1
|
Sun Z, Zhang B, Zhou J, Luo Y, Zhu X, Wang Y, He Y, Zheng P, Zhang L, Yang J, Wang G. Integrated Single-Cell RNA-seq and ATAC-seq Reveals Heterogeneous Differentiation of CD4 + Naive T Cell Subsets is Associated with Response to Antidepressant Treatment in Major Depressive Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308393. [PMID: 38867657 PMCID: PMC11321657 DOI: 10.1002/advs.202308393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The mechanism involved in major depressive disorder (MDD) is well-studied but the mechanistic origin of the heterogeneous antidepressant effect remains largely unknown. Single-cell RNA-sequencing (scRNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on peripheral blood mononuclear cells from 8 healthy individuals and 8 MDD patients before or after 12 weeks of antidepressant treatment is performed. scRNA-seq analysis reveals a lower proportion of naive T cells, particularly CD4+ naive T cells, in MDD patients compared to controls, and in nonresponders versus responders at the baseline. Flow cytometry data analysis of an independent cohort of 35 patients and 40 healthy individuals confirms the findings. Enrichment analysis of differentially expressed genes indicated obvious immune activation in responders. A specific activated CD4+ naive T population in responders characterized by enhanced mitogen-activated protein kinases (MAPK) pathway is identified. E-twenty six (ETS) is proposed as an upstream regulator of the MAPK pathway and heterogeneous differentiation in activated CD4+ naive T population is associated with the response to antidepressant treatment in MDD patients. A distinct immune feature manifested by CD4+ naive T cells during antidepressant treatment in MDD is identified. Collectively, this proposes the molecular mechanism that underlies the heterogeneous antidepressant outcomes for MDD.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Bowen Zhang
- College of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Yanting Luo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Yaping Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Peng Zheng
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijing100088China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069China
| |
Collapse
|
2
|
Shimo Y, Cathomas F, Lin HY, Chan KL, Parise LF, Li L, Ferrer-Pérez C, Muhareb S, Costi S, Murrough JW, Russo SJ. Social stress induces autoimmune responses against the brain. Proc Natl Acad Sci U S A 2023; 120:e2305778120. [PMID: 38011565 DOI: 10.1073/pnas.2305778120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.
Collapse
Affiliation(s)
- Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY 10029
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Brain-Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
3
|
Medina-Rodriguez EM, Han D, Lowell J, Beurel E. Stress promotes the infiltration of peripheral immune cells to the brain. Brain Behav Immun 2023; 111:412-423. [PMID: 37169132 PMCID: PMC10349920 DOI: 10.1016/j.bbi.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Immune cells and the brain have a privileged interaction. Here, we report changes in the hippocampal immune microenvironment at the single cell level after stress, uncovering the tight orchestration of immune cell infiltration into the hippocampus after stress to maintain homeostasis. We show the distribution of several immune cell types in the hippocampus associated with their susceptibility or resilience to the learned helplessness paradigm in a sex- and microbiota-dependent manner using single-cell RNA sequencing and bioinformatic tools, flow cytometry, and immunofluorescence. We uncovered the presence of tissue-resident memory T cells that accumulate over time in the hippocampus of learned helpless mice, and the presence of CD74-expressing myeloid cells. These cells were found by a knockdown approach to be critical to induce resilience to learned helplessness. Altogether, these findings provide a novel overview of the neuro-immune repertoire and its impact on the landscape of the hippocampus after learned helplessness.
