywater reuse by studying the characteristics and available options for greywater treatment and its benefits toward the developing green roofs.
Collapse
Affiliation(s)
- Arezoo Mahmoudi
- Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Parastoo Darvishi
- Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Removal of Pathogens in Onsite Wastewater Treatment Systems: A Review of Design Considerations and Influencing Factors. WATER 2021. [DOI: 10.3390/w13091190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional onsite wastewater treatment systems (OWTSs) could potentially contribute to the transmission of infectious diseases caused by waterborne pathogenic microorganisms and become an important human health concern, especially in the areas where OWTSs are used as the major wastewater treatment units. Although previous studies suggested the OWTSs could reduce chemical pollutants as well as effectively reducing microbial contaminants from onsite wastewater, the microbiological quality of effluents and the factors potentially affecting the removal are still understudied. Therefore, the design and optimization of pathogen removal performance necessitate a better mechanistic understanding of the hydrological, geochemical, and biological processes controlling the water quality in OWTSs. To fill the knowledge gaps, the sources of pathogens and common pathogenic indicators, along with their major removal mechanisms in OWTSs were discussed. This review evaluated the effectiveness of pathogen removal in state-of-art OWTSs and investigated the contributing factors for efficient pathogen removal (e.g., system configurations, filter materials, environmental and operational conditions), with the aim to guide the future design for optimized treatment performance.
Collapse
|
8
|
Impact of Suspended Solids and Organic Matter on Chlorine and UV Disinfection Efficiency of Greywater. WATER 2021. [DOI: 10.3390/w13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reusing greywater (GW) can lower domestic water consumption. However, the GW must be treated and disinfected for securing user health. This research studied at the laboratory scale, and in flow-through setups, which are generally used in full-scale GW treatment the disinfection efficiency of the two commonly used technologies (a) chlorination and (b) low-pressure UV irradiation. The disinfection methods were studied under a commonly found range of total suspended solids (TSS; 3.9–233 mg/L) and 5-d biochemical oxygen demand (BOD5) concentrations (0–107 mg/L) as a representative/proxy of bioavailable organic matter. The negative effect of TSS began even at low concentrations (<20 mg/L) and increased consistently with increasing TSS concentrations across all the concentrations tested. On the other hand, the negative effect of BOD5 on FC inactivation was observed only when its concentration was higher than 50 mg/L. Multiple linear regression models were developed following the laboratory results, establishing a correlation between FC inactivation by either chlorination or UV irradiation and initial FC, TSS, and BOD5 concentrations. The models were validated against the results from the flow-through reactors and explained the majority of the variability in the measured FC inactivation. Conversion factors between the laboratory scales and the flow-through reactor experiments were established. These enable the prediction of the required residual chlorine concentration or the UV dose needed for an on-site flow-through reactor. This approach is valuable from both operational and research perspectives.
Collapse
|
9
|
Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. MINERALS 2020. [DOI: 10.3390/min11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review deals with modification of montmorillonite and other clay-minerals and clays by interacting them with organic cations, for producing slow release formulations of herbicides, and efficient removal of pollutants from water by filtration. Elaboration is on incorporating initially the organic cations in micelles and liposomes, then producing complexes denoted micelle- or liposome-clay nano-particles. The material characteristics (XRD, Freeze-fracture electron microscopy, adsorption) of the micelle– or liposome–clay complexes are different from those of a complex of the same composition (organo-clay), which is formed by interaction of monomers of the surfactant with the clay-mineral, or clay. The resulting complexes have a large surface area per weight; they include large hydrophobic parts and (in many cases) have excess of a positive charge. The organo-clays formed by preadsorbing organic cations with long alkyl chains were also addressed for adsorption and slow release of herbicides. Another examined approach includes “adsorptive” clays modified by small quaternary cations, in which the adsorbed organic cation may open the clay layers, and consequently yield a high exposure of the siloxane surface for adsorption of organic compounds. Small scale and field experiments demonstrated that slow release formulations of herbicides prepared by the new complexes enabled reduced contamination of ground water due to leaching, and exhibited enhanced herbicidal activity. Pollutants removed efficiently from water by the new complexes include (i) hydrophobic and anionic organic molecules, such as herbicides, dissolved organic matter; pharmaceuticals, such as antibiotics and non-steroidal drugs; (ii) inorganic anions, e.g., perchlorate and (iii) microorganisms, such as bacteria, including cyanobacteria (and their toxins). Model calculations of adsorption and kinetics of filtration, and estimation of capacities accompany the survey of results and their discussion.
