1
|
Tahir M, Norouzi M, Khan SS, Davie JR, Yamanaka S, Ashraf A. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts. Comput Biol Med 2024; 183:109302. [PMID: 39500240 DOI: 10.1016/j.compbiomed.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Epigenetics encompasses mechanisms that can alter the expression of genes without changing the underlying genetic sequence. The epigenetic regulation of gene expression is initiated and sustained by several mechanisms such as DNA methylation, histone modifications, chromatin conformation, and non-coding RNA. The changes in gene regulation and expression can manifest in the form of various diseases and disorders such as cancer and congenital deformities. Over the last few decades, high-throughput experimental approaches have been used to identify and understand epigenetic changes, but these laboratory experimental approaches and biochemical processes are time-consuming and expensive. To overcome these challenges, machine learning and artificial intelligence (AI) approaches have been extensively used for mapping epigenetic modifications to their phenotypic manifestations. In this paper we provide a narrative review of published research on AI models trained on epigenomic data to address a variety of problems such as prediction of disease markers, gene expression, enhancer-promoter interaction, and chromatin states. The purpose of this review is twofold as it is addressed to both AI experts and epigeneticists. For AI researchers, we provided a taxonomy of epigenetics research problems that can benefit from an AI-based approach. For epigeneticists, given each of the above problems we provide a list of candidate AI solutions in the literature. We have also identified several gaps in the literature, research challenges, and recommendations to address these challenges.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, R3T 5V6, MB, Canada
| | - Mahboobeh Norouzi
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, R3T 5V6, MB, Canada
| | - Shehroz S Khan
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soichiro Yamanaka
- Graduate School of Science, Department of Biophysics and Biochemistry, University of Tokyo, Japan
| | - Ahmed Ashraf
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, R3T 5V6, MB, Canada.
| |
Collapse
|
2
|
Emanuelle Pereira Santos V, Luiz de França Neto P, Eda de Oliveira Isídio B, Henrique Bezerra Fontes P, Andrêssa de Moura I, Isabel Santos Cruz B, Máyra Gois de Sousa M, Luana Dos Santos D, de França São Marcos B, Sousa de Pinho S, Mendonça Alves Bandeira B, Loureiro Leão S, de Almeida Lima T, da Conceição Viana Invenção M, Rosa Sales Leal L, Cristofer Flores Espinoza B, Silva de Macêdo L, do Nascimento Carvalho M, Jéssica Duarte Silva A, Carlos de Freitas A. An overview about biomarkers in breast cancer: Insights into the diagnostic and prognostic significance. Clin Chim Acta 2024; 567:120030. [PMID: 39515632 DOI: 10.1016/j.cca.2024.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) is one of the most significant neoplasms globally due to its high incidence and mortality, particularly among females. As a highly heterogeneous pathology, biomarkers are essential for characterizing specific tumors. Currently, several biological processes are well-described in the context of this neoplasm, such as alterations in BRCA1/2, HER, and pathways involving estrogen and progesterone hormone receptors. These studies have enabled the use of these findings as more precise methods for diagnosis, prognosis, and treatment. However, beyond patients who do not exhibit these classic markers, some individuals within the same risk group respond differently to treatment. Therefore, the search for biological markers that can improve diagnosis, aid in stratification, or serve as therapeutic targets is continuous and urgent. Genetic signatures have led to molecular tests currently used in clinical practice, though certain limitations persist. Understanding genetic and epigenetic mechanisms facilitates the identification of potential biomarkers. Biomarker targets must undergo experimental and clinical trials on samples of significant size before reaching clinical utility. In this review, we compile the classical markers and describe the potential use of other markers associated with the biological processes of this neoplasm.
Collapse
Affiliation(s)
- Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Pedro Luiz de França Neto
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Beatriz Eda de Oliveira Isídio
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Pedro Henrique Bezerra Fontes
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Bruna Isabel Santos Cruz
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Mylenna Máyra Gois de Sousa
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Daffany Luana Dos Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Samara Sousa de Pinho
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Beatriz Mendonça Alves Bandeira
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Stephanie Loureiro Leão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Thainá de Almeida Lima
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Benigno Cristofer Flores Espinoza
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Matheus do Nascimento Carvalho
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco - Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco CEP: 50670-901, Brazil.
| |
Collapse
|
3
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Pereira S, Apodaca C, Slominski K, Lipsky RK, Coarfa C, Walker CL, McGuire AL, Steele L, Helmer DA. "Holy Cow, Where do I Sign up?" Attitudes of Military Veterans Toward Epigenomic Biomarker Toxic Exposure Testing. Mil Med 2024:usae454. [PMID: 39313279 DOI: 10.1093/milmed/usae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION After the Sergeant First Class Heath Robinson Honoring Our Promise to Address Comprehensive Toxics Promise to Address Comprehensive Toxics (PACT) Act in 2022, there has been a great interest in studying toxic exposures encountered during military service. Development of epigenomic biomarkers for exposures could facilitate understanding of exposure-related health effects, but such testing could also provide unwanted information. MATERIALS AND METHODS We explored attitudes toward epigenomic biomarker research and the potential to test for past exposures using semistructured interviews with Veterans (n = 22) who experienced potentially harmful exposures. RESULTS Twenty Veterans said they would hypothetically want to receive epigenomic information related to their toxic exposures and potential health impacts as part of a research study. Veterans identified 9 potential benefits, including promoting insights concerning intergenerational health, identification of early health interventions, and additional knowledge or explanation for their experiences. Sixteen participants noted potential risks, including psychological distress, receiving nonactionable, uncertain, or inaccurate results, and privacy and discrimination risks. Ten participants identified at least 1 condition in their children that they thought could be related to their exposure and most said they would be interested in receiving research results related to their children's and grandchildren's risk. CONCLUSION Results suggest that Veterans might welcome benefits of epigenomic research related to military exposures, yet have some concerns about potential negative impacts.
Collapse
Affiliation(s)
- Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77063, USA
| | - Calvin Apodaca
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77063, USA
| | - Kyle Slominski
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77063, USA
| | - Rachele K Lipsky
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77063, USA
- Duke University School of Nursing, Durham, NC 27710, USA
| | - Cristian Coarfa
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77063, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77063, USA
| | - Cheryl L Walker
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77063, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77063, USA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77063, USA
| | - Lea Steele
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77063, USA
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77063, USA
| | - Drew A Helmer
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX 77063, USA
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77063, USA
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77063, USA
| |
Collapse
|
5
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Silva-Ferreira M, Carvalho JA, Salta S, Henriques TS, Pereira Rodrigues P, Monteiro-Reis S, Henrique R, Jerónimo C. Diagnostic Test Accuracy of Urinary DNA Methylation-based Biomarkers for the Detection of Primary and Recurrent Bladder Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus 2024:S2405-4569(24)00088-9. [PMID: 38897871 DOI: 10.1016/j.euf.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of primary and relapsed bladder carcinomas is accomplished by urethrocystoscopy, an invasive procedure, combined with urinary cytology, with limited sensitivity, resulting in a substantial burden. Thus, noninvasive biomarkers have been investigated, among which DNA methylation has shown promise. This systematic review and meta-analysis sought to assess the diagnostic accuracy of DNA methylation biomarkers reported in the literature for bladder cancer detection, pinpointing the most informative one. METHODS The search for this systematic review and meta-analysis was conducted on PubMed, Scopus, and Cochrane Library for relevant studies published until December 31, 2022. A meta-analysis was performed using a random-effect model, to compute the pooled sensitivity and specificity of the markers. PROSPERO's registration ID for the study is CRD42023397703. KEY FINDINGS AND LIMITATIONS Out of the 2297 studies retrieved, 68 were included in the final analysis, despite considerable heterogeneity. These involved 12 696 participants, of whom 5557 were diagnosed with bladder cancer. Using diagnostic odds ratio (DOR) as a comparative measure, the five most promising markers (pooled sensitivity, specificity, and DOR) were SALL3 (61%, 97%, and 55.67, respectively), PENK (77%, 93%, and 47.90, respectively), ZNF154 (87%, 90%, and 45.07, respectively), VIM (82%, 90%, and 44.81, respectively), and POU4F2 (81%, 89%, and 34.89, respectively). Urinary cytology identified bladder cancer with 55% sensitivity, 92% specificity, and 14.37 DOR. CONCLUSIONS AND CLINICAL IMPLICATIONS DNA methylation biomarkers disclose high accuracy for bladder cancer detection in urine. Nonetheless, validation studies in different clinical settings are scarce, hampering clinical use. The identified biomarkers should be prioritized in future validation studies. PATIENT SUMMARY In this meta-analysis, we include previously published studies that used urine samples of bladder cancer patients' from all around the globe. We were able to compare the diagnostic accuracy of noninvasive markers across different populations. We were able to conclude on the most promising DNA methylation markers to detect bladder cancer using urine.