Collapse
Affiliation(s)
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, United States
| | - Jeffrey Lowell
- Department of Psychiatry and Behavioral Sciences, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
4
|
D'Acquisto F, D'Addario C, Cooper D, Pallanti S, Blacksell I. Peripheral control of psychiatric disorders: Focus on OCD. Are we there yet? Compr Psychiatry 2023; 123:152388. [PMID: 37060625 DOI: 10.1016/j.comppsych.2023.152388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
"We are all in this together" - we often hear this phrase when we want to flag up a problem that is not for a single individual but concerns us all. A similar reflection has been recently made in the field of mental disorders where brain-centric scientists have started to zoom out their brain-focused graphical representations of the mechanisms regulating psychiatric diseases to include other organs or mediators that did not belong historically to the world of neuroscience. The brain itself - that has long been seen as a master in command secluded in its fortress (the blood brain barrier), has now become a collection of Airbnb(s) where all sorts of cells come in and out and sometimes even rearrange the furniture! Under this new framework of reference, mental disorders have become multisystem pathologies where different biological systems - not just the CNS -contribute 'all together' to the development and severity of the disease. In this narrative review article, we will focus on one of the most popular biological systems that has been shown to influence the functioning of the CNS: the immune system. We will specifically highlight the two main features of the immune system and the CNS that we think are important in the context of mental disorders: plasticity and memory.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- School of Life and Health Science, University of Roehampton, London, UK.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefano Pallanti
- Albert Einstein College of Medicine,New York, USA; Istituto di Neuroscienze, Florence, Italy
| | - Isobel Blacksell
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Krawczyk MC, Pan L, Zhang AJ, Zhang Y. Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia. PLoS One 2023; 18:e0279736. [PMID: 36827449 PMCID: PMC9956607 DOI: 10.1371/journal.pone.0279736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 02/26/2023] Open
Abstract
Though the brain was long characterized as an immune-privileged organ, findings in recent years have shown extensive communications between the brain and peripheral immune cells. We now know that alterations in the peripheral immune system can affect the behavioral outputs of the central nervous system, but we do not know which brain cells are affected by the presence of peripheral immune cells. Glial cells including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells (OPCs) are critical for the development and function of the central nervous system. In a wide range of neurological and psychiatric diseases, the glial cell state is influenced by infiltrating peripheral lymphocytes. However, it remains largely unclear whether the development of the molecular phenotypes of glial cells in the healthy brain is regulated by lymphocytes. To answer this question, we acutely purified each type of glial cell from immunodeficient Rag2-/- mice. Interestingly, we found that the transcriptomes of microglia, astrocytes, and OPCs developed normally in Rag2-/- mice without reliance on lymphocytes. In contrast, there are modest transcriptome differences between the oligodendrocytes from Rag2-/- and control mice. Furthermore, the subcellular localization of the RNA-binding protein Quaking, is altered in oligodendrocytes. These results demonstrate that the molecular attributes of glial cells develop largely without influence from lymphocytes and highlight potential interactions between lymphocytes and oligodendrocytes.
Collapse
Affiliation(s)
- Mitchell C. Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
7
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
Markova EV, Knyazheva MA, Tikhonova MA, Amstislavskaya TG. Structural and functional characteristics of the hippocampus in depressive-like recipients after transplantation of in vitro caffeine-modulated immune cells. Neurosci Lett 2022; 786:136790. [PMID: 35839995 DOI: 10.1016/j.neulet.2022.136790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
The hippocampus is a key anatomical brain region associated with depression. On the other hand, immune cells and their releasing cytokines play an essential role in stress and depression. Noteworthy that the most of psychoactive drugs produce unidirectional effects on the cells of both nervous and immune systems. This suggests the immunotherapy for behavioral disorders based on the treatment with autologous immune cells in which functional activity was modulated ex vivo by a psychoactive drug. Here, we treated the immune cells of depressive-like mice in vitro with caffeine (100 μg per 15 × 106 cells). The effects of caffeine-treated immune cells transplantation on neuronal density, production of brain-derived neurotrophic factor (BDNF) and a number of cytokines in the hippocampus of depressive-like syngeneic animals were studied. In depressive-like recipients, an increase in the density of pyramidal neurons in CA1 and CA3 hippocampal regions, accompanied with augmented level of BDNF, decreased levels of pro-inflammatory (IL-1β, IL-6, INF-γ, and TNF-α) and increased levels of anti-inflammatory (IL-10 and IL-4) cytokines was found. The mechanisms of the revealed structural and functional alterations in the hippocampus of depressive-like recipients after transplantation of caffeine-treated immune cells are discussed.