Collapse
|
10
|
Hess A, Bettex C, Morgenroth E. Influence of intermittent flow on removal of organics in a biological activated carbon filter (BAC) used as post-treatment for greywater. WATER RESEARCH X 2020; 9:100078. [PMID: 33299980 PMCID: PMC7704463 DOI: 10.1016/j.wroa.2020.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 11/06/2020] [Indexed: 05/04/2023]
Abstract
Highly variable flow has to be expected in decentralized greywater treatment and can lead to intermittent operation of the treatment system. However, few studies have addressed the influence of variable flow on the treatment performance of a biological activated carbon filter (BAC). In this study, we investigated the influence of intermittent flow using small-scale BAC columns, which treat greywater as a second treatment step following a membrane bioreactor (MBR). Three operating strategies to respond to variable flow were evaluated. The activated carbon was characterized before and after the experiments in terms of biological activity and sorption capacity. The performance of the BAC filters was assessed based on total organic carbon (TOC) removal, TOC fractions and growth potential. No significant differences were observed between constant flow compared to on-off operation with intermittent flow over the range of tested influent concentrations. Peaks with high TOC during 24 h periods were attenuated by sorption and biological degradation. Adsorbed TOC was released after switching back to normal concentrations for influent concentrations more than 5 times higher than usually observed, the BAC functioned as a temporary sink. In line with these results, the high influent TOC values led to increased biological activity in the filter but did not influence the sorption capacity. The experiments showed that intermittent flow does not negatively impact the performance of a BAC and that there is no need for additional equalization tanks to buffer the variable flow, for example in household-scale greywater treatment.
Collapse
Affiliation(s)
- Angelika Hess
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Cécile Bettex
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
- Corresponding author. Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
11
|
Delhiraja K, Philip L. Characterization of segregated greywater from Indian households: part A-physico-chemical and microbial parameters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:428. [PMID: 32535798 DOI: 10.1007/s10661-020-08369-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Greywater has attracted global attention as a feasible alternative water source over the last few decades. Reuse and recycling of greywater is an economically viable and attractive option for meeting the future water demand. However, its treatment and reliable reuse continue to be based on conventional parameters such as BOD, COD, turbidity, suspended solids and pathogen level. The current investigative study focused on the characterization of segregated grey wastewater (greywater from bathroom, laundry and kitchen) from different economic classes of Indian households which included physical and chemical parameters, organics, nutrients, pathogens, heavy metals, oil and grease and surfactants. Apart from this, the data related to water consumption, frequency and products used for their daily activities were gathered using a questionnaire survey. The average water consumption among different household was found to be 108 L per capita per day. The maximum concentrations of organics such as BOD (678.6 ± 179 mg/L), COD (1507 ± 508 mg/L) and TOC (176.4 ± 131 mg/L) were found in kitchen wastewater. However, maximum concentrations of surfactants (14.02 ± 3.74 mg/L) were obtained in laundry wastewater. Faecal coliform concentration was more in the households which had inhabitants of children below 4 years. Statistical analysis revealed that the parameters monitored differ significantly between different economic classes. The present study showed that the characteristics of greywater highly depend on the wastewater source, household behaviour and activities. This study will be helpful to design a sustainable cost-effective treatment system, enabling greywater generated from different sources to be safely recycled and reused by households. Graphical abstract.
Collapse
Affiliation(s)
- Krithika Delhiraja
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
12
|
Prajapati B, Jensen MB, Jørgensen NOG, Petersen NB. Grey water treatment in stacked multi-layer reactors with passive aeration and particle trapping. WATER RESEARCH 2019; 161:181-190. [PMID: 31195334 DOI: 10.1016/j.watres.2019.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
When adequately treated, grey water represents a potent alternative water resource, as it constitutes a large proportion of household wastewater. The objective of this paper was to test a full scale version of a novel compact grey water treatment technology, based on passive aeration and particle trapping in multiple layers. Using a modified dual porosity filtration technology, grey water from a public bath was passed through a stack of eight reactors, each 0.75 m × 0.55 × 0.22 m, serially connected for gravity driven flow from top to bottom in a zig-zag pattern. The topmost reactor served as pre-filter for removal of hair and other larger debris. The lower seven reactors facilitated degradation of bulk organic contaminants in biofilm established on a stack of five fibrous polyamide nets, and trapping of particles by sedimentation on five interlaid corrugated plastic plates. By operating the reactors in a time-controlled batch-mode, the corrugated plates further served to trap air and thus ensure passive aeration of the subsequent batch. The production rate was 1.2 m3/d and the hydraulic retention time 2 h, at an aerial footprint of 0.4 m2, excluding storage tanks. After two weeks of initialization, a biofilm had established and the system was monitored for additionally three weeks. Significantly improved effluent quality was obtained as measured from reductions in turbidity (95%), total suspended solids (94%), chemical oxygen demand (87%), and microbiological parameters (55-98%), and from stable level of dissolved oxygen in effluent of 3.5 mg/L. Future optimization includes custom-made reactors for maximizing production capacity, improved removal of total N and total P, and addition of final disinfection.