Collapse
Affiliation(s)
- Mariana Silva-Ferreira
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Master Program in Oncology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - João A Carvalho
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Doctoral Program in Medical Science, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Doctoral Program in Pathology and Molecular Genetics, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Teresa S Henriques
- CINTESIS@RISE - Health Research Network & MEDCIDS, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pereira Rodrigues
- CINTESIS@RISE - Health Research Network & MEDCIDS, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Li J, Shen Z, Lin Y, Wang Z, Li M, Sun H, Wang Q, Zhao C, Xu J, Lu X, Gao W. DNA methylation of skeletal muscle function-related secretary factors identifies FGF2 as a potential biomarker for sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1209-1217. [PMID: 38641928 PMCID: PMC11154778 DOI: 10.1002/jcsm.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by progressive loss of muscle mass and function due to aging. DNA methylation has been identified to play important roles in the dysfunction of skeletal muscle. The aim of our present study was to explore the whole blood sample-based methylation changes of skeletal muscle function-related factors in patients with sarcopenia. METHODS The overall DNA methylation levels were analysed by using MethlTarget™ DNA Methylation Analysis platform in a discovery set consistent of 50 sarcopenic older adults (aged ≥65 years) and 50 age- and sex-matched non-sarcopenic individuals. The candidate differentially methylated regions (DMRs) were further validated by Methylation-specific PCR (MSP) in another two independent larger sets and confirmed by pyrosequencing. Receiver operating characteristic (ROC) curve analysis was used to determine the optimum cut-off levels of fibroblast growth factor 2 (FGF2)_30 methylation best predicting sarcopenia and area under the ROC curve (AUC) was measured. The correlation between candidate DMRs and the risk of sarcopenia was investigated by univariate analysis and multivariate logistic regression analysis. RESULTS Among 1149 cytosine-phosphate-guanine (CpG) sites of 27 skeletal muscle function-related secretary factors, 17 differentially methylated CpG sites and 7 differentially methylated regions (DMRs) were detected between patients with sarcopenia and control subjects in the discovery set. Further methylation-specific PCR identified that methylation of fibroblast growth factor 2 (FGF2)_30 was lower in patients with sarcopenia and the level was decreased as the severity of sarcopenia increased, which was confirmed by pyrosequencing. Correlation analysis demonstrated that the methylation level of FGF2_30 was positively correlated to ASMI (r = 0.372, P < 0.001), grip strength (r = 0.334, P < 0.001), and gait speed (r = 0.411, P < 0.001). ROC curve analysis indicated that the optimal cut-off value of FGF2_30 methylation level that predicted sarcopenia was 0.15 with a sensitivity of 84.6% and a specificity of 70.1% (AUC = 0.807, 95% CI = 0.756-0.858, P < 0.001). Multivariate logistic regression analyses showed that lower FGF2_30 methylation level (<0.15) was significantly associated with increased risk of sarcopenia even after adjustment for potential confounders including age, sex, and BMI (adjusted OR = 9.223, 95% CI: 6.614-12.861, P < 0.001). CONCLUSIONS Our results suggest that lower FGF2_30 methylation is correlated with the risk and severity of sarcopenia in the older adults, indicating that FGF2 methylation serve as a surrogate biomarker for the screening and evaluation of sarcopenia.
Collapse
Affiliation(s)
- Jia‐Wen Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Zheng‐Kai Shen
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Yu‐Shuang Lin
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Zhi‐Yue Wang
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Mei‐Lin Li
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Hui‐Xian Sun
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Quan Wang
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Can Zhao
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Jin‐Shui Xu
- Jiangsu Province Center for Disease Control and PreventionNanjingChina
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
8
|
Garg P, Krishna M, Subbalakshmi AR, Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging biomarkers and molecular targets for precision medicine in cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189106. [PMID: 38701936 DOI: 10.1016/j.bbcan.2024.189106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Madhu Krishna
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Zohourian N, Brown JA. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James Al Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
10
|
Pereira S, Apodaca C, Slominski K, Lipsky RK, Coarfa C, Walker CL, McGuire AL, Steele L, Helmer DA. "Holy cow, where do I sign up?" Attitudes of Military Veterans toward Epigenomic Biomarker Toxic Exposure Testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305554. [PMID: 38699358 PMCID: PMC11065004 DOI: 10.1101/2024.04.09.24305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background With the signing of the PACT Act in 2022, there is great interest and investment in studying toxic exposures encountered during military service. One way to address this is through the identification of epigenomic biomarkers associated with exposures. There is increasing evidence suggesting that exposure to toxic substances may result in alterations to DNA methylation and resultant gene expression. These epigenomic changes may lead to adverse health effects for exposed individuals and their offspring. While the development of epigenomic biomarkers for exposures could facilitate understanding of these exposure-related health effects, such testing could also provide unwanted information. Objectives Explore Veterans' attitudes toward epigenomic biomarker research and the potential to test for past exposures that could pose intergenerational risk. Methods Semi-structured interviews with Veterans (n=22) who experienced potentially harmful exposures during their military service. Results Twenty Veterans said they would hypothetically want to receive epigenomic information related to their toxic exposures and potential health impacts as part of a research study. Veterans identified nine potential benefits of this research, including promoting insights concerning intergenerational health, identification of early health interventions to mitigate the impact of exposures, and additional knowledge or explanation for their experiences. At the same time, 16 participants noted potential risks, including psychological distress in response to results, concerns about receiving non-actionable, uncertain, or inaccurate results, and issues related to privacy and discrimination. Ten participants also identified at least one condition in their children that they thought could be related to their exposure and most said they would be interested in receiving research results related to their children's and grandchildren's risk of developing a health condition associated with their exposure. Discussion Results suggest that Veterans might welcome benefits of epigenomic research related to military exposures yet have some concerns about potential negative impacts.
Collapse
|
11
|
Bozack AK, Navas-Acien A, Cardenas A. DNA Methylation-Based Biomarkers of Protein Levels and Cardiovascular Disease Risk: Opportunities and Challenges for Precision Cardiology. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004571. [PMID: 38348680 PMCID: PMC11021153 DOI: 10.1161/circgen.124.004571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Anne K Bozack
- Department of Epidemiology and Population Health (A.K.B., A.C.), Stanford University School of Medicine, CA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY (A.N.-A.)
| | - Andres Cardenas
- Department of Epidemiology and Population Health (A.K.B., A.C.), Stanford University School of Medicine, CA
- Department of Pediatrics (A.C.), Stanford University School of Medicine, CA
| |
Collapse
|
12
|
Kosmeri C, Giapros V, Serbis A, Baltogianni M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. Int J Mol Sci 2024; 25:2258. [PMID: 38396935 PMCID: PMC10889541 DOI: 10.3390/ijms25042258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Early-onset sepsis (EOS) is a global health issue, considered one of the primary causes of neonatal mortality. Diagnosis of EOS is challenging because its clinical signs are nonspecific, and blood culture, which is the current gold-standard diagnostic tool, has low sensitivity. Commonly used biomarkers for sepsis diagnosis, including C-reactive protein, procalcitonin, and interleukin-6, lack specificity for infection. Due to the disadvantages of blood culture and other common biomarkers, ongoing efforts are directed towards identifying innovative molecular approaches to diagnose neonates at risk of sepsis. This review aims to gather knowledge and recent research on these emerging molecular methods. PCR-based techniques and unrestricted techniques based on 16S rRNA sequencing and 16S-23S rRNA gene interspace region sequencing offer several advantages. Despite their potential, these approaches are not able to replace blood cultures due to several limitations; however, they may prove valuable as complementary tests in neonatal sepsis diagnosis. Several microRNAs have been evaluated and have been proposed as diagnostic biomarkers in EOS. T2 magnetic resonance and bioinformatic analysis have proposed potential biomarkers of neonatal sepsis, though further studies are essential to validate these findings.