Collapse
Affiliation(s)
- Evgeniya V Markova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Yadrintsevskaya st., 14, 630099 Novosibirsk, Russia.
| | - Maria A Knyazheva
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Yadrintsevskaya st., 14, 630099 Novosibirsk, Russia
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Timakov str., 4, 630117 Novosibirsk, Russia.
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Timakov str., 4, 630117 Novosibirsk, Russia
| |
Collapse
|
9
|
Engler-Chiurazzi EB, Chastain WH, Citron KK, Lambert LE, Kikkeri DN, Shrestha SS. Estrogen, the Peripheral Immune System and Major Depression – A Reproductive Lifespan Perspective. Front Behav Neurosci 2022; 16:850623. [PMID: 35493954 PMCID: PMC9051447 DOI: 10.3389/fnbeh.2022.850623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Major depression is a significant medical issue impacting millions of individuals worldwide. Identifying factors contributing to its manifestation has been a subject of intense investigation for decades and several targets have emerged including sex hormones and the immune system. Indeed, an extensive body of literature has demonstrated that sex hormones play a critical role in modulating brain function and impacting mental health, especially among female organisms. Emerging findings also indicate an inflammatory etiology of major depression, revealing new opportunities to supplement, or even supersede, currently available pharmacological interventions in some patient populations. Given the established sex differences in immunity and the profound impact of fluctuations of sex hormone levels on the immune system within the female, interrogating how the endocrine, nervous, and immune systems converge to impact women’s mental health is warranted. Here, we review the impacts of endogenous estrogens as well as exogenously administered estrogen-containing therapies on affect and immunity and discuss these observations in the context of distinct reproductive milestones across the female lifespan. A theoretical framework and important considerations for additional study in regards to mental health and major depression are provided.
Collapse
Affiliation(s)
- Elizabeth B. Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Elizabeth B. Engler-Chiurazzi,
| | - Wesley H. Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kailen K. Citron
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lillian E. Lambert
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Divya N. Kikkeri
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Sharhana S. Shrestha
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
10
|
Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev 2022; 74:373-386. [PMID: 35302045 PMCID: PMC8973514 DOI: 10.1124/pharmrev.120.000256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| |
Collapse
|
11
|
Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype. Mol Psychiatry 2022; 27:3047-3055. [PMID: 35422470 PMCID: PMC9205773 DOI: 10.1038/s41380-022-01535-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures-such as the corpus callosum, midbrain, and thalamus-were more likely to be affected by immune dysfunction. A notable brain-behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.
Collapse
|
12
|
Shi W, Zhang S, Lu Y, Wang Y, Zhao J, Li L. T cell responses in depressed mice induced by chronic unpredictable mild stress. J Affect Disord 2022; 296:150-156. [PMID: 34601302 DOI: 10.1016/j.jad.2021.09.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relationship between depression and adaptive immunity has gradually attracted increasing attentions. However, no consistent conclusions have been drawn about alterations in adaptive immunity in depression. METHODS Eight-week-old weight-matched male C57BL/6 mice were randomly divided into a chronic unpredictable mild stress (CUMS) model group and a control group, with twelve mice in each group. After 8-week CUMS modeling duration and depressive behavioral tests, T cell responses were evaluated at the cell, cytokine, and cell-specific transcription factor levels. Lymphocytes in the spleen were detected by flow cytometry; serum cytokines were assessed by enzyme-linked immunosorbent assays; expression levels of cytokines and cell-specific transcription factors in the hippocampus were determined by quantitative PCR. RESULTS CUMS exposure induced depression-like behaviors with decreased sucrose preference and longer immobility time in the tail suspension test and forced swim test. The CUMS group had a lower proportion of CD4+T cells than the control group. A decreased number of T helper 17 (Th17) cells in the spleen and down regulated serum interleukin (IL)-17 and hippocampal retinoid-related orphan receptor-γt levels were detected in the CUMS group. Depressed mice in the CUMS group showed increases in serum IL-1β and IL-6 and hippocampal IL-6 and IL-4 levels. LIMITATION The study was based on a mouse model. Further studies are needed to determine whether the results are applicable to patients with depression. CONCLUSION CUMS exposure can induce depression-like behaviors and decrease Th17 cell counts.