Collapse
Affiliation(s)
- B Prajapati
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - M B Jensen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - N O G Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - N B Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Arden S, Ma X. Constructed wetlands for greywater recycle and reuse: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:587-599. [PMID: 29494968 PMCID: PMC7362998 DOI: 10.1016/j.scitotenv.2018.02.218] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 05/21/2023]
Abstract
Concern over dwindling water supplies for urban areas as well as environmental degradation from existing urban water systems has motivated research into more resilient and sustainable water supply strategies. Greywater reuse has been suggested as a way to diversify local water supply portfolios while at the same time lessening the burden on existing environments and infrastructure. Constructed wetlands have been proposed as an economically and energetically efficient unit process to treat greywater for reuse purposes, though their ability to consistently meet applicable water quality standards, microbiological in particular, is questionable. We therefore review the existing case study literature to summarize the treatment performance of greywater wetlands in the context of chemical, physical and microbiological water quality standards. Based on a cross-section of different types of wetlands, including surface flow, subsurface flow, vertical and recirculating vertical flow, across a range of operating conditions, we show that although microbiological standards cannot reliably be met, given either sufficient retention time or active recirculation, chemical and physical standards can. We then review existing case study literature for typical water supply disinfection unit processes including chlorination, ozonation and ultraviolet radiation treating either raw or treated greywater specifically. An evaluation of effluent water quality from published wetland case studies and the expected performance from disinfection processes shows that under appropriate conditions these two unit processes together can likely produce effluent of sufficient quality to meet all nonpotable reuse standards. Specifically, we suggest that recycling vertical flow wetlands combined with ultraviolet radiation disinfection and chlorine residual is the best combination to reliably meet the standards.
Collapse
Affiliation(s)
- S Arden
- University of Florida, 100 Phelps Lab, Gainesville, FL 32611, United States
| | - X Ma
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| |
Collapse
|
14
|
Oteng-Peprah M, Acheampong MA, deVries NK. Greywater Characteristics, Treatment Systems, Reuse Strategies and User Perception-a Review. WATER, AIR, AND SOIL POLLUTION 2018; 229:255. [PMID: 30237637 PMCID: PMC6133124 DOI: 10.1007/s11270-018-3909-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 05/12/2023]
Abstract
This paper presents a literature review of the quality of greywater generated in different, especially developing, countries, constituents found in greywater, some treatment systems, natural materials for treatment, some reuse strategies and public perception regarding greywater reuse. The review shows that generation rates are mostly influenced by lifestyle, types of fixtures used and climatic conditions. Contaminants found in greywater are largely associated with the type of detergent used and influenced by other household practices. Many of the treatment systems reviewed were unable to provide total treatment as each system has its unique strength in removing a group of targeted pollutants. The review revealed that some naturally occurring materials such as Moringa oleifera, sawdust, can be used to remove targeted pollutants in greywater. The study further showed that user perceptions towards greywater treatment and reuse were only favourable towards non-potable purposes, mostly due to perceived contamination or lack of trust in the level of treatment offered by the treatment system.
Collapse
Affiliation(s)
- Michael Oteng-Peprah
- Department of Health Promotion, Faculty of Health Medicine and Life Sciences, University of Maastricht, Peter Debyplein 1, 6229 HA Maastricht, The Netherlands
- Department of Chemistry, University of Cape Coast, Cape Coast, Ghana
| | - Mike Agbesi Acheampong
- Department of Chemical Engineering, School of Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Nanne K. deVries
- Department of Health Promotion, Faculty of Health Medicine and Life Sciences, University of Maastricht, Peter Debyplein 1, 6229 HA Maastricht, The Netherlands
| |
Collapse
|
15
|
Nguyen MT, Allemann L, Ziemba C, Larive O, Morgenroth E, Julian TR. Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet. FRONTIERS IN ENVIRONMENTAL SCIENCE 2017; 5:90. [PMID: 33365315 PMCID: PMC7705130 DOI: 10.3389/fenvs.2017.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/05/2023]
Abstract
The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi) followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC) only, GAC+chlorine (sodium hypochlorite), and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that-despite treatment of water with the BAMBi-E. coli, P aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination and electrolysis provide further safety margins, with more than 5 log-10 inactivation of E. coli. However, reactivation and/or regrowth of E. coli and P. aeruginosa occurs under in the absence of residual disinfectant. Treatment including the BAMBi, GAC, and electrolysis appear to be promising technologies to control bacterial growth during storage in water intended for reuse.