Collapse
Affiliation(s)
- Chrysoula Kosmeri
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Anastasios Serbis
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
13
|
Abi Zamer B, Rah B, Jayakumar MN, Abumustafa W, Hamad M, Muhammad JS. DNA methylation-mediated epigenetic regulation of oncogenic RPS2 as a novel therapeutic target and biomarker in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 696:149453. [PMID: 38181486 DOI: 10.1016/j.bbrc.2023.149453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ribosomal Protein S2 (RPS2) has emerged as a potential prognostic biomarker due to its involvement in key cellular processes and its altered expression pattern in certain types of cancer. However, its role in hepatocellular carcinoma (HCC) has yet to be investigated. Herein, we analyzed RPS2 mRNA expression and promoter methylation in HCC patient samples and HepG2 cells. Subsequently, loss-of-function experiments were conducted to determine the function of RPS2 in HCC cells in vitro. Our results revealed that RPS2 mRNA expression is significantly elevated, and its promoter is hypomethylated in HCC patient samples compared to controls. In addition, 5-Azacytidine treatment in HepG2 cells decreased RPS2 promoter methylation level and increased its mRNA expression. RPS2 knockdown in HepG2 cells suppressed cell proliferation and promoted apoptosis. Functional pathway analysis of genes positively and negatively associated with RPS2 expression in HCC showed enrichment in ribosomal biogenesis, translation machinery, cell cycle regulation, and DNA processing. Furthermore, utilizing drug-protein 3D docking, we found that doxorubicin, sorafenib, and 5-Fluorouracil, showed high affinity to the active sites of RPS2, and in vitro treatment with these drugs reduced RPS2 expression. For the first time, we report on DNA methylation-mediated epigenetic regulation of RPS2 and its oncogenic role in HCC. Our findings suggest that RPS2 plays a significant role in the development and progression of HCC, hence its potential prognostic and therapeutic utility. Moreover, as epigenetic changes happen early in cancer development, RPS2 may serve as a potential biomarker for tumor progression.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Bilal Rah
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| |
Collapse
|
14
|
Almiñana-Pastor PJ, Alpiste-Illueca FM, Micó-Martinez P, García-Giménez JL, García-López E, López-Roldán A. MicroRNAs in Gingival Crevicular Fluid: An Observational Case-Control Study of Differential Expression in Periodontitis. Noncoding RNA 2023; 9:73. [PMID: 37987369 PMCID: PMC10660715 DOI: 10.3390/ncrna9060073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVES microRNAs (miRNAs) present in the gingival crevicular fluid (GCF) of patients with chronic periodontitis may serve as biomarkers of periodontal disease. The aim of this study was to perform a miRNA-sequencing study of all miRNAs present in GCF, comparing miRNA expression level profiles between advanced chronic periodontitis (CP) patients and healthy subjects (HS). MATERIALS AND METHODS GCF samples were collected from the single-rooted teeth of patients with severe CP (n = 11) and of HS (n = 12). miRNAs were isolated from GCF using an miRNeasy Serum/Plasma kit(Qiagen GmbH, Hilden, Germany). Reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the expression levels of miRNA candidates involved in periodontal pathogenesis. RESULTS Of all the sequenced miRNAs, miR-199, miR-146a, miR-30a, and miR-338 were identified as best representing the CP patient samples. The validation study identified miR-199 as the most powerful biomarker used to define periodontitis. CONCLUSIONS Upon sequencing all known miRNAs in GCF for the first time, we uncovered several potential biomarkers to define periodontitis. Identifying miRNAS in the GCF using high-throughput approaches will clarify the role of these molecules in periodontitis and provide biomarkers with potential applications.
Collapse
Affiliation(s)
- Pedro J. Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (P.J.A.-P.); (F.M.A.-I.); (P.M.-M.); (A.L.-R.)
| | - Francisco M. Alpiste-Illueca
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (P.J.A.-P.); (F.M.A.-I.); (P.M.-M.); (A.L.-R.)
| | - Pablo Micó-Martinez
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (P.J.A.-P.); (F.M.A.-I.); (P.M.-M.); (A.L.-R.)
| | - Jose Luis García-Giménez
- Biomedical Research Institute INCLIVA, Consortium Center for Biomedical Network Research on Rare Diseases, CIBERER-ISCIII, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Eva García-López
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (P.J.A.-P.); (F.M.A.-I.); (P.M.-M.); (A.L.-R.)
| |
Collapse
|
15
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
16
|
Patnaik E, Madu C, Lu Y. Epigenetic Modulators as Therapeutic Agents in Cancer. Int J Mol Sci 2023; 24:14964. [PMID: 37834411 PMCID: PMC10573652 DOI: 10.3390/ijms241914964] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetics play a crucial role in gene regulation and cellular processes. Most importantly, its dysregulation can contribute to the development of tumors. Epigenetic modifications, such as DNA methylation and histone acetylation, are reversible processes that can be utilized as targets for therapeutic intervention. DNA methylation inhibitors disrupt DNA methylation patterns by inhibiting DNA methyltransferases. Such inhibitors can restore normal gene expression patterns, and they can be effective against various forms of cancer. Histone deacetylase inhibitors increase histone acetylation levels, leading to altered gene expressions. Like DNA methylation inhibitors, histone methyltransferase inhibitors target molecules involved in histone methylation. Bromodomain and extra-terminal domain inhibitors target proteins involved in gene expression. They can be effective by inhibiting oncogene expression and inducing anti-proliferative effects seen in cancer. Understanding epigenetic modifications and utilizing epigenetic inhibitors will offer new possibilities for cancer research.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Chikezie Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
17
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
18
|
Abstract
Epigenetic alterations during ageing are manifested with altered gene expression linking it to lifespan regulation, genetic instability, and diseases. Diet and epigenetic modifiers exert a profound effect on the lifespan of an organism by modulating the epigenetic marks. However, our understanding of the multifactorial nature of the epigenetic process during ageing and the onset of disease conditions as well as its reversal by epidrugs, diet, or environmental factors is still mystifying. This review covers the key findings in epigenetics related to ageing and age-related diseases. Further, it holds a discussion about the epigenetic clocks and their implications in various age-related disease conditions including cancer. Although, epigenetics is a reversible process how fast the epigenetic alterations can revert to normal is an intriguing question. Therefore, this paper touches on the possibility of utilizing nutrition and MSCs secretome to accelerate the epigenetic reversal and emphasizes the identification of new therapeutic epigenetic modifiers to counter epigenetic alteration during ageing.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, 429164, Bangalore, India;
| | - Ramesh Bhonde
- Dr D Y Patil Vidyapeeth University, 121766, Pune, Maharashtra, India;
| |
Collapse
|
19
|
Dye CK, Domingo-Relloso A, Kupsco A, Tinkelman NE, Spratlen MJ, Bozack AK, Tellez-Plaza M, Goessler W, Haack K, Umans JG, Baccarelli AA, Cole SA, Navas-Acien A. Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2023; 173:107774. [PMID: 36805808 PMCID: PMC10166110 DOI: 10.1016/j.envint.2023.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 05/10/2023]
Abstract
Exposure to low to moderate arsenic (As) levels has been associated with type 2 diabetes (T2D) and other chronic diseases in American Indian communities. Prenatal exposure to As may also increase the risk for T2D in adulthood, and maternal As has been associated with adult offspring metabolic health measurements. We hypothesized that T2D-related outcomes in adult offspring born to women exposed to low to moderate As can be evaluated utilizing a maternally-derived molecular biosignature of As exposure. Herein, we evaluated the association of maternal DNA methylation with incident T2D and insulin resistance (Homeostatic model assessment of insulin resistance [HOMA2-IR]) in adult offspring. For DNA methylation, we used 20 differentially methylated cytosine-guanine dinucleotides (CpG) previously associated with the sum of inorganic and methylated As species (ΣAs) in urine in the Strong Heart Study (SHS). Of these 20 CpGs, we found six CpGs nominally associated (p < 0.05) with HOMA2-IR in a fully adjusted model that included clinically relevant covariates and offspring adiposity measurements; a similar model that adjusted instead for maternal adiposity measurements found three CpGs nominally associated with HOMA2-IR, two of which overlapped the offspring adiposity model. After adjusting for multiple comparisons, cg03036214 remained associated with HOMA2-IR (q < 0.10) in the offspring adiposity model. The odds ratio of incident T2D increased with an increase in maternal DNA methylation at one HOMA2-IR associated CpG in the model adjusting for offspring adiposity, cg12116137, whereas adjusting for maternal adiposity had a minimal effect on the association. Our data suggests offspring adiposity, rather than maternal adiposity, potentially influences the effects of maternal DNAm signatures on offspring metabolic health parameters. Here, we have presented evidence supporting a role for epigenetic biosignatures of maternal As exposure as a potential biomarker for evaluating risk of T2D-related outcomes in offspring later in life.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Naomi E Tinkelman
