1
|
Abdel-Raheem SM, Abouelhassan EM, Mandour M, El-Ghareeb WR, Shawky M, Eltarabili RM. Novel natural and economic approach for controlling methicillin-resistant Staphylococcus aureus using apple cider vinegar. Microb Pathog 2025; 198:107150. [PMID: 39586338 DOI: 10.1016/j.micpath.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a significant health concern because it promotes infectious mastitis in dairy animals and poses a hazard risk to humans. Controlling MRSA infections is a growing challenge on a global scale because of the bacteria's toxicity and its capacity to develop multidrug resistance (MDR). Combating against MDR bacteria and the spread of infectious diseases needs natural antibacterial alternatives to minimize the economic losses of mastitis. The average treatment cost in Egypt was highlighted. The antibacterial effect of apple cider vinegar (ACV) against MDR-MRSA isolates was evaluated, also the study aimed at profiling antimicrobial resistance genes in MRSA isolates. The incidence of mastitis in cows was more than in buffaloes, and the average total treatment cost was estimated at 82 million EGP from 2016 to 2021 (around 14 million EGP annually). Of the 22 S. aureus isolates (20 %), of which (59.1 % were from cows and 40.9 % from buffaloes), 19 (86.4 %) were confirmed as MRSA. All MRSA isolates exhibited resistance to clindamycin (94.7 %), then both ampicillin and doxycycline (84.2 %), and ampicillin and sulbactam, erythromycin and Fosfomycin (each, 78.9 %). Vancomycin, ciprofloxacin, and levofloxacin can be used to treat MRSA. The prevalence of MDR was significantly high, with 94.7 % of the cases having multiple antimicrobial resistance (MAR) indices ranging from 0.25 to 0.75. All MRSA isolates tested positive for mecA, 89.5 % for the blaZ gene, 84.2 % for tetM, and 73.4 % for ermB. In vitro, the antibacterial properties of ACV were demonstrated to be superior by our results which demonstrate a zone of inhibition with diameters ranging from 20 to 40 mm detected by Agar well diffusion technique and MIC's (Minimal Inhibitory Concentration) ranging from 2 to 4 μg/ml. Some isolates possess MBC (Minimal Bactericidal Concentration) values at the same MIC. This research proposes the potential of ACV to act as a promising antibacterial alternative against MRSA. This can help minimize the health problem of antibiotic-resistant bacteria and improve the efficiency of dairy farms. Further studies are recommended to determine the proper dosage for field administration.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Eman M Abouelhassan
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Mostafa Mandour
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Shawky
- Avian Research Center, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia; Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reham M Eltarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Alaa M, Abdel Razek AH, Tony MA, Yassin AM, Warda M, Awad MA, Bawish BM. Guanidinoacetic acid supplementation and stocking density effects on broiler performance: behavior, biochemistry, immunity, and small intestinal histomorphology. Acta Vet Scand 2024; 66:62. [PMID: 39696598 DOI: 10.1186/s13028-024-00782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rearing poultry under stressful high stocking density (HSD) conditions is a common commercial practice to increase profitability, despite its negative effects on broiler physiology and welfare. Many feed additives are used to alleviate the negative impact of such practices. This study investigated the ameliorative effects of guanidinoacetic acid (GAA) on growth performance, ingestive behavior, immune response, antioxidant status, stress indicators, and intestinal histomorphometry of broilers subjected to HSD. A total of 364 male broilers were randomly allocated into four treatments with 7 replicates each in a 2 × 2 factorial arrangement: two stocking densities (SD) (10 and 16 birds/m2) and two GAA levels (0 and 0.6 g/kg feed). RESULTS Body weight, weight gain, feed intake, feed conversion ratio, production efficiency factor, dressing yield, and ingestive behavior were negatively affected by HSD, whereas the mortality rate was unaffected (P > 0.05). GAA improved the overall growth performance and dressing percentage (P < 0.05). In the HSD group, the immune response decreased at d 21 (P < 0.05). Creatine kinase, glutathione peroxidase (GPX), superoxide dismutase, catalase, triglycerides, and villus length and width (ileum) were reduced, whereas corticosterone (CORT) was increased (P < 0.05). Moreover, GAA increased the hemagglutination-inhibition titer at 21 days and the levels of lactate dehydrogenase, GPX, and catalase and decreased the levels of creatinine, alanine aminotransferase, nitrite, triglycerides, and CORT (P < 0.05). SD and GAA did not affect malondialdehyde or other biochemical parameters (P > 0.05). CONCLUSIONS Dietary GAA supplementation can improve productivity and antioxidant status and reduce stress in broilers reared in a HSD environment.
Collapse
Affiliation(s)
- Mohammad Alaa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abeer Hamada Abdel Razek
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Ahmed Tony
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya Mohye Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Animal Physiology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mohamed Ahmed Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma Mohamed Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Yi S, Ye B, Wang J, Yi X, Wang Y, Abudukelimu A, Wu H, Meng Q, Zhou Z. Investigation of guanidino acetic acid and rumen-protected methionine induced improvements in longissimus lumborum muscle quality in beef cattle. Meat Sci 2024; 217:109624. [PMID: 39141966 DOI: 10.1016/j.meatsci.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
This study examined the impact of dietary guanidino acetic acid (GAA) and rumen-protected methionine (RPM) on beef quality in Simmental bulls. For 140 days, forty-five bulls (453.43 ± 29.05 kg) were randomly divided into control (CON), 0.1% GAA (GAA), and 0.1% GAA + 0.1% RPM (GAM) groups with 15 bulls in each group and containing 3 pen with 5 bulls in each pen. Significant improvements in eye muscle area, pH48h, redness (a*) value, and crude protein (CP) content of longissimus lumborum (LL) muscles were observed in the GAA and GAM groups (P < 0.05). Conversely, the lightness (L*) value, drip loss, cooking loss, and moisture contents decreased (P < 0.05). Additionally, glutathione (GSH) and glutathione peroxidase (GSH-PX) concentrations of LL muscles in GAM were higher (P < 0.05), while malondialdehyde (MDA) content of LL muscles in GAA and GAM groups were lower (P < 0.05). Polyunsaturated fatty acids (PUFA) profiles were enriched in beef from GAM group (P < 0.05). The addition of GAA and RPM affected the expression of genes in LL muscle, such as HMOX1, EIF4E, SCD5, and NOS2, which are related to hypoxia metabolism, protein synthesis, and unsaturated fatty acid synthesis-related signaling pathways. In addition, GAA and RPM also affected the content of a series of metabolites such as L-tyrosine, L-tryptophan, and PC (O-16:0/0:0) involved in amino acid and lipid metabolism-related signaling pathways. In summary, GAA and RPM can improve the beef quality and its nutritional composition. These changes may be related to changes in gene expression and metabolic pathways related to protein metabolism and lipid metabolism in beef.