Collapse
Affiliation(s)
- Mi T. Nguyen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City, Vietnam
| | - Lukas Allemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Christopher Ziemba
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Odile Larive
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Correspondence: Timothy R. Julian
| |
Collapse
|
16
|
Palacios OA, Zavala-Díaz de la Serna FJ, Ballinas-Casarrubias MDL, Espino-Valdés MS, Nevárez-Moorillón GV. Microbiological Impact of the Use of Reclaimed Wastewater in Recreational Parks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1009. [PMID: 28869549 PMCID: PMC5615546 DOI: 10.3390/ijerph14091009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Reclaimed wastewater for irrigation is an opportunity for recovery of this natural resource. In this study, microbial risk from the use of treated wastewater for irrigation of recreational parks in the city of Chihuahua, evaluating the effect of distribution distance, season, and presence of storage tanks, was analyzed. Escherichia coli, Salmonella, and multidrug-resistant bacteria were recovered from samples of reclaimed water and soils at recreational parks in Chihuahua by the membrane filtration method, using selected agars for microbial growth. Samples were taken at three different seasons. No correlation in the presence of microbial indicators and multidrug-resistant bacteria (p > 0.05) was found between the distance from the wastewater treatment plant to the point of use. Presence of storage tanks in parks showed a significant effect (p < 0.05) with a higher level of E. coli. The highest count in wastewater occurred in summer. We isolated 392 multidrug-resistant bacteria from water and soil; cluster analysis showed that the microorganisms at each location were of different origins. Irrigation with reclaimed wastewater did not have a negative effect on the presence of microbial indicators of the quality of soils in the parks. However, the prevalence of multidrug-resistant bacteria still represents a potential risk factor for human health.
Collapse
Affiliation(s)
- Oskar A Palacios
- Circuito Universitario S/N Campus Universitario II, Universidad Autónoma de Chihuahua, Chihuahua, Chih 31125, Mexico.
- Laboratorio de Microbiología Ambiental, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, La Paz, B.C.S. 20396, Mexico.
| | | | | | - María S Espino-Valdés
- Circuito Universitario S/N Campus Universitario II, Universidad Autónoma de Chihuahua, Chihuahua, Chih 31125, Mexico.
| | - Guadalupe V Nevárez-Moorillón
- Circuito Universitario S/N Campus Universitario II, Universidad Autónoma de Chihuahua, Chihuahua, Chih 31125, Mexico.
| |
Collapse
|
17
|
Benami M, Gillor O, Gross A. Potential microbial hazards from graywater reuse and associated matrices: A review. WATER RESEARCH 2016; 106:183-195. [PMID: 27716468 DOI: 10.1016/j.watres.2016.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 05/13/2023]
Abstract
Millions of decentralized graywater-reuse systems are operating worldwide. This water is directly accessible to household inhabitants, raising environmental and public health concerns. Graywater may contain a variety of harmful organisms, the types and numbers of which vary with source-type, storage time, and background levels of infection in the community source. In this review, we find that most studies indicate high amounts of microbial pathogens in raw graywater and therefore treatment and disinfection are recommended to lower possible health risks. Where these recommendations have been followed, epidemiological and quantitative microbial risk-assessment studies have found negligible health risks of bacterial pathogens in treated graywater. Chlorine is currently suggested as the most cost-effective disinfection agent for inactivating graywater bacterial pathogens and preventing regrowth. Various studies demonstrate that the introduction and diversity of pathogenic bacteria in the soil via irrigation can be affected by several factors, but treated graywater may not be a major contributor of bacterial contamination or antibiotic resistance. However, an accurate assessment of the infectious capabilities, exposure pathways, and resistance of specific pathogens, particularly viruses and antibiotic-resistant bacteria found in treated graywater after disinfection, as well as in the graywater piping, irrigated soils, plants, and associated aerosols is largely lacking in the literature. In addition, research shows that fecal bacterial indicators might not reliably indicate the presence or quantities of pathogens in graywater and thus, the indicator standard for graywater contamination should be revised.
