1
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
2
|
Cook AK, Behrend E. SGLT2 inhibitor use in the management of feline diabetes mellitus. J Vet Pharmacol Ther 2025; 48 Suppl 1:19-30. [PMID: 38954371 PMCID: PMC11736986 DOI: 10.1111/jvp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are routinely used in the management of human type 2 diabetes and have been shown to effectively mitigate hyperglycemia and reduce the risks of cardiovascular and renal compromise. Two SGLT2 inhibitors, namely bexagliflozin and velagliflozin, were recently FDA approved for the treatment of uncomplicated feline diabetes mellitus. These oral hypoglycemic agents are a suitable option for many newly diagnosed cats, with rapid improvements in glycemic control and clinical signs. Suitable candidates must have some residual β-cell function, as some endogenous insulin production is required to prevent ketosis. Appropriate patient selection and monitoring are necessary, and practitioners should be aware of serious complications such as euglycemic diabetic ketoacidosis.
Collapse
Affiliation(s)
- Audrey K. Cook
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | | |
Collapse
|
3
|
Goloni C, Pacheco LG, Luis LW, Theodoro SS, Scarpim LB, Dalpubel D, Rosenburg MG, Jeusette IC, Torre C, Pereira GT, Carciofi AC. High starch intake favours body weight control in neutered and spayed cats living in homes fed ad libitum. Br J Nutr 2024; 131:1786-1802. [PMID: 38291971 DOI: 10.1017/s0007114524000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Different starch-to-protein ratios were compared among neutered and spayed domiciled cats. Male and female obese and non-obese cats were fed kibble diets ad libitum for 4 months high in starch (HS (38 % crude protein (CP)): starch 32 %, protein 38 %; DM basis) or high in protein (HP (55 % CP): starch 19 %, protein 55 %) but similar in energy and fat in a crossover design. Physical activity was evaluated using an accelerometer, and body composition (BC), energy expenditure (EE) and water turnover (WT) using the doubly labelled water method. Results were compared in a 2 diet × 2 sex × 2 body condition factorial arrangement. Cats fed the HS (38 % CP) diet maintained a constant body weight, but lean mass (LM) tended to be reduced in female obese but to be increased in male non-obese (P < 0·08) and increased in female non-obese cats (P = 0·01). The HP (55 % CP) diet induced an increase in cat body weight and LM (P < 0·05) without altering BC proportion. EE tended to be higher in males (351 (se 8) kJ/kg0·67/d) than females (330 (se 8) kJ/kg0·67/d; P = 0·06), was unaffected by diet or BC, decreased as age increased (R 2 0·44; P < 0·01) and increased as physical activity increased (R 2 0·58; P < 0·01). WT was higher for the HP (55 % CP) diet (P < 0·01) and increased with EE (R 2 0·65; P < 0·01). The HS (38 % CP) diet favoured body weight control during 4 months of ad libitum feeding. Caution is necessary to balance protein in diets of female obese cats over 5 years, as they may have low energy and food intake, with LM loss.