Collapse
Affiliation(s)
- Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yaning Wang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing 100050, China.
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
13
|
Sakamoto S, Zhu X, Hasegawa Y, Karma S, Obayashi M, Alway E, Kamiya A. Inflamed brain: Targeting immune changes and inflammation for treatment of depression. Psychiatry Clin Neurosci 2021; 75:304-311. [PMID: 34227186 PMCID: PMC8683253 DOI: 10.1111/pcn.13286] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Although there are a number of clinically effective treatments for depression, many patients exhibit treatment resistance. Recent clinical and preclinical studies reveal that peripheral and brain immune changes and inflammation are involved in the pathophysiology of depression. This 'Inflamed Brain' research provides critical clues for understanding of disease pathophysiology and many candidate molecules that are potentially useful for identifying novel drug targets for the treatment of depression. In this review, we will present clinical evidence on the role of inflammation in the pathophysiology of depression. We will also summarize current clinical trials which test drugs targeting inflammation for the treatment of patients with depression. Furthermore, we will briefly provide preclinical evidence demonstrating altered immune system function and inflammation in stress-induced animal models and will discuss the future potential of inflammation-related drug targets. Collectively, inflammatory signatures identified in clinical and preclinical studies may allow us to stratify depressive patients based on biotypes, contributing to the development of novel mechanism-based interventions that target specific patient populations.
Collapse
Affiliation(s)
- Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadik Karma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Alway
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun 2021; 93:264-276. [PMID: 33548498 DOI: 10.1016/j.bbi.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal immunity refers to immune surveillance and immune defense in the meningeal immune compartment, which depends on the unique position, structural composition of the meninges and functional characteristics of the meningeal immune cells. Recent research advances in meningeal immunity have demonstrated many new ways in which a sophisticated immune landscape affects central nervous system (CNS) function under physiological or pathological conditions. The proper function of the meningeal compartment might protect the CNS from pathogens or contribute to neurological disorders. Since the concept of meningeal immunity, especially the meningeal lymphatic system and the glymphatic system, is relatively new, we will provide a general review of the meninges' basic structural elements, organization, regulation, and functions with regards to meningeal immunity. At the same time, we will emphasize recent evidence for the role of meningeal immunity in neurodegenerative diseases. More importantly, we will speculate about the feasibility of the meningeal immune region as a drug target to provide some insights for future research of meningeal immunity.
Collapse
Affiliation(s)
- Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610060, PR China.
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Center, Temple, TX 76502, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76502, United States
| |
Collapse
|
15
|
Piras G, Rattazzi L, Paschalidis N, Oggero S, Berti G, Ono M, Bellia F, D'Addario C, Dell'Osso B, Pariante CM, Perretti M, D'Acquisto F. Immuno-moodulin: A new anxiogenic factor produced by Annexin-A1 transgenic autoimmune-prone T cells. Brain Behav Immun 2020; 87:689-702. [PMID: 32126289 DOI: 10.1016/j.bbi.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.