Collapse
Affiliation(s)
- Maya Benami
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 84990, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 84990, Israel.
| | - Amit Gross
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
18
|
Opher T, Friedler E. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:464-476. [PMID: 27526084 DOI: 10.1016/j.jenvman.2016.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Municipal wastewater (WW) effluent represents a reliable and significant source for reclaimed water, very much needed nowadays. Water reclamation and reuse has become an attractive option for conserving and extending available water sources. The decentralized approach to domestic WW treatment benefits from the advantages of source separation, which makes available simple small-scale systems and on-site reuse, which can be constructed on a short time schedule and occasionally upgraded with new technological developments. In this study we perform a Life Cycle Assessment to compare between the environmental impacts of four alternatives for a hypothetical city's water-wastewater service system. The baseline alternative is the most common, centralized approach for WW treatment, in which WW is conveyed to and treated in a large wastewater treatment plant (WWTP) and is then discharged to a stream. The three alternatives represent different scales of distribution of the WW treatment phase, along with urban irrigation and domestic non-potable water reuse (toilet flushing). The first alternative includes centralized treatment at a WWTP, with part of the reclaimed WW (RWW) supplied back to the urban consumers. The second and third alternatives implement de-centralized greywater (GW) treatment with local reuse, one at cluster level (320 households) and one at building level (40 households). Life cycle impact assessment results show a consistent disadvantage of the prevailing centralized approach under local conditions in Israel, where seawater desalination is the marginal source of water supply. The alternative of source separation and GW reuse at cluster level seems to be the most preferable one, though its environmental performance is only slightly better than GW reuse at building level. Centralized WW treatment with urban reuse of WWTP effluents is not advantageous over decentralized treatment of GW because the supply of RWW back to consumers is very costly in materials and energy. Electricity is a major driver of the impacts in most categories, pertaining mostly to potable water production and supply. Infrastructure was found to have a notable effect on metal depletion, human toxicity and freshwater and marine ecotoxicity. Sensitivity to major model parameters was analyzed. A shift to a larger share of renewable energy sources in the electricity mix results in a dramatic improvement in most impact categories. Switching to a mix of water sources, rather than the marginal source, leads to a significant reduction in most impacts. It is concluded that under the conditions tested, a decentralized approach to urban wastewater management is environmentally preferable to the common centralized system. It is worth exploring such options under different conditions as well, in cases which new urban infrastructure is planned or replacement of old infrastructure is required.
Collapse
Affiliation(s)
- Tamar Opher
- Department of Environmental, Water & Agricultural Engineering, Technion - Israel Institute of Technology, Israel.
| | - Eran Friedler
- Department of Environmental, Water & Agricultural Engineering, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
19
|
Ahmadi M, Ghanbari F. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19350-19361. [PMID: 27370537 DOI: 10.1007/s11356-016-7139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Benami M, Busgang A, Gillor O, Gross A. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:344-352. [PMID: 27100014 DOI: 10.1016/j.scitotenv.2016.03.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 05/13/2023]
Abstract
Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate quantification of small amounts of viable, aerosolized bacterial pathogens.
Collapse
Affiliation(s)
- Maya Benami
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Allison Busgang
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
21
|
Zipf MS, Pinheiro IG, Conegero MG. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 176:119-127. [PMID: 27045540 DOI: 10.1016/j.jenvman.2016.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies.
Collapse
Affiliation(s)
- Mariah Siebert Zipf
- FURB - Fundação Universidade Regional de Blumenau, Rua São Paulo, 3250, Itoupava Seca, Campus II, Bloco I, Sala 103, CEP 89.030-000 Blumenau, SC, Brazil.
| | - Ivone Gohr Pinheiro
- FURB - Fundação Universidade Regional de Blumenau, Rua São Paulo, 3250, Itoupava Seca, Campus II, Bloco I, Sala 103, CEP 89.030-000 Blumenau, SC, Brazil.
| | - Mariana Garcia Conegero
- FURB - Fundação Universidade Regional de Blumenau, Rua São Paulo, 3250, Itoupava Seca, Campus II, Bloco I, Sala 103, CEP 89.030-000 Blumenau, SC, Brazil.