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, DC, USA; Center for Clinical and Translational Sciences, Georgetown-Howard Universities, Washington, DC, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
20
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
21
|
Tsoneva DK, Ivanov MN, Conev NV, Manev R, Stoyanov DS, Vinciguerra M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int J Mol Sci 2023; 24:ijms24020942. [PMID: 36674455 PMCID: PMC9860657 DOI: 10.3390/ijms24020942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Nikolay Vladimirov Conev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rostislav Manev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Dragomir Svetozarov Stoyanov
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Correspondence:
| |
Collapse
|
22
|
Zhao X, Wang Z, Ji X, Bu S, Fang P, Wang Y, Wang M, Yang Y, Zhang W, Leung AY, Shi P. Discrete single-cell microRNA analysis for phenotyping the heterogeneity of acute myeloid leukemia. Biomaterials 2022; 291:121869. [DOI: 10.1016/j.biomaterials.2022.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022]
|
23
|
Cao-Lei L, Saumier D, Fortin J, Brunet A. A narrative review of the epigenetics of post-traumatic stress disorder and post-traumatic stress disorder treatment. Front Psychiatry 2022; 13:857087. [PMID: 36419982 PMCID: PMC9676221 DOI: 10.3389/fpsyt.2022.857087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic research in post-traumatic stress disorder (PTSD) is essential, given that environmental stressors and fear play such a crucial role in its development. As such, it may provide a framework for understanding individual differences in the prevalence of the disorder and in treatment response. This paper reviews the epigenetic markers associated with PTSD and its treatment, including candidate genes and epigenome-wide studies. Because the etiopathogenesis of PTSD rests heavily on learning and memory, we also draw upon animal neuroepigenetic research on the acquisition, update and erasure of fear memory, focusing on the mechanisms associated with memory reconsolidation. Reconsolidation blockade (or impairment) treatment in PTSD has been studied in clinical trials and, from a neurological perspective, may hold promise for identifying epigenetic markers of successful therapy. We conclude this paper by discussing several key considerations and challenges in epigenetic research on PTSD in humans.
Collapse
Affiliation(s)
- Lei Cao-Lei
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Daniel Saumier
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Justine Fortin
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alain Brunet
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Armignacco R, Reel PS, Reel S, Jouinot A, Septier A, Gaspar C, Perlemoine K, Larsen CK, Bouys L, Braun L, Riester A, Kroiss M, Bonnet-Serrano F, Amar L, Blanchard A, Gimenez-Roqueplo AP, Prejbisz A, Januszewicz A, Dobrowolski P, Davies E, MacKenzie SM, Rossi GP, Lenzini L, Ceccato F, Scaroni C, Mulatero P, Williams TA, Pecori A, Monticone S, Beuschlein F, Reincke M, Zennaro MC, Bertherat J, Jefferson E, Assié G. Whole blood methylome-derived features to discriminate endocrine hypertension. Clin Epigenetics 2022; 14:142. [PMCID: PMC9635165 DOI: 10.1186/s13148-022-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine learning approaches. Results Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods—Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine—predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL. Conclusions The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01347-y.
Collapse
Affiliation(s)
- Roberta Armignacco
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Parminder S. Reel
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK
| | - Smarti Reel
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK
| | - Anne Jouinot
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.440907.e0000 0004 1784 3645Institut Curie, INSERM U900, MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Amandine Septier
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, INSERM, UMS Production et Analyse de données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013 Paris, France
| | - Karine Perlemoine
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Casper K. Larsen
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Lucas Bouys
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Leah Braun
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Kroiss
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fidéline Bonnet-Serrano
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Hormonologie, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Laurence Amar
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Unité Hypertension Artérielle, AP-HP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Anne Blanchard
- grid.414093.b0000 0001 2183 5849Centre d’Investigations Cliniques 9201, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Département de Médecine Génomique des Tumeurs et des Cancers, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Aleksander Prejbisz
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Piotr Dobrowolski
- grid.418887.aDepartment of Hypertension, Institute of Cardiology, Warsaw, Poland
| | - Eleanor Davies
- grid.8756.c0000 0001 2193 314XBHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Scott M. MacKenzie
- grid.8756.c0000 0001 2193 314XBHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Gian Paolo Rossi
- Department of Medicine-DIMED, Emergency and Hypertension Unit, University of Padova, University Hospital, Padua, Italy
| | - Livia Lenzini
- Department of Medicine-DIMED, Emergency and Hypertension Unit, University of Padova, University Hospital, Padua, Italy
| | - Filippo Ceccato
- grid.411474.30000 0004 1760 2630UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Carla Scaroni
- grid.411474.30000 0004 1760 2630UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Paolo Mulatero
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tracy A. Williams
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alessio Pecori
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Monticone
- grid.7605.40000 0001 2336 6580Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Felix Beuschlein
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.412004.30000 0004 0478 9977Klinikfür Endokrinologie, Diabetologie Und Klinische Ernährung, UniversitätsSpital Zürich (USZ) and Universität Zürich (UZH), Raemistrasse 100, 8091 Zurich, Switzerland
| | - Martin Reincke
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria-Christina Zennaro
- grid.462416.30000 0004 0495 1460Université Paris Cité, Inserm, PARCC, F-75015 Paris, France ,grid.414093.b0000 0001 2183 5849Service de Génétique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Jérôme Bertherat
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Emily Jefferson
- grid.8241.f0000 0004 0397 2876Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF UK ,grid.8756.c0000 0001 2193 314XInstitute of Health and Wellbeing, University of Glasgow, Glasgow, G12 8RZ UK
| | - Guillaume Assié
- grid.462098.10000 0004 0643 431XUniversité Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France ,grid.411784.f0000 0001 0274 3893Service d’Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| |
Collapse
|
25
|
de la Calle-Fabregat C, Rodríguez-Ubreva J, Cañete JD, Ballestar E. Designing Studies for Epigenetic Biomarker Development in Autoimmune Rheumatic Diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:103-110. [PMID: 36788968 PMCID: PMC9895872 DOI: 10.2478/rir-2022-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 02/16/2023]
Abstract
In just a few years, the number of epigenetic studies in autoimmune rheumatic and inflammatory diseases has greatly increased. This is in part due to the need of identifying additional determinants to genetics to explain the pathogenesis and development of these disorders. In this regard, epigenetics provides potential mechanisms that determine gene function, are linked to environmental factors, and could explain a wide range of phenotypic variability among patients with these diseases. Despite the high interest and number of studies describing epigenetic alterations under these conditions and exploring their relationship to various clinical aspects, few of the proposed biomarkers have yet reached clinical practice. The potential of epigenetic markers is high, as these alterations link measurable features with a number of biological traits. In the present article, we present published studies in the field, discuss some frequent limitations in the existing research, and propose a number of considerations that should be taken into account by those starting new projects in the field, with an aim to generate biomarkers that could make it into the clinics.