Collapse
Affiliation(s)
- Giuseppa Piras
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lorenza Rattazzi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nikolaos Paschalidis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Giulio Berti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London,United Kingdom
| | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences "Luigi Sacco", ASST Fatebenefratelli Sacco, Ospedale Sacco, Polo Universitario, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom.
| |
Collapse
|
16
|
Rilett KC, Luo OD, McVey-Neufeld KA, MacKenzie RN, Foster JA. Loss of T cells influences sex differences in stress-related gene expression. J Neuroimmunol 2020; 343:577213. [PMID: 32278229 DOI: 10.1016/j.jneuroim.2020.577213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Deficiencies in the adaptive immune system have been linked to anxiety-like behaviours and stress reactivity. Mice lacking T lymphocytes through knockout of the T cell receptor (TCR) β and δ chains were compared to wild type C57Bl/6 mice. Central stress circuitry gene expression was assessed following repeated restraint stress. TCRβ-/-δ-/- mice showed an increased baseline plasma corticosterone and exaggerated changes in stress-related gene expression after repeated restraint stress. Sexual dimorphic stress responses were observed in wild-type C57Bl/6 mice but not in TCRβ-/-δ-/- mice. These data suggest that T cell-brain interactions influence sex-differences in CNS stress circuitry and stress reactivity.
Collapse
Affiliation(s)
- Kelly C Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Owen D Luo
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Karen-Anne McVey-Neufeld
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Robyn N MacKenzie
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Treatment with a heat-killed preparation of Mycobacterium vaccae after fear conditioning enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 2019; 81:151-160. [PMID: 31175996 PMCID: PMC6754802 DOI: 10.1016/j.bbi.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for anxiety disorders, affective disorders, and trauma-and stressor-related disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to enhance fear extinction in the fear-potentiated startle paradigm when given prior to fear conditioning. To determine if immunization with M. vaccae after fear conditioning also has protective effects, adult male Sprague Dawley rats underwent fear conditioning on days -37 and -36 followed by immunizations (3x), once per week beginning 24 h following fear conditioning, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1 mg, s.c., in 100 µl borate-buffered saline) or vehicle, and, then, 3 weeks following the final immunization, were tested in the fear-potentiated startle paradigm (n = 12 per group). Rats underwent fear extinction training on days 1 through 6 followed by spontaneous recovery 14 days later (day 20). Rats were euthanized on day 21 and brain tissue was sectioned for analysis of Tph2, Htr1a, Slc6a4, Slc22a3, and Crhr2 mRNA expression throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae did not affect fear expression on day 1. However, M. vaccae-immunized rats showed enhanced enhanced within-session fear extinction on day 1 and enhanced between-session fear extinction beginning on day 2, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle had minimal effects on serotonergic gene expression when assessed 42 days after the final immunization. Together with previous studies, these data are consistent with the hypothesis that immunoregulatory strategies, such as immunization with M. vaccae, have potential for both prevention and treatment of trauma- and stressor-related psychiatric disorders.
Collapse
|
18
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Tsyglakova M, McDaniel D, Hodes GE. Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 2019; 54:100771. [PMID: 31325456 DOI: 10.1016/j.yfrne.2019.100771] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Stress has an impact on the brain and the body. A growing literature demonstrates that feedback between the peripheral immune system and the brain contributes to individual differences in the behavioral response to stress. Here we examine preclinical literature to demonstrate a holistic vision of risk and resilience to stress. We identify a variety of cellular, cytokine and molecular mechanisms in adult animals that act in concert to produce a stress susceptible individual response. We discuss how cross talk between immune cells in the brain and in the periphery act together to increase permeability across the blood brain barrier or block it, resulting in susceptible or stress resilient phenotype. These preclinical studies have importance for understanding how individual differences in the immune response to stress may be contributing to mood related disorders such as depression, anxiety and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dylan McDaniel
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
20
|
Sleep Matters: CD4 + T Cell Memory Formation and the Central Nervous System. Trends Immunol 2019; 40:674-686. [PMID: 31262652 DOI: 10.1016/j.it.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022]
Abstract
The mechanisms of CD4+ T-cell memory formation in the immune system are debated. With the well-established concept of memory formation in the central nervous system (CNS), we propose that formation of CD4+ T-cell memory depends on the interaction of two different cell systems handling two types of stored information. First, information about antigen (event) and challenge (context) is taken up by antigen-presenting cells, as initial storage. Second, event and context information is transferred to CD4+ T cells. During activation, two categories of CD4+ T cell develop: effector CD4+ T cells, carrying event and context information, enabling them to efficiently focus their response to tissues under attack; and persisting CD4+ T cells, providing context-independent antigen-specific memories and long-term storage. This novel hypothesis is supported by the observation that mammalian sleep can improve both CNS and CD4+ T-cell memory.