| |
Collapse
|
22
|
Abed SN, Scholz M. Chemical simulation of greywater. ENVIRONMENTAL TECHNOLOGY 2016; 37:1631-1646. [PMID: 26745659 DOI: 10.1080/09593330.2015.1123301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Sustainable water resources management attracts considerable attention in today's world. Recycling and reuse of both wastewater and greywater are becoming more attractive. The strategy is to protect ecosystem services by balancing the withdrawal of water and the disposal of wastewater. In the present study, a timely and novel synthetic greywater composition has been proposed with respect to the composition of heavy metals, nutrients and organic matter. The change in water quality of the synthetic greywater due to increasing storage time was monitored to evaluate the stability of the proposed chemical formula. The new greywater is prepared artificially using analytical-grade chemicals to simulate either low (LC) or high (HC) pollutant concentrations. The characteristics of the synthetic greywater were tested (just before starting the experiment, after two days and a week of storage under real weather conditions) and compared to those reported for real greywater. Test results for both synthetic greywater types showed great similarities with the physiochemical properties of published findings concerning real greywater. Furthermore, the synthetic greywater is relatively stable in terms of its characteristics for different storage periods. However, there was a significant (p < .05) reduction in 5-day biochemical oxygen demand (BOD5) for both low (LC) and high (HC) concentrations of greywater after two days of storage with reductions of 62% and 55%, respectively. A significant (p < .05) change was also noted for the reduction (70%) of nitrate-nitrogen (NO3-N) concerning HC greywater after seven days of storage.
Collapse
Affiliation(s)
- Suhail Najem Abed
- a Civil Engineering Research Group, School of Computing, Science and Engineering , The University of Salford , Salford , UK
| | - Miklas Scholz
- a Civil Engineering Research Group, School of Computing, Science and Engineering , The University of Salford , Salford , UK
| |
Collapse
|
23
|
Albalawneh A, Chang TK. REVIEW OF THE GREYWATER AND PROPOSED GREYWATER RECYCLING SCHEME FOR AGRICULTURAL IRRIGATION REUSES. ACTA ACUST UNITED AC 2015. [DOI: 10.29121/granthaalayah.v3.i12.2015.2882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we reviewed greywater characteristics and various treatment technologies with the aim of coming up with the schematic of greywater recycling system designed specifically for restricted agricultural irrigation reuse. Characteristics of greywater are highly variable; greywater amount varies from 50% to 80% of the wastewater volume produced by households. All types of greywater show good biodegradability in terms of COD: BOD5 ratios. The ratio of BOD5/COD in greywater ranged from 0.31 to 0.71. Most countries apply the same standards to reclaimed municipal wastewater as they do to greywater. However, some countries have established specialized standards for greywater reuse. Technologies used for greywater treatment are classified into physical, chemical, biological, and natural systems, or a combination of these. Using physical greywater treatment processes solely as the main treatment method is insufficient for greywater treatment, chemical greywater treatment processes are attractive for single household low-strength greywater treatment systems, as the variability in the strength and flow of the greywater did not affect their treatment performance. Constructed wetland can be regarded as the most environmentally friendly and cost-effective technology for greywater treatment and reuses. Finally, the study suggests the possible greywater recycling scheme for agricultural irrigation reuse purposes.
Collapse
|
24
|
Wanko A, Laurent J, Bois P, Mosé R, Wagner-Kocher C, Bahlouli N, Tiffay S, Braun B, Provo kluit PW. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization. ENVIRONMENTAL TECHNOLOGY 2015; 37:369-380. [PMID: 26165374 DOI: 10.1080/09593330.2015.1069901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.