Collapse
Affiliation(s)
- Simeng Yi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, China Agricultural University, Shenzhen 518119, China
| | - Boping Ye
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinze Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Yi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Abudusaimijiang Abudukelimu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Asiriwardhana MU, Dinesh OC, Brunton JA, Bertolo RF. Dietary Methionine Enhances Portal Appearance of Guanidinoacetate and Synthesis of Creatine in Yucatan Miniature Piglets. J Nutr 2024; 154:1571-1581. [PMID: 38527737 PMCID: PMC11130667 DOI: 10.1016/j.tjnut.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Creatine plays a significant role in energy metabolism and positively impacts anaerobic energy capacity, muscle mass, and physical performance. Endogenous creatine synthesis requires guanidinoacetic acid (GAA) and methionine. GAA can be an alternative to creatine supplements and has been tested as a beneficial feed additive in the animal industry. When pigs are fed GAA with excess methionine, creatine is synthesized without feedback regulation. In contrast, when dietary methionine is limited, creatine synthesis is limited, yet, GAA does not accumulate in plasma, urine, or liver. OBJECTIVE We hypothesized that portal GAA appearance requires adequate dietary methionine. METHODS Yucatan miniature piglets (17-21 d old; n = 20) were given a 4 h duodenal infusion of complete elemental diets with supplemental GAA plus 1 of 4 methionine concentrations representing either 20%, 80%, 140%, or 200% of the dietary methionine requirement. Arterial and portal blood metabolites were measured along with blood flow to determine mass balance across the gut. [3H-methyl] methionine was infused to measure the methionine incorporation rate into creatine. RESULTS GAA balance across the gut was highest in the 200% methionine group, indicating excess dietary methionine enhanced GAA absorption. Creatine synthesis in the liver and jejunum was higher with higher concentrations of methionine, emphasizing that the transmethylation of GAA to creatine depends on sufficient dietary methionine. Hepatic GAA concentration was higher in the 20% methionine group, suggesting low dietary methionine limited GAA conversion to creatine, which led to GAA accumulation in the liver. CONCLUSIONS GAA absorption and conversion to creatine require a sufficient amount of methionine, and the supplementation strategies should accommodate this interaction.
Collapse
Affiliation(s)
| | - Olupathage C Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
5
|
Abd El-Hamid MI, Ibrahim D, Elazab ST, Gad WM, Shalaby M, El-Neshwy WM, Alshahrani MA, Saif A, Algendy RM, AlHarbi M, Saleh FM, Alharthi A, Mohamed EAA. Tackling strong biofilm and multi-virulent vancomycin-resistant Staphylococcus aureus via natural alkaloid-based porous nanoparticles: perspective towards near future eradication. Front Cell Infect Microbiol 2024; 13:1287426. [PMID: 38282617 PMCID: PMC10811083 DOI: 10.3389/fcimb.2023.1287426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction As a growing direction, nano-based therapy has become a successful paradigm used to address the phytogenic delivery-related problems in overcoming multivirulent vancomycin-resistant Staphylococcus aureus (VRSA) infection. Methods Hence, our aim was to develop and assess a novel nanocarrier system (mesoporous silica nanoparticles, MPS-NPs) for free berberine (Free-BR) as an antimicrobial alkaloid against strong biofilm-producing and multi-virulent VRSA strains using in vitro and in vivo mouse model. Results and discussion Our outcomes demonstrated vancomycin resistance in 13.7% of Staphylococcus aureus (S. aureus) strains categorized as VRSA. Notably, strong biofilm formation was observed in 69.2% of VRSA strains that were all positive for icaA gene. All strong biofilm-producing VRSA strains harbored a minimum of two virulence genes comprising clfA and icaA with 44.4% of them possessing all five virulence genes (icaA, tst, clfA, hla, and pvl), and 88.9% being multi-virulent. The study findings affirmed excellent in vitro antimicrobial and antibiofilm properties of BR-loaded MPS-NPs. Real-time quantitative reverse transcription PCR (qRT-PCR) assay displayed the downregulating role of BR-loaded MPS-NPs on strong biofilm-producing and multi-virulent VRSA strains virulence and agr genes in both in vitro and in vivo mice models. Additionally, BR-loaded MPS-NPs supplementation has a promising role in attenuating the upregulated expression of pro-inflammatory cytokines' genes in VRSA-infected mice with attenuation in pro-apoptotic genes expression resulting in reduced VRSA-induced apoptosis. In essence, the current study recommends the future scope of using BR-loaded MPS-NPs as auspicious alternatives for antimicrobials with tremendous antimicrobial, antibiofilm, anti-quorum sensing (QS), and anti-virulence effectiveness against problematic strong biofilm-producing and multi-virulent VRSA-associated infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa M. Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Marwa Shalaby
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M. Algendy
- Food Hygiene, Safety and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Sherif AH, Okasha LA, Kassab AS, Abass ME, Kasem EA. Long-term exposure to lead nitrate and zinc sulfate Nile tilapia impact the Aeromonas hydrophila treatment. Mol Biol Rep 2024; 51:71. [PMID: 38175215 PMCID: PMC10766840 DOI: 10.1007/s11033-023-09033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Pollution with heavy metals (HMs) is time- and concentration-dependent. Lead and zinc pollute the aquatic environment, causing severe health issues in aquatic animals. MATERIALS AND METHODS Nile tilapia, the predominant cultured fish in Egypt, were experimentally exposed to 10% of LC50 of lead nitrate (PbNO3) and zinc sulfate (ZnSO4). Samples were collected in three different periods, 4, 6, and 8 weeks, in addition to a trial to treat the experimental fish infected with Aeromonas hydrophila, with an antibiotic (florfenicol). RESULTS Liver enzymes were linearly upsurged in a time-dependent manner in response to HMs exposure. ALT was 92.1 IU/l and AST was 82.53 IU/l after eight weeks. In the eighth week of the HMs exposure, in the hepatic tissue, the levels of glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased to 117.8 U/mg prot, 72.2 U/mg prot, and 154.5 U/mg prot, respectively. On exposure to HMs, gene expressions of some cytokines were linearly downregulated in a time-dependent manner compared to the control. After four weeks of exposure to the HMs, the oxidative burst activity (OBA) of immune cells was decreased compared to the control 9.33 and 10.3 cells, respectively. Meanwhile, the serum bactericidal activity (SBA) significantly declined to 18.5% compared to the control 32.6% after eight weeks of exposure. Clinical signs of A. hydrophila infection were exaggerated in polluted fish, with a mortality rate (MR) of 100%. The re-isolation rate of A. hydrophila was decreased in fish treated with florfenicol regardless of the pollution impacts after eight weeks of HMs exposure. CONCLUSION It could be concluded that the immune suppression and oxidative stress resulting from exposure to HMs are time-dependent. Clinical signs and post-mortem lesions in polluted fish infected with A. hydrophila were prominent. Infected-Nile tilapia had weak responses to florfenicol treatment due to HMs exposure.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt.