Collapse
|
21
|
Kelly DL, Li X, Kilday C, Feldman S, Clark S, Liu F, Buchanan RW, Tonelli LH. Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res 2018; 269:517-523. [PMID: 30195746 PMCID: PMC6207456 DOI: 10.1016/j.psychres.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023]
Abstract
Immunological abnormalities are increasingly reported in people with schizophrenia, but no clear functional biomarkers associated with genetic correlates of the disease have been found. Regulatory T cells (Tregs) are key immunoregulatory cells involved in the control of inflammatory processes and their functions are directly related to the human leucocyte antigen (HLA) gene, which has been implicated in schizophrenia genetic studies. However, there is a lack of studies reporting Treg status in people with schizophrenia. In the current study, the proportion of circulating Tregs was examined using flow cytometry in 26 medicated participants with schizophrenia and 17 healthy controls. Psychiatric symptoms and cognitive function were evaluated using the Scale for the Assessment of Negative Symptoms, the Brief Psychiatric Rating Scale, and the MATRICS Consensus Cognitive Battery. The proportion of Tregs was found to be significantly greater in the schizophrenia group compared to healthy controls. No differences were observed in total lymphocyte counts or CD3+ and CD4+ T cells, confirming a specific effect for Tregs. Elevated Tregs in schizophrenia correlated with fewer negative symptoms, a core domain of the illness. These results suggest that Tregs may contribute to improved negative symptoms in schizophrenia, possibly by counteracting on-going inflammatory processes.
Collapse
Affiliation(s)
- Deanna L Kelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Catherine Kilday
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Feldman
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA
| | - Fang Liu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building Room 934 E, Baltimore 21201, MD, USA.
| |
Collapse
|
22
|
Beurel E, Lowell JA, Jope RS. Distinct characteristics of hippocampal pathogenic T H17 cells in a mouse model of depression. Brain Behav Immun 2018; 73:180-191. [PMID: 29698707 PMCID: PMC6287768 DOI: 10.1016/j.bbi.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that multiple actions of the immune system are closely intertwined with the development of depression and subsequent recovery processes. One of these interactions is substantial evidence that the TH17 subtype of CD4+ T cells promotes susceptibility to depression-like behaviors in mice. Comparing subtypes of CD4+ T cells, we found that administration of TH17 cells, but not TH1 cells or TREGS, promoted susceptibility to learned-helplessness depressive-like behavior and accumulated in the hippocampus of learned helpless mice. Adoptively transferred TH17 cells into Rag2-/- mice that are devoid of endogenous T cells increased susceptibility to learned helplessness, demonstrating that increased peripheral TH17 cells are capable of modulating depression-like behavior. Moreover, in wild-type mice, adoptively transferred TH17 cells accumulated in the hippocampus of learned-helpless mice and induced endogenous TH17 cell differentiation. Hippocampal TH17 cells from learned-helpless mice expressed markers of pathogenic TH17 cells (CCR6, IL-23R) and of follicular cells (CXCR5, PD-1), indicating that the hippocampal cells are TFH-17-like cells. Knockout of CCR6 blocked TH17 cells from promoting learned helplessness, which was associated with increased expression of PD-1 in CCR6-deficient TH17 cells. In summary, these results reinforce the conclusion that depression-like behaviors are selectively facilitated by TH17 cells, and revealed that these cells in the hippocampus of learned helpless mice display characteristics of TFH17-like cells, which may contribute to their pathogenic actions in promoting depression.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| | - Jeffrey A Lowell
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
23
|