Collapse
Affiliation(s)
- Adrien Wanko
- a Icube, UMR 7357, ENGEES, CNRS , Université de Strasbourg , 2 rue Boussingault, 67000 Strasbourg , France
| | - Julien Laurent
- a Icube, UMR 7357, ENGEES, CNRS , Université de Strasbourg , 2 rue Boussingault, 67000 Strasbourg , France
| | - Paul Bois
- a Icube, UMR 7357, ENGEES, CNRS , Université de Strasbourg , 2 rue Boussingault, 67000 Strasbourg , France
| | - Robert Mosé
- a Icube, UMR 7357, ENGEES, CNRS , Université de Strasbourg , 2 rue Boussingault, 67000 Strasbourg , France
| | - Christiane Wagner-Kocher
- b LPMT, EA 4365 , Université de Haute-Alsace , 11 rue Alfred Werner, 68093 Mulhouse Cedex , France
| | - Nadia Bahlouli
- a Icube, UMR 7357, ENGEES, CNRS , Université de Strasbourg , 2 rue Boussingault, 67000 Strasbourg , France
| | - Serge Tiffay
- c Rockwool France SAS , 111 rue du Château des Rentiers, 75013 Paris , France
| | - Bouke Braun
- d Rockwool B. V ., Industrieweg 15, 6045 JG Roermond , The Netherlands
| | | |
Collapse
|
25
|
Shamabadi N, Bakhtiari H, Kochakian N, Farahani M. The Investigation and Designing of an Onsite Grey Water Treatment Systems at Hazrat-e-Masoumeh University, Qom, IRAN. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.egypro.2015.07.780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Removal of Pathogens by Membrane Bioreactors: A Review of the Mechanisms, Influencing Factors and Reduction in Chemical Disinfectant Dosing. WATER 2014. [DOI: 10.3390/w6123603] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes. Appl Environ Microbiol 2014; 81:630-9. [PMID: 25381242 DOI: 10.1128/aem.03394-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.
Collapse
|
28
|
Leas EC, Dare A, Al-Delaimy WK. Is gray water the key to unlocking water for resource-poor areas of the Middle East, North Africa, and other arid regions of the world? AMBIO 2014; 43:707-717. [PMID: 24165868 PMCID: PMC4165838 DOI: 10.1007/s13280-013-0462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/11/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Support for the use of treated gray water as an alternative water resource in the Middle East and North Africa is high, especially given the lack of religious restrictions against its use, but several obstacles have kept application of treated gray water near 1 % in some areas. The largest of obstacles include the cost of treatment and the ambiguity surrounding the health safety of gray water and treated gray water. This paper aims to provide an overview of current gray water practices globally, with specific focus on household-level gray water practices in the Middle East and North Africa region, and highlight the need for cost reduction strategies and epidemiological evidence on the use of household-level gray water and treated gray water. Such actions are likely to increase the application of treated gray water in water-deprived areas of the Middle East and North Africa.
Collapse
Affiliation(s)
- Eric C. Leas
- />Division of Global Health, Family and Preventive Medicine, University of California, San Diego, Stein Clinical Research Building Room 250, 9500 Gilman Dr. 0628, La Jolla, CA 92093-0628 USA
| | - Anne Dare
- />Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907 USA
| | - Wael K. Al-Delaimy
- />Division of Global Health, Family and Preventive Medicine, University of California, San Diego, Stein Clinical Research Building Room 250, 9500 Gilman Dr. 0628, La Jolla, CA 92093-0628 USA
| |
Collapse
|
29
|
Matos C, Pereira S, Amorim EV, Bentes I, Briga-Sá A. Wastewater and greywater reuse on irrigation in centralized and decentralized systems--an integrated approach on water quality, energy consumption and CO2 emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:463-71. [PMID: 24960227 DOI: 10.1016/j.scitotenv.2014.05.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 05/25/2023]
Abstract
Wastewater and greywater have different scales of end-uses in irrigation in Portugal. Wastewater is treated in a central wastewater treatment plant and reused in public/private large areas of irrigation, like agriculture, public gardens and golf courses. On the contrary, greywater reuse is generally applied in in situ small scales, treated and used in the same place, generally in the production site. The main aim of this paper is to compare the two types of systems: a wastewater centralized reuse system (WWCRS) and a greywater decentralized reuse system (GWDRS) in terms of water quality, energy consumption and CO2 emissions. In this paper, the main characteristics of both streams are presented and the degree of treatment required in each stream is analyzed. The advantages and disadvantages of its reuse in different scales, in terms of water quality, energy consumption and CO2 emissions are discussed. A methodology to calculate the energy consumptions and CO2 emissions related to wastewater treatment that may be applied in different cases is presented. A hypothetical example of the two systems: one referring to a WWCRS and the other to a GWDRS is presented. The energy consumption and the CO2 emissions are analyzed and compared. The WWCRS needs a higher degree of treatment and so it spends more energy and leads to more CO2 emissions to the environment than the GWDRS that consumed between 11.8 and 37.5% of the energy consumed in the WWCRS considering the same number of inhabitants served.