| | - Lamiaa A Okasha
- Bacteriology unit, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Amina S Kassab
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Mona E Abass
- Biochemistry unit, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Enas A Kasem
- Zoology Department, Faculty of Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
7
|
Eckhardt EP, Kim W, Jaborek J, Garmyn AJ, Kang D, Kim J. Evaluation of guanidinoacetic acid supplementation on finishing beef steer growth performance, skeletal muscle cellular response, and carcass characteristics. J Anim Sci 2024; 102:skae337. [PMID: 39487675 PMCID: PMC11633455 DOI: 10.1093/jas/skae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024] Open
Abstract
This study elucidated the effects of dosage-dependent guanidinoacetic acid (GAA) supplementation on growth performance, muscle responses, and carcass characteristics in finishing beef steers. Thirty crossbred Red Angus beef steers (395 ± 28.09 kg) were randomly assigned one of three treatments during a 146-d feedlot study: basal diet without GAA supplementation (CONTROL), 1g of GAA per 100 kg of body weight (BW) daily (LOWGAA), and 2 g of GAA per 100 kg of BW daily (HIGHGAA). Individual feed intake was monitored daily, growth performance parameters were collected every 28 d, and longissimus muscle (LM) biopsies occurred every 56 d. In biopsied LM, greater (P = 0.048) mRNA expression of IGF-1 was observed in LOWGAA steers on day 112 compared to the CONTROL group. LOWGAA steers also exhibited greater expression of myosin heavy chain (MHC) I compared to CONTROL steers (P < 0.05) and MHC IIA compared to both CONTROL and HIGHGAA treatment groups (P < 0.01) on day 112. GAA supplementation resulted in no change in carcass characteristics, serum and LM tissue metabolites, LM composition, and Warner-Bratzler shear force values (P > 0.05). Data collected from this study demonstrate the influence of GAA supplementation on the gene expression of MHC isoforms and their role in skeletal muscle growth, differentiation, and muscle fiber-typing.
Collapse
Affiliation(s)
- Erika P Eckhardt
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wonseob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jerad Jaborek
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea J Garmyn
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Donghun Kang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Al-Shammari KIA, Zamil SJ, Batkowska J. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails. Poult Sci 2024; 103:103166. [PMID: 37939584 PMCID: PMC10665932 DOI: 10.1016/j.psj.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The experiment was implemented to assess the influence of dietary supplementation of laying quails with creatine monohydrate (CrM), L-carnitine (CAR) and their mixture (CrMCAR) as antioxidants against oxidative stress (OS) induced by 2.5 ppm lead acetate (LA) in drinking water on productive, physiological and microbial aspects. In total, 400 laying quail females at 10 wk of age were divided into a randomized design with 5 groups and 4 replicates of 20 birds each. Birds were fed ad libitum with a balanced diet for 8 wk. The control group was kept under no-stress conditions and was given fresh water without any additives (G1). While birds in other groups were exposed to OS induced experimentally by 2.5 ppm LA in drinking water with no feed additive (G2) or supplemented with 500 mg/kg CrM (G3) or 500 mg/kg CAR (G4) or combination of 250 mg/kg each of CrM and CAR (CrMCAR, G5) to feed mixture. Compared to G2, G5 demonstrated the reduction (P ≤ 0.05) of feed conversion ratio, feed intake, mortality and ileal total coliform, as well as serum and egg malondialdehyde and serum lipid hydroperoxide, uric acid, glucose, cholesterol, enzymatic activities (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, creatine phosphokinase, γ-glutamyl transferase), and heterophils/lymphocytes ratio. In the meanwhile, there was an increase (P ≤ 0.05) in egg production, egg mass, and weight with the improvement of egg quality, serum sex hormones level and ileal lactic acid bacteria for G5 followed by G4 and G3. Moreover, G5 enhanced (P ≤ 0.05), the total antioxidant capacity of egg and serum glutathione, superoxide dismutase, catalase, glutathione peroxidase, protein and calcium levels. Therefore, dietary CrMCAR, CAR and CrM have analogous influence to control by improving the antioxidant and physiological parameters which resulted in better productive performance and egg characteristics of stressed quails. These antioxidants, especially in their equal combination, are beneficial to alleviate oxidative stress incidence and can be recommended for poultry feeding under various aspects of environmental stresses.