Collapse
Affiliation(s)
- Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Juan D. Cañete
- Rheumatology Department, Arthritis Unit, Hospital Clinic and IDIBAPS, 08036Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai200241, China
| |
Collapse
|
26
|
Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN, Haque S. Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol 2022; 83:441-451. [PMID: 34182144 DOI: 10.1016/j.semcancer.2021.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
The role of epigenetics in the etiology of cancer progression is being emphasized for the past two decades to check the impact of chromatin modifiers and remodelers. Histone modifications, DNA methylation, chromatin remodeling, nucleosome positioning, regulation by non-coding RNAs and precisely microRNAs are influential epigenetic marks in the field of progressive cancer sub-types. Furthermore, constant epigenetic changes due to hyper or hypomethylation could efficiently serve as effective biomarkers of cancer diagnosis and therapeutic development. Ongoing research in the field of epigenetics has resulted in the resolutory role of various epigenetic markers and their inhibition using specific inhibitors to arrest their key cellular functions in in-vitro and pre-clinical studies. Although, the mechanism of epigenetics in cancer largely remains unexplored. Nevertheless, various advancements in the field of epigenetics have been made through transcriptome analysis and in-vitro genome targeting technologies to unravel the applicability of epigenetic markers for future cancer therapeutics and management. Therefore, this review emphasizes on recent advances in epigenetic landscapes that could be targeted/explored using novel approaches as personalized treatment modalities for cancer containment.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonam Tulsyan
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rakesh Kumar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey.
| |
Collapse
|
27
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Mahmood D, Alenezi SK, Anwar MJ, Azam F, Qureshi KA, Jaremko M. New Paradigms of Old Psychedelics in Schizophrenia. Pharmaceuticals (Basel) 2022; 15:ph15050640. [PMID: 35631466 PMCID: PMC9147282 DOI: 10.3390/ph15050640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Psychedelics such as lysergic acid diethylamide (LSD), psilocybin (magic mushrooms), and mescaline exhibit intense effects on the human brain and behaviour. In recent years, there has been a surge in studies investigating these drugs because clinical studies have shown that these once banned drugs are well tolerated and efficacious in medically supervised low doses called microdosing. Psychedelics have demonstrated efficacy in treating neuropsychiatric maladies such as difficult to treat anxiety, depression, mood disorders, obsessive compulsive disorders, suicidal ideation, posttraumatic stress disorder, and also in treating substance use disorders. The primary mode of action of psychedelics is activation of serotonin 5-HT2A receptors affecting cognition and brain connectivity through the modulation of several downstream signalling pathways via complex molecular mechanisms. Some atypical antipsychotic drugs (APDs) primarily exhibit pharmacological actions through 5-HT2A receptors, which are also the target of psychedelic drugs. Psychedelic drugs including the newer second generation along with the glutamatergic APDs are thought to mediate pharmacological actions through a common pathway, i.e., a complex serotonin-glutamate receptor interaction in cortical neurons of pyramidal origin. Furthermore, psychedelic drugs have been reported to act via a complex interplay between 5HT2A, mGlu2/3, and NMDA receptors to mediate neurobehavioral and pharmacological actions. Findings from recent studies have suggested that serotoninergic and glutamatergic neurotransmissions are very closely connected in producing pharmacological responses to psychedelics and antipsychotic medication. Emerging hypotheses suggest that psychedelics work through brain resetting mechanisms. Hence, there is a need to dig deeply into psychedelic neurobiology to uncover how psychedelics could best be used as scientific tools to benefit psychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
- Correspondence: or
| | - Sattam K. Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
| | - Md. Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia; (S.K.A.); (M.J.A.)
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| |
Collapse
|
29
|
Musa J, Kim K, Zheng Y, Qu Y, Joyce BT, Wang J, Nannini DR, Gursel DB, Silas O, Abdulkareem FB, Imade G, Akanmu AS, Wei JJ, Kocherginsky M, Kim KYA, Wehbe F, Achenbach CJ, Anorlu R, Simon MA, Sagay A, Ogunsola FT, Murphy RL, Hou L. Accelerated Epigenetic Age Among Women with Invasive Cervical Cancer and HIV-Infection in Nigeria. Front Public Health 2022; 10:834800. [PMID: 35570901 PMCID: PMC9099239 DOI: 10.3389/fpubh.2022.834800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Invasive cervical cancer (ICC) is a serious public health burden in Nigeria, where human immunodeficiency virus (HIV) remains highly prevalent. Previous research suggested that epigenetic age acceleration (EAA) could play a role in detection of HIV-associated ICC. However, little research has been conducted on this topic in Africa where the population is most severely affected by HIV-associated ICC. Here, we investigated the association between ICC and EAA using cervical tissues of ICC-diagnosed Nigerian women living with HIV. Methods We included 116 cervical tissue samples from three groups of Nigerian women in this study: (1) HIV+/ICC+ (n = 39); (2) HIV+/ICC- (n = 53); and (3) HIV-/ICC + (n = 24). We utilized four DNA methylation-based EAA estimators; IEAA, EEAA, GrimAA, and PhenoAA. We compared EAA measurements across the 3 HIV/ICC groups using multiple linear regression models. We also compared EAA between 26 tumor tissues and their surrounding normal tissues using paired t-tests. We additionally performed a receiver operating characteristics (ROC) curve analysis to illustrate the area under the curve (AUC) of EAA in ICC. Results We found the most striking associations between HIV/ICC status and PhenoAge acceleration (PhenoAA). Among HIV-positive women, PhenoAA was on average 13.4 years higher in women with ICC compared to cancer-free women (P = 0.005). PhenoAA was 20.7 and 7.1 years higher in tumor tissues compared to surrounding normal tissues among HIV-positive women (P = 0.009) and HIV-negative women (P = 0.284), respectively. We did not find substantial differences in PhenoAA between HIV-positive and HIV-negative women with ICC. Conclusion PhenoAA is associated with ICC in HIV-infected women in our study. Our findings suggest that PhenoAA may serve as a potential biomarker for further risk stratification of HIV-associated ICC in Nigeria and similar resource-constrained settings.
Collapse
Affiliation(s)
- Jonah Musa
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Kyeezu Kim
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yinan Zheng
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yishu Qu
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian T. Joyce
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jun Wang
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Drew R. Nannini
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Demirkan B. Gursel
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | | | - Godwin Imade
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Alani S. Akanmu
- Department of Hematology and Blood Transfusion, Lagos University Teaching Hospital and College of Medicine, University of Lagos, Lagos, Nigeria
| | - Jian-Jun Wei
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Masha Kocherginsky
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kwang-Youn A. Kim
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Firas Wehbe
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Preventive Medicine, Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chad J. Achenbach
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rose Anorlu
- Department of Obstetrics and Gynecology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Melissa A. Simon
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Atiene Sagay
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Folasade T. Ogunsola
- Department of Medical Microbiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Robert L. Murphy
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lifang Hou
- Department of Preventive Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Center for Global Oncology, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
30
|
Identification of hub genes for adult patients with sepsis via RNA sequencing. Sci Rep 2022; 12:5128. [PMID: 35332254 PMCID: PMC8948204 DOI: 10.1038/s41598-022-09175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
To screen out potential prognostic hub genes for adult patients with sepsis via RNA sequencing and construction of a microRNA-mRNA-PPI network and investigate the localization of these hub genes in peripheral blood monocytes. The peripheral blood of 33 subjects was subjected to microRNA and mRNA sequencing using high-throughput sequencing, and differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs) were identified by bioinformatics. Single-cell transcriptome sequencing (10 × Genomics) was further conducted. Among the samples from 23 adult septic patients and 10 healthy individuals, 20,391 genes and 1633 microRNAs were detected by RNA sequencing. In total, 1114 preliminary DEGs and 76 DEMs were obtained using DESeq2, and 454 DEGs were ultimately distinguished. A microRNA-mRNA-PPI network was constructed based on the DEGs and the top 20 DEMs, which included 10 upregulated and 10 downregulated microRNAs. Furthermore, the hub genes TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3, which may be associated with the prognosis of sepsis, and their negatively correlated microRNAs, were analysed. The genes TLR5, FCGR1A and ELANE were mainly expressed in macrophages, and the genes GNLY, IL2RB and TGFBR3 were expressed specifically in T cells and natural killer cells. Parallel analysis of mRNAs and microRNAs in patients with sepsis was demonstrated to be feasible using RNA-seq. Potential hub genes and microRNAs that may be related to sepsis prognosis were identified, providing new prospects for sepsis treatment. However, further experiments are needed.