Collapse
Affiliation(s)
- C Matos
- Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, 5000-801 Vila Real, Portugal; C-MADE - Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal.
| | - S Pereira
- Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, 5000-801 Vila Real, Portugal; C-MADE - Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - E V Amorim
- Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, 5000-801 Vila Real, Portugal; INESC TEC (formerly INESC Porto), Rua Dr. Roberto Frias, 378, Porto 4200-465, Portugal
| | - I Bentes
- Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, 5000-801 Vila Real, Portugal; C-MADE - Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - A Briga-Sá
- Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, 5000-801 Vila Real, Portugal; C-MADE - Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
30
|
Khan MZ, Sim YL, Lin YJ, Lai KM. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study. ENVIRONMENTAL TECHNOLOGY 2013; 34:545-551. [PMID: 23530370 DOI: 10.1080/09593330.2012.704404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.
Collapse
Affiliation(s)
- Mohammad Zain Khan
- Healthy Infrastructure Research Centre, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
31
|
Jokerst A, Sharvelle SE, Hollowed ME, Roesner LA. Seasonal performance of an outdoor constructed wetland for graywater treatment in a temperate climate. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:2187-98. [PMID: 22368961 DOI: 10.2175/106143011x12989211841412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The seasonal treatment efficiency of a pilot-scale constructed wetland system located outdoors in a semi-arid, temperate climate was evaluated for graywater in a comprehensive, 1-year study. The system consisted of two wetland beds in series--a free water surface bed followed by a subsurface flow bed. Water quality monitoring evaluated organics, solids, nutrients, microbials, and surfactants. The results showed that the wetland substantially reduced graywater constituents during fall, spring, and summer, including biochemical oxygen demand (BOD) (92%), total nitrogen (85%), total phosphorus (78%), total suspended solids (TSS) (73%), linear alkylbenzene sulfonate (LAS) surfactants (94%), and E. coli (1.7 orders of magnitude). Except for TSS, lower removals of graywater constituents were noted in winter--BOD (78%), total nitrogen (64%), total phosphorus (65%), LAS (87%), and E. coli (1.0 order), indicating that, although wetland treatment slowed during the winter, the system remained active, even when the average water temperature was 5.2 +/- 4.5 degrees C.
Collapse
Affiliation(s)
- Adam Jokerst
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
32
|
Abu Ghunmi L, Zeeman G, Fayyad M, van Lier JB. Grey water biodegradability. Biodegradation 2010; 22:163-74. [DOI: 10.1007/s10532-010-9385-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 06/27/2010] [Indexed: 11/29/2022]
|
33
|
Maimon A, Tal A, Friedler E, Gross A. Safe on-site reuse of greywater for irrigation - a critical review of current guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3213-3220. [PMID: 20380412 DOI: 10.1021/es902646g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Reuse of greywater for landscape irrigation can significantly reduce domestic water consumption. Alongside its benefits, there are potential drawbacks to greywater reuse, raising legitimate concerns about the impact on human and environmental health. In this review, a risk assessment framework is used to assess the adequacy of different regulations to ensure safe and long-lasting, onsite greywater reuse for irrigation. Existing regulations from around the world are assessed along with a standardized evaluation of measures taken to protect public and environmental health. In most cases, human health considerations currently dominate regulatory strategies, while environmental risks are either ignored or underrepresented. A distinction between single and multiple households was found to be a fundamental component of the regulations which often lead to approved utilization of untreated greywater among single households. We concluded that the use of untreated greywater is not recommended, especially in multihousehold systems as it may compromise public health, with single household systems posing more likely risks to the environment. Existing rules to control greywater use should be further revised toward the establishment of a more advanced regulatory system which can avert the salient potential risks associated with greywater reuse, while exploiting the enormous potential of this alternative water resource.
Collapse
Affiliation(s)
- Adi Maimon
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | | | | | | |
Collapse
|
34
|
Friedler E, Gilboa Y. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2109-17. [PMID: 20172592 DOI: 10.1016/j.scitotenv.2010.01.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 05/12/2023]
Abstract
This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to "hopping phenomenon." The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of "clean" water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F(amp)(+)) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing.
Collapse
Affiliation(s)
- Eran Friedler
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|
35
|
Friedler E. The water saving potential and the socio‐economic feasibility of greywater reuse within the urban sector – Israel as a case study. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/00207230701846697] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Winward GP, Avery LM, Stephenson T, Jefferson B. Ultraviolet (UV) disinfection of grey water: particle size effects. ENVIRONMENTAL TECHNOLOGY 2008; 29:235-44. [PMID: 18613622 DOI: 10.1080/09593330802030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from < 1 to > or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.
Collapse
Affiliation(s)
- G P Winward
- Centre for Water Sciences, Cranfield University, Bedfordshire, MK43 0AL, United Kingdom
| | | | | | | |
Collapse
|