Collapse
Affiliation(s)
| | - Sarah Jasim Zamil
- Department of Animal Production Techniques, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Babylon, Iraq
| | - Justyna Batkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| |
Collapse
|
9
|
Zhao JM, Li FQY, Li XY, Jiao DR, Liu XD, Lv XY, Zhao JX. Guanidinoacetic Acid Attenuates Adipogenesis through Regulation of miR-133a in Sheep. Animals (Basel) 2023; 13:3108. [PMID: 37835715 PMCID: PMC10571753 DOI: 10.3390/ani13193108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Guanidinoacetic acid (GAA) is an amino acid derivative, previously described in the skeletal muscle of vertebrates, that serves as an important regulator of cellular bioenergetics and has been widely used as a feed additive. Nevertheless, the effect of GAA on adipose tissue growth remains unclear. Here, we hypothesized that dietary GAA negatively affected adipose tissue development in lambs. Lambs were individually fed diets with (0.09%) or without GAA for 70 d ad libitum, and the subcutaneous adipose tissues were sampled for analysis. The results showed that dietary GAA supplementation decreased the girth rib (GR) value (p < 0.01) of lamb carcasses. Both real-time PCR and Western blot analysis suggested that dietary GAA inhibited the expression of adipogenic markers, including peroxisome proliferator-activated receptor γ (PPARγ, p < 0.05), CCAAT/enhancer-binding protein α (C/EBPα, p < 0.01) and sterol-regulatory-element-binding protein 1c (SREBP1C, p < 0.01) in subcutaneous adipose tissue. In vitro, GAA inhibited sheep stromal vascular fraction (SVF) cell proliferation, which was associated with downregulation of proliferating cell nuclear antigen (PCNA, p < 0.05), cyclin-dependent kinase 4 (CDK 4, p < 0.05) and cyclin D1 (p < 0.01). GAA suppressed adipogenesis of SVF cells. Furthermore, miRNA sequencing revealed that GAA affected the miRNA expression profile, and real-time PCR analysis confirmed that miR-133a expression in both subcutaneous adipose tissue and SVF cell was downregulated by GAA. Meanwhile, miR-133a promoted adipogenic differentiation of SVF cells by targeting Sirt1. miR-133a mimics alleviated the inhibitory effect of GAA on SVF cells' adipogenic differentiation. In summary, GAA attenuated adipogenesis of sheep SVF cells, which might occur through miR-133a-modulated Sirt1 expression.
Collapse
Affiliation(s)
- Jia-Min Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China (X.-Y.L.); (D.-R.J.)
| | - Fan-Qin-Yu Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China (X.-Y.L.); (D.-R.J.)
| | - Xv-Ying Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China (X.-Y.L.); (D.-R.J.)
| | - Dan-Rong Jiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China (X.-Y.L.); (D.-R.J.)
| | - Xiang-Dong Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Yang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Jun-Xing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China (X.-Y.L.); (D.-R.J.)
| |
Collapse
|
10
|
Abdel-Raheem SM, Abd El-Hamid MI, Ibrahim D, El-Malt RMS, El-Ghareeb WR, Ismail HA, Al-Sultan SI, Meligy AMA, ELTarabili RM. Future scope of plant-derived bioactive compounds in the management of methicillin-resistant Staphylococcus aureus: In vitro antimicrobial and antivirulence prospects to combat MRSA. Microb Pathog 2023; 183:106301. [PMID: 37579824 DOI: 10.1016/j.micpath.2023.106301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost human and animal pathogen with public health and veterinary significance causing hospital and community infections and contagious bovine mastitis. Due to its ability to develop multidrug resistance (MDR) and its pathogenicity, MRSA infection control is becoming a global concern. Natural antibacterial options are needed to combat MDR development and infectious dissemination. This study investigated the antimicrobial resistance and virulence genes profiling of MRSA isolates and explored the antivirulence efficacy of trans-cinnamaldehyde, thymol, and carvacrol essential oils (EOs) against multivirulent and MDR-MRSA isolates. Thirty six S. aureus isolates (25%) were retrieved, of which 34 (94.4%) were MRSA. A high prevalence of MDR (66.7%) was monitored and all 53 molecularly verified isolates possessed icaA and cna virulence genes. Moreover, 94.1% of these isolates were multivirulent with 23.5% of them carrying icaA, cna, eta, tst, and sea virulence genes. Our data proved superior in vitro antimicrobial and antivirulence activities of trans-cinnamaldehyde, thymol, and carvacrol. They inhibited the growth of multi-virulent and MDR-MRSA isolates and downregulated the transcription of examined virulence genes. Our study suggests using EOs as prospective antimicrobials with excellent antivirulence activities against MRSA isolates. We provided data regarding the eventual role of phytogenics in prevention and control of MRSA infection.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, 44516, Zagazig, Egypt.
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Hesham A Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Saad Ibrahim Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Sciences, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Reham M ELTarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
11
|
Cui Y, Yu M, Li Z, Song M, Tian Z, Deng D, Ma X. Guanidine Acetic Acid Alters Tissue Bound Amino Acid Profiles and Oxidative Status in Finishing Pigs. Animals (Basel) 2023; 13:ani13101626. [PMID: 37238056 DOI: 10.3390/ani13101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to investigate the effects of guanidine acetic acid (GAA) on carcass traits, plasma biochemical parameters, tissue antioxidant capacity, and tissue-bound amino acid contents in finishing pigs. Seventy-two 140-day-old (body weight 86.59 ± 1.16 kg) crossbred pigs (Duroc × Landrace × Large White) were randomly assigned into four treatments with six replicate pens and three pigs per pen, which were fed the basal diets supplemented with 0, 0.05%, 0.10%, or 0.15% GAA, respectively. The plasma glucose concentration decreased, and creatine kinase activity and levels of GAA and creatine increased with the dietary GAA concentration. GAA linearly improved creatine content in the longissimus thoracis muscle (LM) and heart. The activities of superoxide dismutase, total antioxidant capacity, and glutathione peroxidase increased linearly in tissue or/and plasma, while the contents of malondialdehyde and protein carbonyl decreased linearly. GAA improved the contents of multiple-bound amino acids (such as proline or isoleucine) in the myocardium and LM. In conclusion, GAA enhanced the plasma biochemical parameters, oxidative status, and bound amino acid profiles of the heart and LM in finishing pigs.