Collapse
|
31
|
On the Cutting Edge of Oral Cancer Prevention: Finding Risk-Predictive Markers in Precancerous Lesions by Longitudinal Studies. Cells 2022; 11:cells11061033. [PMID: 35326482 PMCID: PMC8947091 DOI: 10.3390/cells11061033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Early identification and management of precancerous lesions at high risk of developing cancers is the most effective and economical way to reduce the incidence, mortality, and morbidity of cancers as well as minimizing treatment-related complications, including pain, impaired functions, and disfiguration. Reliable cancer-risk-predictive markers play an important role in enabling evidence-based decision making as well as providing mechanistic insight into the malignant conversion of precancerous lesions. The focus of this article is to review updates on markers that may predict the risk of oral premalignant lesions (OPLs) in developing into oral squamous cell carcinomas (OSCCs), which can logically be discovered only by prospective or retrospective longitudinal studies that analyze pre-progression OPL samples with long-term follow-up outcomes. These risk-predictive markers are different from those that prognosticate the survival outcome of cancers after they have been diagnosed and treated, or those that differentiate between different lesion types and stages. Up-to-date knowledge on cancer-risk-predictive markers discovered by longitudinally followed studies will be reviewed. The goal of this endeavor is to use this information as a starting point to address some key challenges limiting our progress in this area in the hope of achieving effective translation of research discoveries into new clinical interventions.
Collapse
|
32
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
33
|
Wagner W. How to Translate DNA Methylation Biomarkers Into Clinical Practice. Front Cell Dev Biol 2022; 10:854797. [PMID: 35281115 PMCID: PMC8905294 DOI: 10.3389/fcell.2022.854797] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in sequencing technologies provide unprecedented opportunities for epigenetic biomarker development. Particularly the DNA methylation pattern-which is modified at specific sites in the genome during cellular differentiation, aging, and disease-holds high hopes for a wide variety of diagnostic applications. While many epigenetic biomarkers have been described, only very few of them have so far been successfully translated into clinical practice and almost exclusively in the field of oncology. This discrepancy might be attributed to the different demands of either publishing a new finding or establishing a standardized and approved diagnostic procedure. This is exemplified for epigenetic leukocyte counts and epigenetic age-predictions. To ease later clinical translation, the following hallmarks should already be taken into consideration when designing epigenetic biomarkers: 1) Identification of best genomic regions, 2) pre-analytical processing, 3) accuracy of DNA methylation measurements, 4) identification of confounding parameters, 5) accreditation as diagnostic procedure, 6) standardized data analysis, 7) turnaround time, and 8) costs and customer requirements. While the initial selection of relevant genomic regions is usually performed on genome wide DNA methylation profiles, it might be advantageous to subsequently establish targeted assays that focus on specific genomic regions. Development of an epigenetic biomarker for clinical application is a long and cumbersome process that is only initiated with the identification of an epigenetic signature.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
34
|
García-Río F, Alcázar-Navarrete B, Castillo-Villegas D, Cilloniz C, García-Ortega A, Leiro-Fernández V, Lojo-Rodriguez I, Padilla-Galo A, Quezada-Loaiza CA, Rodriguez-Portal JA, Sánchez-de-la-Torre M, Sibila O, Martínez-García MA. [Translated article] Biological Biomarkers in Respiratory Diseases. ARCHIVOS DE BRONCONEUMOLOGÍA 2022. [DOI: 10.1016/j.arbres.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Armignacco R, Jouinot A, Bouys L, Septier A, Lartigue T, Neou M, Gaspar C, Perlemoine K, Braun L, Riester A, Bonnet-Serrano F, Blanchard A, Amar L, Scaroni C, Ceccato F, Rossi GP, Williams TA, Larsen CK, Allassonnière S, Zennaro MC, Beuschlein F, Reincke M, Bertherat J, Assié G. Identification of glucocorticoid-related molecular signature by whole blood methylome analysis. Eur J Endocrinol 2022; 186:297-308. [PMID: 34914631 PMCID: PMC8789024 DOI: 10.1530/eje-21-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. DESIGN We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing's syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. METHODS Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850 000 CpG sites). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. RESULTS Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing's syndrome correction. In Cushing's syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. CONCLUSIONS Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assessment of glucocorticoid action beyond hormone assays.
Collapse
Affiliation(s)
- Roberta Armignacco
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Correspondence should be addressed to R Armignacco or G Assié; or
| | - Anne Jouinot
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Lucas Bouys
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Amandine Septier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Thomas Lartigue
- ARAMIS Project-Team, Inria Paris, France
- CMAP, UMR 7641, CNRS, École polytechnique, I.P. Paris, France
| | - Mario Neou
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Pass, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Karine Perlemoine
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Leah Braun
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fidéline Bonnet-Serrano
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Hormonologie, Paris, France
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d’Investigations Cliniques 9201, Paris, France
| | - Laurence Amar
- Université de Paris, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Carla Scaroni
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Filippo Ceccato
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Gian Paolo Rossi
- Clinica dell’Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Tracy Ann Williams
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jérôme Bertherat
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Endocrinologie, Center for Rare Adrenal Diseases, Paris, France
| | - Guillaume Assié
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Endocrinologie, Center for Rare Adrenal Diseases, Paris, France
- Correspondence should be addressed to R Armignacco or G Assié; or
| |
Collapse
|
36
|
Garcia-Rio F, Alcázar B, Castillo D, Cilloniz C, García-Ortega A, Leiro-Fernández V, Lojo-Rodriguez I, Padilla A, Quezada CA, Rodriguez-Portal JA, Sánchez-de-la-Torre M, Sibila O, Martinez-Garcia MA. Biomarcadores biológicos en las enfermedades respiratorias. Arch Bronconeumol 2022; 58:323-333. [DOI: 10.1016/j.arbres.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
|
37
|
Verma AH, Ganesh S, Venkatakrishnan K, Tan B. Self-functional gold nanoprobes for intra-nuclear epigenomic monitoring of cancer stem-like cells. Biosens Bioelectron 2022; 195:113644. [PMID: 34571478 DOI: 10.1016/j.bios.2021.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
Abstract
Cancer epigenomic-environment is a core center of a tumor's genetic and epigenetic configuration. Surveying epigenomic-environment of cancer stem-like cells (CSC) is vital for developing novel diagnostic methods and improving current therapies since CSCs are among the most challenging clinical hurdles. To date, there exists no technique which can successfully monitor the epigenomics of CSC. Here, we have developed unique sub-10 nm Self-functional Gold Nanoprobes (GNP) as a CSC epigenomic monitoring platform that can easily maneuver into the nucleus while not producing any conformal changes to the genomic DNA. The GNP was synthesized using physical synthesis method of pulsed laser multiphoton ionization, which enabled the shrinking of GNP to 2.69 nm which helped us achieve two critical parameters for epigenomics monitoring: efficient nuclear uptake (98%) without complex functionalization and no conformational nuclear changes. The GNP efficiently generated SERS for structural, functional, molecular epigenetics, and nuclear proteomics in preclinical models of breast and lung CSCs. To the best of knowledge, this study is first to utilize the intranuclear epigenomic signal to distinguish between CSC from different tissues with >99% accuracy and specificity. Our findings are anticipated to help advance real-time epigenomics surveillance technologies such as nucleus-targeted drug surveillance and epigenomic prognosis and diagnostics.