Medina-Rodriguez EM, Lowell JA, Worthen RJ, Syed SA, Beurel E. Involvement of Innate and Adaptive Immune Systems Alterations in the Pathophysiology and Treatment of Depression. Front Neurosci 2018; 12:547. [PMID: 30174579 PMCID: PMC6107705 DOI: 10.3389/fnins.2018.00547] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating disorder, often fatal. Treatment options are few and often do not provide immediate relief to the patients. The increasing involvement of inflammation in the pathology of MDD has provided new potential therapeutic avenues. Cytokine levels are elevated in the blood and cerebrospinal fluid of MDD patients whereas immune cells often exhibit an immunosuppressed phenotype in MDD patients. Blocking cytokine actions in patients exhibiting MDD show some antidepressant efficacy. However, the role of cytokines, and the immune response in MDD patients remain to be determined. We reviewed here the roles of the innate and adaptive immune systems in MDD, as well as potential mechanisms whereby the immune response might be regulated in MDD.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jeffrey A Lowell
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ryan J Worthen
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shariful A Syed
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
24
|
Young MB, Howell LL, Hopkins L, Moshfegh C, Yu Z, Clubb L, Seidenberg J, Park J, Swiercz AP, Marvar PJ. A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice. Psychoneuroendocrinology 2018; 94:143-151. [PMID: 29783162 PMCID: PMC6003662 DOI: 10.1016/j.psyneuen.2018.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired.
Collapse
Affiliation(s)
- Matthew B. Young
- Division of Neuropharmacology and Neurological Disease, Yerkes National Primate Research Center, Emory University, Atlanta GA, USA; (404) 727-8512; (404) 727-7786
| | - Leonard L. Howell
- Division of Neuropharmacology and Neurological Disease, Yerkes National Primate Research Center, Emory University, Atlanta GA, USA; (404) 727-8512; (404) 727-7786
| | - Lauren Hopkins
- Department of Pharmacology and Physiology, George Washington University, Washington DC, USA.
| | - Cassandra Moshfegh
- Department of Pharmacology and Physiology, George Washington University, Washington DC, USA.
| | - Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington DC, USA.
| | - Lauren Clubb
- Department of Pharmacology and Physiology, George Washington University, Washington DC, USA.
| | - Jessica Seidenberg
- Department of Pharmacology and Physiology, George Washington University, Washington DC, USA.
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA
| | - Adam P. Swiercz
- Department of Pharmacology and Physiology, Washington DC, USA
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, Washington DC, USA,Department of Psychiatry and Behavioral Sciences, Washington DC, USA; (202) 994-5584,GW Institute for Neuroscience George Washington University, Washington DC, USA,Correspondence to:
| |
Collapse
|
25
|
Clark SM, Song C, Li X, Keegan AD, Tonelli LH. CD8 + T cells promote cytokine responses to stress. Cytokine 2018; 113:256-264. [PMID: 30033139 DOI: 10.1016/j.cyto.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022]
Abstract
Psychological stress is known to have profound effects on immune function and to promote inflammatory conditions. Elevated circulating levels of cytokines associated with stress are known to increase the risk to several diseases, but little is known about this mechanism. This study assessed the role of T cells on cytokine levels after exposure to stress in the learned helplessness paradigm. Adoptive transfer of CD4+ T cells into Rag2-/- mice did not change cytokine levels to stress while CD8+ T cells resulted in an increase in TNF-α, IL-6 and IFN-γ in stressed Rag2-/- mice. Moreover, depletion of CD8+ T cells in WT mice abolished these cytokine responses to stress. Corticosterone and behavioral stress responsiveness was impaired in Rag2-/- mice reconstituted with CD8+ T cells. Notably, depletion of these cells in WT mice had no effect on behavior or corticosterone levels. Exposure to stress did not change the expression of canonical markers of T cell activation including CD62L and CD44 or modified intracellular cytokine content, suggesting that they are not the main producers of circulating cytokines in response to stress. These results show that CD8+ T cells promote TNF-α, IL-6 and IFN-γ responses to stress, possibly by stimulating non-lymphoid cells.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Chang Song
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA.