Collapse
Affiliation(s)
- Yiyan Cui
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Miao Yu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Zhenming Li
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Min Song
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Zhimei Tian
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Dun Deng
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
12
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Ismail H, Ibrahim D, El Sayed S, Wahdan A, El-Tarabili RM, Rizk El-Ghareeb W, Abdullah Alhawas B, Alahmad BAHY, Abdel-Raheem SM, El-Hamid MIA. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens' Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals (Basel) 2023; 13:ani13050775. [PMID: 36899631 PMCID: PMC10000182 DOI: 10.3390/ani13050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Probiotics as novel antibiotics' substitutes are verified to provide barriers for hindering the colonization of enteric bacterial pathogens with nutritional benefits. For enhancement of the probiotics' effectiveness, their integration within nanomaterials is a paramount tool to support the progress of new compounds with functional features. Therefore, we addressed the impact of effective delivery of probiotics (Bacillus amyloliquefaciens) loaded nanoparticles (BNPs) on performance and Campylobacter jejuni (C. jejuni) shedding and colonization in poultry. Two hundred Ross broiler chickens were divided into four groups fed various BNP levels: BNPs I, BNPs II, BNPs III, and BNPs-free diets for 35 days. Nanoparticles delivery of probiotics within broiler diets improved growth performance as reflected by higher body weight gain and superior feed conversion ratio, especially in BNPs II- and BNPs III-fed groups. In parallel, the mRNA expression levels of digestive enzymes encoding genes (AMY2a, PNLIP, CELA1, and CCK) achieved their peaks in BNPs III-fed group (1.69, 1.49, 1.33, and 1.29-fold change, respectively) versus the control one. Notably, with increasing the levels of BNPs, the abundance of beneficial microbiota, such as Bifidobacterium and Lactobacillus species, was favored over harmful ones, including Clostridium species and Enterobacteriaceae. Birds fed higher levels of BNPs displayed significant improvement in the expression of barrier functions-linked genes including DEFB1, FABP-2, and MUC-2 alongside substantial reduction in cecal colonization and fecal shedding of C. jejuni. From the aforementioned positive effects of BNPs, we concluded their potential roles as growth promoters and effective preventive aids for C. jejuni infection in poultry.
Collapse
Affiliation(s)
- Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bassam Abdullah Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Badr Abdul-Hakim Y. Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Sherief M. Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
14
|
Ibrahim D, Shahin SE, Alqahtani LS, Hassan Z, Althobaiti F, Albogami S, Soliman MM, El-Malt RMS, Al-Harthi HF, Alqadri N, Elabbasy MT, El-Hamid MIA. Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2022; 12:3034. [PMID: 36359158 PMCID: PMC9658592 DOI: 10.3390/ani12213034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sara E. Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Ha’il University, Ha’il 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
15
|
Modulatory Impacts of Multi-Strain Probiotics on Rabbits’ Growth, Nutrient Transporters, Tight Junctions and Immune System to Fight against Listeria monocytogenes Infection. Animals (Basel) 2022; 12:ani12162082. [PMID: 36009671 PMCID: PMC9405287 DOI: 10.3390/ani12162082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is a crucial period associated with great stress and susceptibility to infection, implying adverse impacts on farmed rabbits’ production. Recently, probiotics have been provided as direct microbial feed supplements, which are considered the ideal antibiotic substitutes during pathogenic infections with an emphasis on promoting rabbits’ growth and modulating their immune functions. Therefore, our experiment was carried out to explore the efficacy of multi-strain probiotics (MSP) on rabbits’ growth, molecular aspects, such as nutrients transporters, cytokines, and intestinal integrity, and effectiveness against Listeria monocytogenes (L. monocytogenes) infection. Altogether, our findings proposed the beneficial consequences of MSP on rabbits’ growth, gut health, and immunity. After post-experimental infection of rabbits with L. monocytogenes, administration of MSP during the whole rearing period greatly reduced the detrimental impact of infection and consequently renovated efficient rabbits’ production. Abstract Multi-strain probiotics (MSP) are considered innovative antibiotics’ substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits’ growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.
Collapse
|
16
|
Insights into growth-promoting, anti-inflammatory, immunostimulant, and antibacterial activities of Toldin CRD as a novel phytobiotic in broiler chickens experimentally infected with Mycoplasma gallisepticum. Poult Sci 2022; 101:102154. [PMID: 36182847 PMCID: PMC9523390 DOI: 10.1016/j.psj.2022.102154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) leads to impaired broiler growth performance and significant economic losses worldwide. The utilization of essential oils (EOs) as natural alternatives to antibiotics to control CRD outbreaks is not completely clarified yet. Thus, we investigated the effect of a commercial EOs mixture (toldin CRD), in comparison to tilmicosin antibiotic, on the clinical observations, growth performance, immunity, digestive enzymes, gut barrier functions, and bacterial loads in broilers experimentally infected with MG. A total of 400 one-day-old broiler chicks were assigned into four groups; negative control (NC), positive control (PC), tilmicosin, and toldin CRD treated groups. All groups except NC were experimentally infected with MG at 14 d of age. Our data showed that birds treated with toldin CRD showed significant enhancement in the body weight gain (BWG) and feed conversion ratio (FCR) (P = 0.001 each) over the whole experimental period. Likely, improved digestibility and intestinal barrier functions in the toldin CRD treated group was evidenced by the significant upregulation (P < 0.05) of cholecystokinin (CCK), alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP), junctional adhesion molecule-2 (JAM-2), occludin, and mucin-2 (MUC-2) genes. Moreover, toldin CRD exhibited immunostimulant and ant-inflammatory activities via significant downregulation (P < 0.05) of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 genes, significant reduction of lysozyme (LYZ), myeloperoxidase (MPO), and nitric oxide (NO) levels (P = 0.03, 0.02, and 0.001, respectively) and significant increase in the immunoglobulin G (IgG) level (P = 0.03). Notably, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR) results showed prominent reductions (P < 0.05) in the levels of MG antigens and MG loads in the toldin CRD treated group, which were evidenced by relieving the clinical picture of MG experimental infection. In conclusion, we recommend the utilization of toldin CRD as a potential candidate for controlling MG infection in broiler chickens.