Collapse
Affiliation(s)
- Anish Hiresha Verma
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Swarna Ganesh
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Nano-characterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
38
|
Bunnik EM, Bolt IL. Exploring the Ethics of Implementation of Epigenomics Technologies in Cancer Screening: A Focus Group Study. Epigenet Insights 2021; 14:25168657211063618. [PMID: 34917888 PMCID: PMC8669112 DOI: 10.1177/25168657211063618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
New epigenomics technologies are being developed and used for the detection and prediction of various types of cancer. By allowing for timely intervention or preventive measures, epigenomics technologies show promise for public health, notably in population screening. In order to assess whether implementation of epigenomics technologies in population screening may be morally acceptable, it is important to understand – in an early stage of development – ethical and societal issues that may arise. We held 3 focus groups with experts in science and technology studies (STS) (n = 13) in the Netherlands, on 3 potential future applications of epigenomic technologies in screening programmes of increasing scope: cervical cancer, female cancers and ‘global’ cancer. On the basis of these discussions, this paper identifies ethical issues pertinent to epigenomics-based population screening, such as risk communication, trust and public acceptance; personal responsibility, stigmatisation and societal pressure, and data protection and data governance. It also points out how features of epigenomics (eg, modifiability) and changing concepts (eg, of cancer) may challenge the existing evaluative framework for screening programmes. This paper aims to anticipate and prepare for future ethical challenges when epigenomics technologies can be tested and introduced in public health settings.
Collapse
Affiliation(s)
- Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ineke Lle Bolt
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Faleiro I, Roberto VP, Demirkol Canli S, Fraunhoffer NA, Iovanna J, Gure AO, Link W, Castelo-Branco P. DNA Methylation of PI3K/AKT Pathway-Related Genes Predicts Outcome in Patients with Pancreatic Cancer: A Comprehensive Bioinformatics-Based Study. Cancers (Basel) 2021; 13:cancers13246354. [PMID: 34944974 PMCID: PMC8699150 DOI: 10.3390/cancers13246354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignancy. Dysregulation of epigenetic mechanisms leads to abnormal patterns of gene expression contributing to the development and progression of cancer. We explored the ability of DNA methylation of PI3K-related genes to differentiate between malignant and healthy pancreatic tissue using distinct pancreatic cancer cohorts, and found that the methylation levels of the ITGA4, SFN, ITGA2, and PIK3R1 genes are altered in tumour samples since the early stages of malignant transformation and could serve as new diagnostic tools. We also demonstrate that these alterations correlate with overall survival and recurrence-free survival of the patients suggesting that its assessment can serve as independent prognostic indicators of patients’ survival with higher sensitivity and specificity than the currently implemented biomarkers. Therefore, the methylation profile of genes involved in this pathway may be an alternative method for predicting cell malignancy and help doctors’ decisions on patient care. Abstract Pancreatic cancer (PCA) is one of the most lethal malignancies worldwide with a 5-year survival rate of 9%. Despite the advances in the field, the need for an earlier detection and effective therapies is paramount. PCA high heterogeneity suggests that epigenetic alterations play a key role in tumour development. However, only few epigenetic biomarkers or therapeutic targets have been identified so far. Here we explored the potential of distinct DNA methylation signatures as biomarkers for early detection and prognosis of PCA. PI3K/AKT-related genes differentially expressed in PCA were identified using the Pancreatic Expression Database (n = 153). Methylation data from PCA patients was obtained from The Cancer Genome Atlas (n = 183), crossed with clinical data to evaluate the biomarker potential of the epigenetic signatures identified and validated in independent cohorts. The majority of selected genes presented higher expression and hypomethylation in tumour tissue. The methylation signatures of specific genes in the PI3K/AKT pathway could distinguish normal from malignant tissue at initial disease stages with AUC > 0.8, revealing their potential as PCA diagnostic tools. ITGA4, SFN, ITGA2, and PIK3R1 methylation levels could be independent prognostic indicators of patients’ survival. Methylation status of SFN and PIK3R1 were also associated with disease recurrence. Our study reveals that the methylation levels of PIK3/AKT genes involved in PCA could be used to diagnose and predict patients’ clinical outcome with high sensitivity and specificity. These results provide new evidence of the potential of epigenetic alterations as biomarkers for disease screening and management and highlight possible therapeutic targets.
Collapse
Affiliation(s)
- Inês Faleiro
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (IMM), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| | - Secil Demirkol Canli
- Molecular Pathology Application and Research Center, Hacettepe University, 06100 Ankara, Turkey;
| | - Nicolas A. Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Ali Osmay Gure
- Department of Medical Biology, Acibadem University, 34684 Istanbul, Turkey;
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| |
Collapse
|
40
|
Smith BJ, Silva-Costa LC, Martins-de-Souza D. Human disease biomarker panels through systems biology. Biophys Rev 2021; 13:1179-1190. [PMID: 35059036 PMCID: PMC8724340 DOI: 10.1007/s12551-021-00849-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
As more uses for biomarkers are sought after for an increasing number of disease targets, single-target biomarkers are slowly giving way for biomarker panels. These panels incorporate various sources of biomolecular and clinical data to guarantee a higher robustness and power of separation for a clinical test. Multifactorial diseases such as psychiatric disorders show great potential for clinical use, assisting medical professionals during the analysis of risk and predisposition, disease diagnosis and prognosis, and treatment applicability and efficacy. More specific tests are also being developed to assist in ruling out, distinguishing between, and confirming suspicions of multifactorial diseases, as well as to predict which therapy option may be the best option for a given patient's biochemical profile. As more complex datasets are entering the field, involving multi-omic approaches, systems biology has stepped in to facilitate the discovery and validation steps during biomarker panel generation. Filtering biomolecules and clinical data, pre-validating and cross-validating potential biomarkers, generating final biomarker panels, and testing the robustness and applicability of those panels are all beginning to rely on machine learning and systems biology and research in this area will only benefit from advances in these approaches.
Collapse
Affiliation(s)
- Bradley J. Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, Sao Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
42
|
Deep Learning for Human Disease Detection, Subtype Classification, and Treatment Response Prediction Using Epigenomic Data. Biomedicines 2021; 9:biomedicines9111733. [PMID: 34829962 PMCID: PMC8615388 DOI: 10.3390/biomedicines9111733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Deep learning (DL) is a distinct class of machine learning that has achieved first-class performance in many fields of study. For epigenomics, the application of DL to assist physicians and scientists in human disease-relevant prediction tasks has been relatively unexplored until very recently. In this article, we critically review published studies that employed DL models to predict disease detection, subtype classification, and treatment responses, using epigenomic data. A comprehensive search on PubMed, Scopus, Web of Science, Google Scholar, and arXiv.org was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Among 1140 initially identified publications, we included 22 articles in our review. DNA methylation and RNA-sequencing data are most frequently used to train the predictive models. The reviewed models achieved a high accuracy ranged from 88.3% to 100.0% for disease detection tasks, from 69.5% to 97.8% for subtype classification tasks, and from 80.0% to 93.0% for treatment response prediction tasks. We generated a workflow to develop a predictive model that encompasses all steps from first defining human disease-related tasks to finally evaluating model performance. DL holds promise for transforming epigenomic big data into valuable knowledge that will enhance the development of translational epigenomics.