| |
Collapse
|
26
|
MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice. Molecules 2018; 23:molecules23030527. [PMID: 29495457 PMCID: PMC6017002 DOI: 10.3390/molecules23030527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.
Collapse
|
27
|
Clark SM, Vaughn CN, Soroka JA, Li X, Tonelli LH. Neonatal adoptive transfer of lymphocytes rescues social behaviour during adolescence in immune-deficient mice. Eur J Neurosci 2018; 47:968-978. [PMID: 29430738 DOI: 10.1111/ejn.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence has shown that lymphocytes modulate behaviour and cognition by direct interactions with the central nervous system. Studies have shown that reconstitution by adoptive transfer of lymphocytes from wild type into immune-deficient mice restores a number of neurobehavioural deficits observed in these models. Moreover, it has been shown that these effects are mostly mediated by T lymphocytes. Studies of adoptive transfer thus far have employed adult mice, but whether lymphocytes may also modulate behaviour during development remains unknown. In this study, neonate lymphocyte-deficient Rag2-/- mice were reconstituted within 48 hours after birth with lymphoid cells from transgenic donors expressing green fluorescent protein, allowing for their identification in various tissues in recipient mice while retaining all functional aspects. Adolescent Rag2-/- and reconstituted Rag2-/- along with C57BL/6J wild-type mice underwent a series of behavioural tests, including open field, social interaction and sucrose preference tests. At 12 weeks, they were evaluated in the Morris water maze (MWM). Reconstituted mice showed changes in almost all aspects of behaviour that were assessed, with a remarkable complete rescue of impaired social behaviour displayed by adolescent Rag2-/- mice. Consistent with previous reports in adult mice, neonatal reconstitution in Rag2-/- mice restored spatial memory in the MWM. The presence of donor lymphocytes in the brain of neonatally reconstituted Rag2-/- mice was confirmed at various developmental points. These findings provide evidence that lymphocytes colonize the brain during post-natal development and modulate behaviour across the lifespan supporting a role for adaptive immunity during brain maturation.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Chloe N Vaughn
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Jennifer A Soroka
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
28
|
Herkenham M, Kigar SL. Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:49-57. [PMID: 27613155 PMCID: PMC5339070 DOI: 10.1016/j.pnpbp.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Clinical and basic studies of functional interactions between adaptive immunity, affective states, and brain function are reviewed, and the neural, humoral, and cellular routes of bidirectional communication between the brain and the adaptive immune system are evaluated. In clinical studies of depressed populations, lymphocytes-the principal cells of the adaptive immune system-exhibit altered T cell subtype ratios and CD4+ helper T cell polarization profiles. In basic studies using psychological stress to model depression, T cell profiles are altered as well, consistent with stress effects conveyed by the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. Lymphocytes in turn have effects on behavior and CNS structure and function. CD4+ T cells in particular appear to modify affective behavior and rates of hippocampal dentate gyrus neurogenesis. These observations force the question of how such actions are carried out. CNS effects may occur via cellular and molecular mechanisms whereby effector memory T cells and the cytokine profiles they produce in the blood interact with the blood-brain barrier in ways that remain to be clarified. Understanding the mechanisms by which T cells polarize and interact with the brain to alter mood states is key to advances in the field, and may permit development of therapies that target cells in the periphery, thus bypassing problems associated with bioavailability of drugs within the brain.
Collapse
Affiliation(s)
- Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | - Stacey L Kigar
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|