Collapse
|
17
|
Li X, Liu X, Song P, Zhao J, Zhang J, Zhao J. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat Sci 2022; 192:108906. [PMID: 35850029 DOI: 10.1016/j.meatsci.2022.108906] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Guanidinoacetic acid (GAA) exists naturally as a precursor of creatine, which possesses several biological functions. In the present study, the effects of dietary GAA supplementation on skeletal muscle mass and meat quality of lambs were investigated. The GAA supplementation increased final body weight, promoted muscle mass and changed the distribution of myofiber size. Meanwhile, elevated ultimate pH and water holding capacity (WHC) of resulting meat were observed in GAA fed lambs. Moreover, the total antioxidative capacity was elevated. Dietary GAA accelerated myofibril protein synthesis through regulation with IGF-1/Akt/mTOR signaling pathway and minimized protein breakdown via regulating abundances of myostatin and phosphorylated FoxO1. In vitro, GAA treatment inhibited sheep primary myoblasts proliferation, and enhanced its myogenic potential. Collectively, these results suggested that GAA might be a feed additive for use by the lamb meat industry as it has potential to improve growth performance, antioxidant status and WHC of resulting meat.
Collapse
Affiliation(s)
- Xinrui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiaomei Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jianxin Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
18
|
Sitanaka NY, Murakami AE, Esteves LAC, de Oliveira PC, Gasparino E, Khatlab ADS, Pozza PC. Dietary guanidinoacetic acid increases the longissimus dorsi muscle depth of finishing pigs without requiring a higher standardised ileal digestible methionine + cysteine concentration. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2063767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Natália Yoko Sitanaka
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | - Alice Eiko Murakami
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | | | | | - Eliane Gasparino
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | | | - Paulo Cesar Pozza
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| |
Collapse
|
19
|
Taiwo G, Idowu M, Collins S, Sidney T, Wilson M, Pech-Cervantes A, Ogunade IM. Chemical Group-Based Metabolome Analysis Identifies Candidate Plasma Biomarkers Associated With Residual Feed Intake in Beef Steers. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.783314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We applied chemical group-based metabolomics to identify blood metabolic signatures associated with residual feed intake in beef cattle. A group of 56 crossbred growing beef steers (average BW = 261.3 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake classification (RFI). After RFI determination, weekly blood samples were collected three times from beef steers with the lowest RFI [most efficient (HFE); n = 8] and highest RFI and least-efficient [least efficient (LFE); n = 8]. Plasma was prepared by centrifugation and composited for each steer. Metabolome analysis was conducted using a chemical isotope labeling (CIL)/liquid chromatography–mass spectrometry, which permitted the analysis of metabolites containing amine/phenol-, carboxylic acid-, and carbonyl-chemical groups, which are metabolites associated with metabolisms of amino acids, fatty acids, and carbohydrates, respectively. A total number of 495 amine/phenol-containing metabolites were detected and identified; pathway analysis of all these metabolites showed that arginine biosynthesis and histidine metabolism were enriched (P < 0.10) in HFE, relative to LFE steers. Biomarker analyses of the amine/phenol-metabolites identified methionine, 5-aminopentanoic acid, 2-aminohexanedioic acid, and 4-chlorolysine as candidate biomarkers of RFI [false discovery rate ≤ 0.05; Area Under the Curve (AUC) > 0.90]. A total of 118 and 330 metabolites containing carbonyl- and carboxylic acid-chemical groups, respectively were detected and identified; no metabolic pathways associated with these metabolites were altered and only one candidate biomarker (methionine sulfoxide) was identified. These results identified five candidate metabolite biomarkers of RFI in beef cattle which are mostly associated with amino acid metabolism. Further validation using a larger cohort of beef cattle of different genetic pedigree is required to confirm these findings.
Collapse
|
20
|
Alandiyjany MN, Kishawy ATY, Abdelfattah-Hassan A, Eldoumani H, Elazab ST, El-Mandrawy SAM, Saleh AA, ElSawy NA, Attia YA, Arisha AH, Ibrahim D. Nano-silica and magnetized-silica mitigated lead toxicity: Their efficacy on bioaccumulation risk, performance, and apoptotic targeted genes in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106054. [PMID: 34923218 DOI: 10.1016/j.aquatox.2021.106054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with heavy metals (HM) is of great concern owing to their deleterious impact on living organism. The current research is focused on application of silica particles with new functionalized properties (magnetic silica; SiMag or Nanoporous silica; SiNPs) and their efficacy to mitigate lead (pb) toxicity in Nile tilapia. One thousand fingerlings were distributed: two control groups (negative; without pb toxicity (NC) positive (with pb toxicity) and other four groups received two silica sources (SiMag or SiNPs) with two levels (400 and 600 mg/kg diet) for 56 days then exposed to pb for 30 days. Before toxicity exposure, maximum growth, and most improved feed conversion ratio and biochemical parameters were noticed with higher SiMag or SiNPs levels. Serum antioxidant enzymes and their transcriptional levels in muscle and liver were boosted in groups received SiMag or SiNPs. After toxicity exposure, hematological and antioxidants biomarkers maintained at adequate levels in SiMag or SiNPs. Prominent reduction of residual pb in gills, liver, kidney, and muscle was observed in SiNPs then SiMag groups. Interestingly, the maximum down-regulation of P450, caspase-3 and HSP-70 and MT were observed in groups received 600 mg/kg diet of SiMag or SiNPs. The higher level of P53 in liver and gills was detected in PC, inversely reduced in SiMag or SiNPs. Severity of the histopathological alterations in examined organs greatly reduced in groups received SiMag or SiNPs, unlike it were induced in PC group. In conclusion, higher SiMag or SiNPs levels not only mitigate negatives impact of pb toxicity in fish but also ensure its safety for human consumption.