Collapse
|
43
|
DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? Int J Mol Sci 2021; 22:ijms222111652. [PMID: 34769081 PMCID: PMC8584054 DOI: 10.3390/ijms222111652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a severe threat to global health. Almost 500 million people live with diabetes worldwide. Most of them have type 2 diabetes (T2D). T2D patients are at risk of developing severe and life-threatening complications, leading to an increased need for medical care and reduced quality of life. Improved care for people with T2D is essential. Actions aiming at identifying undiagnosed diabetes and at preventing diabetes in those at high risk are needed as well. To this end, biomarker discovery and validation of risk assessment for T2D are critical. Alterations of DNA methylation have recently helped to better understand T2D pathophysiology by explaining differences among endophenotypes of diabetic patients in tissues. Recent evidence further suggests that variations of DNA methylation might contribute to the risk of T2D even more significantly than genetic variability and might represent a valuable tool to predict T2D risk. In this review, we focus on recent information on the contribution of DNA methylation to the risk and the pathogenesis of T2D. We discuss the limitations of these studies and provide evidence supporting the potential for clinical application of DNA methylation marks to predict the risk and progression of T2D.
Collapse
|
44
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
45
|
Osca-Verdegal R, Beltrán-García J, Pallardó FV, García-Giménez JL. Role of microRNAs As Biomarkers in Sepsis-Associated Encephalopathy. Mol Neurobiol 2021; 58:4682-4693. [PMID: 34160774 PMCID: PMC8220114 DOI: 10.1007/s12035-021-02445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a neurological complication of sepsis, characterized by brain dysfunction without any direct central nervous system infection. The diagnosis of SAE is currently a challenge. In fact, problems in making a diagnosis of SAE cause a great variability of incidence that can reach up to 70% of all septic patients. Even more, despite SAE is the most frequent type of encephalopathy occurring in critically ill patients, the molecular mechanisms that guide its progression have not been completely elucidated. On the other hand, miRNAs have proven to be excellent biomarkers for both diagnosis and prognosis, especially in brain pathologies because of their small size they can cross the blood–brain barrier easier than other biomolecules. The identification of new miRNAs as biomarkers may help to improve SAE diagnosis and prognosis and also to design new therapies for this clinical manifestation that produces diffuse cerebral dysfunction. This review is focused on SAE physiopathology and the need to have clear criteria for its diagnosis; thus, this work postulates some miRNA candidates to be used for SAE biomarkers because of their role in both, neurological damage and sepsis.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
| | - Jesús Beltrán-García
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Federico V. Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| |
Collapse
|
46
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
47
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
48
|
Yang M, Tao X, Scott K, Zhan Y, Scott RT, Seli E. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences. Hum Reprod 2021; 36:1682-1690. [PMID: 33846747 DOI: 10.1093/humrep/deab074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Do embryos with different developmental competence exhibit different DNA methylation profiles at the blastocyst stage? SUMMARY ANSWER We established genome-wide DNA methylome analysis for embryo trophectoderm (TE) biopsy samples and our findings demonstrated correlation of methylation profile of trophectoderm with euploidy status and with maternal age, indicating that genome-wide methylation level might be negatively correlated with embryo quality. WHAT IS KNOWN ALREADY DNA methylation is a fundamental epigenetic regulatory mechanism that affects differentiation of cells into their future lineages during pre-implantation embryo development. Currently there is no established approach available to assess the epigenetic status of the human preimplantation embryo during routine IVF treatment. STUDY DESIGN, SIZE, DURATION In total, we collected trophectoderm biopsy samples from 30 randomly selected human blastocysts and conducted whole-genome bisulfite sequencing (WGBS) to evaluate their DNA methylation profile. Nested linear models were used to assess association between DNA methylation level and ploidy status (aneuploidy [n = 20] vs. euploidy [n = 10]), maternal age (29.4-42.5 years old), and time of blastulation (day 5 [n = 16] vs. day 6 [n = 14]), using embryo identity as a covariate. PARTICIPANTS/MATERIALS, SETTING, METHODS TE biopsy samples were obtained and submitted to bisulfite conversion. For WGBS, whole-genome sequencing libraries were then generated from the converted genome. An average of 75 million reads were obtained for each sample, and about 63% of the reads aligned to human reference. An average of 40 million reads used for the final analysis after the unconverted reads were filtered out. MAIN RESULTS AND THE ROLE OF CHANCE We revealed an increase of genome-wide DNA methylation level in aneuploid embryo TE biopsies compared to euploid embryos (25.4% ± 3.2% vs. 24.7% ± 3.2%, P < 0.005). We also found genome-wide DNA methylation level to be increased with the maternal age (P < 0.005). On a chromosomal scale, we found monosomic embryos have lower methylation levels on the involved chromosome while no drastic change was observed for the involved chromosome in trisomies. Additionally, we revealed that WGBS data precisely revealed the chromosome copy number variance. LIMITATIONS, REASONS FOR CAUTION Though our results demonstrated a negative correlation of genome-wide methylation level and embryo quality, further WGBS analysis on a greater number of embryos and specific investigation of its correlation with implantation and live birth are needed before any practical use of this approach for evaluation of embryo competence. WIDER IMPLICATIONS OF THE FINDINGS This study revealed a change in genome-wide DNA methylation profile among embryos with different developmental potentials, reinforcing the critical role of DNA methylation in early development. STUDY FUNDING/COMPETING INTEREST(S) No external funding was received for this study. Intramural funding was provided by the Foundation for Embryonic Competence (FEC). E.S. is a consultant for and receives research funding from the Foundation for Embryonic Competence; he is also co-founder and a shareholder of ACIS LLC and coholds patent US2019/055906 issued for utilizing electrical resistance measurement for assessing cell viability and cell membrane piercing. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Min Yang
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Xin Tao
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Katherine Scott
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Yiping Zhan
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Richard T Scott
- IVIRMA, New Jersey, Basking Ridge, NJ, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Emre Seli
- IVIRMA, New Jersey, Basking Ridge, NJ, USA.,Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol 2021; 12:661643. [PMID: 34093552 PMCID: PMC8173220 DOI: 10.3389/fimmu.2021.661643] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Despite advances in post-transplant management, the long-term survival rate of kidney grafts and patients has not improved as approximately forty percent of transplants fails within ten years after transplantation. Both immunologic and non-immunologic factors contribute to late allograft loss. Chronic kidney transplant rejection (CKTR) is often clinically silent yet progressive allogeneic immune process that leads to cumulative graft injury, deterioration of graft function. Chronic active T cell mediated rejection (TCMR) and chronic active antibody-mediated rejection (ABMR) are classified as two principal subtypes of CKTR. While significant improvements have been made towards a better understanding of cellular and molecular mechanisms and diagnostic classifications of CKTR, lack of early detection, differential diagnosis and effective therapies continue to pose major challenges for long-term management. Recent development of high throughput cellular and molecular biotechnologies has allowed rapid development of new biomarkers associated with chronic renal injury, which not only provide insight into pathogenesis of chronic rejection but also allow for early detection. In parallel, several novel therapeutic strategies have emerged which may hold great promise for improvement of long-term graft and patient survival. With a brief overview of current understanding of pathogenesis, standard diagnosis and challenges in the context of CKTR, this mini-review aims to provide updates and insights into the latest development of promising novel biomarkers for diagnosis and novel therapeutic interventions to prevent and treat CKTR.
Collapse
Affiliation(s)
- Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - James M. Mathew
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
50
|
Lassandro G, Ciaccia L, Amoruso A, Palladino V, Palmieri VV, Giordano P. Focus on MicroRNAs as Biomarker in Pediatric Diseases. Curr Pharm Des 2021; 27:826-832. [PMID: 33087027 DOI: 10.2174/1381612826666201021125512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MiRNAs are a class of small non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. MiRNAs are considered a class of epigenetic biomarkers. These biomarkers can investigate disease at different stages: diagnosis, therapy or clinical follow-up. OBJECTIVE The aim of this paper is to highlight the innovative use of miRNAs in several childhood diseases. METHODS We conducted a literature review to search the usage of miRNAs in pediatric clinical routine or experimental trials. RESULTS We found a possible key role of miRNAs in different pediatric illnesses (metabolic alterations, coagulation defects, cancer). CONCLUSION The modest literature production denotes that further investigation is needed to assess and validate the promising role of miRNAs as non-invasive biomarkers in pediatric disorders.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Loredana Ciaccia
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Amoruso
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Viviana V Palmieri
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|