Collapse
Affiliation(s)
- Maher N Alandiyjany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6(th) of October, Giza 12578, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Naser A ElSawy
- Department of Anatomy & Embryology Faculty of Medicine, Zagazig University, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
21
|
Duan BB, Xu JW, Xing T, Li JL, Zhang L, Gao F. Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway. Poult Sci 2021; 101:101653. [PMID: 35007932 PMCID: PMC8749301 DOI: 10.1016/j.psj.2021.101653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the effects of dietary creatine nitrate (CrN) on growth performance, meat quality, energy status, glycolysis, and related gene expression of liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway in Pectoralis major (PM) muscle of broilers. A total of 240 male Arbor Acres broilers (28-day-old) were randomly allocated to one of 5 dietary treatments: the basal diet (control group), and the basal diets supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN (identified as GAA600, CrN300, CrN600, or CrN900, respectively). We found that dietary GAA and CrN supplementation for 14 d from d 28 to 42 did not affect broiler growth performance, carcass traits, and textural characteristics of breast muscle. GAA600, CrN600, and CrN900 treatments increased pH24h and decreased drip loss of PM muscle compared with the control (P < 0.05). The PM muscles of CrN600 and CrN900 groups showed higher glycogen concentration and lower lactic acid concentration accompanied by lower activities of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) (P < 0.05). Simultaneously, GAA600 and all CrN treatments increased concentration of muscle creatine, phosphocreatine (PCr) and ATP, and decreased AMP concentration and AMP/ATP ratio (P < 0.05). Meanwhile, the concentrations of muscle creatine, PCr, and ATP were increased linearly, while muscle AMP concentration and AMP/ATP ratio were decreased linearly and quadratic as the dose of CrN increased (P < 0.05). GAA600, CrN600, and CrN900 treatments upregulated mRNA expression of CreaT in PM muscle, and CrN600 and CrN900 treatments downregulated GAMT expression in liver and PM muscle compared with the control or GAA600 groups (P < 0.05). The mRNA expression of muscle LKB1, AMPKα1, and AMPKα2 was downregulated linearly in response to the increasing CrN level (P < 0.05). Overall, CrN showed better efficacy on strengthening muscle energy status and improve meat quality than GAA at the some dose. These results indicate that CrN may be a potential replacement for GAA as a new creatine supplement.
Collapse
Affiliation(s)
- B B Duan
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - J W Xu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - J L Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
22
|
Yan Z, Yan Z, Liu S, Yin Y, Yang T, Chen Q. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front Nutr 2021; 8:714567. [PMID: 34458310 PMCID: PMC8387576 DOI: 10.3389/fnut.2021.714567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid is the direct precursor of creatine and its phosphorylated derivative phosphocreatine in the body. It is a safe nutritional supplement that can be used to promote muscle growth and development. Improving the growth performance of livestock and poultry and meat quality is the eternal goal of the animal husbandry, and it is also the common demand of today's society and consumers. A large number of experimental studies have shown that guanidinoacetic acid could improve the growth performance of animals, promote muscle development and improve the health of animals. However, the mechanism of how it affects muscle development needs to be further elucidated. This article discusses the physical and chemical properties of guanidinoacetic acid and its synthesis pathway, explores its mechanism of how it promotes muscle development and growth, and also classifies and summarizes the impact of its application in animal husbandry, providing a scientific basis for this application. In addition, this article also proposes future directions for the development of this substance.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Yan
- Chemistry Department, University of Liverpool, Liverpool, United Kingdom
| | - Shuangli Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tai Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Li Z, Liang H, Xin J, Xu L, Li M, Yu H, Zhang W, Ge Y, Li Y, Qu M. Effects of Dietary Guanidinoacetic Acid on the Feed Efficiency, Blood Measures, and Meat Quality of Jinjiang Bulls. Front Vet Sci 2021; 8:684295. [PMID: 34307526 PMCID: PMC8299751 DOI: 10.3389/fvets.2021.684295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
An experiment was conducted to determine the effects of supplementing the diet of Jinjiang bulls with guanidinoacetic acid (GAA) on their feed efficiency [feed efficiency were evaluated with feedlot average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F:G)], blood measures, and meat quality. Forty-five Jinjiang bulls (24 ± 3 months old and 350.15 ± 30.39 kg by weight) were randomly distributed among five experimental groups (each n = 9) and each group was randomly fed with one of five diets (concentrate: roughage ratio of 60:40): (1) control; (2) 0.05% GAA; (3) 0.1% GAA; (4) 0.2% GAA; and (5) 0.4% GAA, respectively. After a 52-days feeding trial, five bulls from the control group and five bulls from the optimal GAA supplementing group were randomly selected and slaughtered for collection of the longissimus thoracis (LT) and semitendinosus (SM) muscles to determine meat quality. The results showed that dietary GAA improved the ADG, decreased the value of F:G, and affected blood measures and antioxidant variables. Supplementing 0.2% GAA into the diet was optimal for feeding efficiency and most of the measured blood measures. Supplementing 0.2% GAA into the diet increased the a* (redness) values, and b* (yellowness) values, and the amount of creatine kinase (CK), muscle glycogen, creatinine (CRE), and laminin (LN) in LT muscles. However, it decreased the drip loss, L* (lightness) value, and lactate dehydrogenase (LDH) content of LT muscles. Drip loss and shear force decreased in SM muscles, as did the amount of type IV collagen (CV-IV). In conclusion, supplementing 0.2% GAA into the diet could enhance feed efficiency to improve beef growth and meat quality.
Collapse
Affiliation(s)
- Zengmin Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Huan Liang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junping Xin
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Meifa Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Hanjing Yu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Wenjing Zhang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yu Ge
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
24
|
Zhao W, Li J, Xing T, Zhang L, Gao F. Effects of guanidinoacetic acid and complex antioxidant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3961-3968. [PMID: 33349952 DOI: 10.1002/jsfa.11036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND This study was conducted to evaluate the effects of adding guanidinoacetic acid (GAA), or complex antioxidant (CA), or their combination, in diets on the growth performance, carcass traits, meat quality, and antioxidant capacity of broilers. A total of 192 25-day-old broilers were assigned to a 2 × 2 factorial design including two dietary supplements at two different levels, in which the main effects were the addition of GAA (0 or 600 mg kg-1 ) and CA (0 or 150 mg kg-1 ). This trial lasted for 18 days. RESULTS Compared with the control group, the GAA group, CA group, and GAA + CA group, decreased feed conversion ratio by 7.02%, 6.58%, and 11.40%, respectively. Guanidinoacetic supplementation increased eviscerated yield, pH24h (P < 0.05). Complex antioxidant supplementation increased the a* values (P < 0.05). The combination of GAA and CA did not affect the carcass traits and meat quality. Guanidinoacetic acid alone and CA alone and combined with GAA and CA decreased the reactive oxygen species (ROS) level and malonaldehyde (MDA) content (P < 0.05), and the GAA + CA group had the lowest ROS level and MDA content of broilers. CONCLUSION Dietary supplementation of GAA, CA or their combination had beneficial effects on growth performance and breast antioxidant capacity, and the combination of GAA and CA could exert a synergistic effect in improving antioxidant capacity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhao
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Joint International Research Laboratory of Animal Health and Food Safety; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Joint International Research Laboratory of Animal Health and Food Safety; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Tong Xing
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Joint International Research Laboratory of Animal Health and Food Safety; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Joint International Research Laboratory of Animal Health and Food Safety; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology; Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Joint International Research Laboratory of Animal Health and Food Safety; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Dao HT, Sharma NK, Bradbury EJ, Swick RA. Response of laying hens to l-arginine, l-citrulline and guanidinoacetic acid supplementation in reduced protein diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:460-471. [PMID: 34258434 PMCID: PMC8245824 DOI: 10.1016/j.aninu.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
A study was conducted with Hy-Line Brown laying hens to examine the effects of reduced protein diet, deficiency of arginine (Arg), and addition of crystalline Arg, citrulline (Cit) and guanidinoacetic acid (GAA) as substitutes for Arg. Hen performance, egg quality, serum uric acid, liver and reproductive organ weights, and energy and protein digestibility were measured using a completely randomized design with 5 treatments. Treatments were a standard diet (17% protein diet; SP), a reduced diet (13% protein diet deficient in Arg; RP) and RP with added Arg (0.35%, RP-Arg), GAA (0.46% equivalent to 0.35% Arg, RP-GAA) or Cit (0.35%, RP-Cit) to the level of SP. It was hypothesized that performance would decrease with Arg deficient RP diet and the addition of GAA or Cit in RP would allow birds to perform similar or greater than Arg-added RP treatment. The experiment was conducted from 20 to 39 wk of age but the treatment effect was seen only after 29 wk of age. The birds offered RP had reduced egg and albumin weights (P < 0.01), lower yolk color score (P < 0.01), lower protein intake and excretion (P < 0.01) than those offered SP. When Arg or Cit were added to RP to make them equivalent to SP, feed intake (FI) and egg production were not different than those of RP (P > 0.05). The birds offered RP-GAA decreased FI and egg production (P < 0.01) compared to those offered RP. The addition of Arg, Cit or GAA to the RP had no effect on egg quality parameters, protein and energy digestibilities (P > 0.05). However, birds offered the RP-Cit diet tended to have higher Haugh unit (P = 0.095) and lower shell breaking strength (P = 0.088) compared to all other treatments while those offered RP-GAA had higher energy digestibility (P < 0.05) than all other groups but RP. The limited performance response of hens fed RP with added Arg, GAA, or Cit may be due to deficiency of some other nutrients in RP such as phenylalanine, potassium or non-essential amino acids and other components of soybean meal in the diet.
Collapse
Affiliation(s)
- Hiep Thi Dao
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, 2351, New South Wales, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, Viet Nam
| | - Nishchal K. Sharma
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, 2351, New South Wales, Australia
| | - Emma J. Bradbury
- Ridley AgriProducts, Level 4, 565 Bourke Street, Melbourne, VIC, Australia
| | - Robert A. Swick
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, 2351, New South Wales, Australia
| |
Collapse
|
26
|
Ibrahim D, Abdelfattah-Hassan A, Arisha AH, El-Aziz RMA, Sherief WR, Adli SH, El Sayed R, Metwally AE. Impact of feeding anaerobically fermented feed supplemented with acidifiers on its quality and growth performance, intestinal villi and enteric pathogens of mulard ducks. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
|
28
|
Oviedo-Rondón EO, Córdova-Noboa HA. The Potential of Guanidino Acetic Acid to Reduce the Occurrence and Severity of Broiler Muscle Myopathies. Front Physiol 2020; 11:909. [PMID: 32922302 PMCID: PMC7456982 DOI: 10.3389/fphys.2020.00909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Guanidinoacetic acid (GAA) is the biochemical precursor of creatine, which, in its phosphorylated form, is an essential high-energy carrier in the muscle. Although creatine has limited stability in feed processing, GAA is well established as a source of creatine in the animal feed industry. Published data demonstrate beneficial effects of GAA supplementation on muscle creatine, energy compounds, and antioxidant status, leading to improvements in broiler body weight gain, feed conversion ratio, and breast meat yield. Although increases in weight gain and meat yield are often associated with wooden breast (WB) and other myopathies, recent reports have suggested the potential of GAA supplementation to reduce the occurrence and severity of WB while improving breast meat yield. This disorder increases the hardness of the Pectoralis major muscle and has emerged as a current challenge to the broiler industry worldwide by impacting meat quality. Genetic selection, fast-growth rates, and environmental stressors have been identified to be the main factors related to this myopathy, but the actual cause of this disorder is still unknown. Creatine supplementation has been used as a nutritional prescription in the treatment of several muscular myopathies in humans and other animals. Because GAA is a common feed additive in poultry production, the potential of GAA supplementation to reduce broiler myopathies has been investigated in experimental and commercial scenarios. In addition, a few studies have evaluated the potential of creatine in plasma and blood enzymes related to creatine to be used as potential markers for WB. The evidence indicates that GAA could potentially minimize the incidence of WB. More data are warranted to understand the factors affecting the potential efficacy of GAA to reduce the occurrence and severity of myopathies.
Collapse
|