Collapse
Affiliation(s)
- Camila Goloni
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Letícia G Pacheco
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Letícia W Luis
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Stephanie S Theodoro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Lucas B Scarpim
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Daniela Dalpubel
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil
| | - Meire Gallo Rosenburg
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | | - Gener T Pereira
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| | - Aulus C Carciofi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
4
|
Branck T, Hu Z, Nickols WA, Walsh AM, Bhosle A, Short MI, Nearing JT, Asnicar F, McIver LJ, Maharjan S, Rahnavard A, Louyakis AS, Badri DV, Brockel C, Thompson KN, Huttenhower C. Comprehensive profile of the companion animal gut microbiome integrating reference-based and reference-free methods. THE ISME JOURNAL 2024; 18:wrae201. [PMID: 39394961 PMCID: PMC11523182 DOI: 10.1093/ismejo/wrae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The gut microbiome of companion animals is relatively underexplored, despite its relevance to animal health, pet owner health, and basic microbial community biology. Here, we provide the most comprehensive analysis of the canine and feline gut microbiomes to date, incorporating 2639 stool shotgun metagenomes (2272 dog and 367 cat) spanning 14 publicly available datasets (n = 730) and 8 new study populations (n = 1909). These are compared with 238 and 112 baseline human gut metagenomes from the Human Microbiome Project 1-II and a traditionally living Malagasy cohort, respectively, processed in a manner identical to the animal metagenomes. All microbiomes were characterized using reference-based taxonomic and functional profiling, as well as de novo assembly yielding metagenomic assembled genomes clustered into species-level genome bins. Companion animals shared 184 species-level genome bins not found in humans, whereas 198 were found in all three hosts. We applied novel methodology to distinguish strains of these shared organisms either transferred or unique to host species, with phylogenetic patterns suggesting host-specific adaptation of microbial lineages. This corresponded with functional divergence of these lineages by host (e.g. differences in metabolic and antibiotic resistance genes) likely important to companion animal health. This study provides the largest resource to date of companion animal gut metagenomes and greatly contributes to our understanding of the "One Health" concept of a shared microbial environment among humans and companion animals, affecting infectious diseases, immune response, and specific genetic elements.
Collapse
Affiliation(s)
- Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Zhiji Hu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - William A Nickols
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Aaron M Walsh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Amrisha Bhosle
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Meghan I Short
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jacob T Nearing
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Lauren J McIver
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sagun Maharjan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Artemis S Louyakis
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Dayakar V Badri
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Christoph Brockel
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
5
|
Nutritional Management of Cats and Dogs with Diabetes Mellitus. Vet Clin North Am Small Anim Pract 2023; 53:657-674. [PMID: 36858905 DOI: 10.1016/j.cvsm.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This article reviews the nutritional assessment and management of diabetic dogs and cats. It discusses how to determine appropriate nutritional goals for individual patients, including comorbid patients with diabetes. Considerations for macronutrient and micronutrient modifications will be reviewed.
Collapse
|
6
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:217-231. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Pakama S Nyingwa
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Khakhathi M Ralinala
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gwen M T Maswanganye
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Dose-Dependent Effects of Dietary Xylooligosaccharides Supplementation on Microbiota, Fermentation and Metabolism in Healthy Adult Cats. Molecules 2020; 25:molecules25215030. [PMID: 33138291 PMCID: PMC7662210 DOI: 10.3390/molecules25215030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
In order to investigate the effect and appropriate dose of prebiotics, this study evaluated the effect of two levels of xylooligosaccharides (XOS) in cats. Twenty-four healthy adult cats were divided into three groups: no-XOS control diet with 1% cellulose; low XOS supplementation (LXOS) with 0.04% XOS and 0.96% cellulose; and high XOS supplementation (HXOS) with 0.40% XOS and 0.60% cellulose. Both XOS groups increased blood 3-hydroxybutyryl carnitine levels and decreased hexadecanedioyl carnitine levels. Both XOS treatments displayed an increased bacterial abundance of Blautia, Clostridium XI, and Collinsella and a decreased abundance of Megasphaera and Bifidobacterium. LXOS groups increased fecal pH and bacterial abundance of Streptococcus and Lactobacillus, decreased blood glutaryl carnitine concentration, and Catenibacterium abundance. HXOS group showed a more distinct microbiome profile and higher species richness, and an increased bacterial abundance of Subdoligranulum, Ruminococcaceae genus (unassigned genus), Erysipelotrichaceae genus, and Lachnospiraceae. Correlations between bacterial abundances and blood and fecal parameters were also observed. In conclusion, XOS could benefit feline gut health by altering microbiota; its effects dependant on the dose. The higher-dose XOS increased bacterial populations that possibly promoted intestinal fermentation, while the lower dose altered populations of carbohydrate-metabolic microbiota and possibly modulated host metabolism. Low-dose prebiotics may become a trend in future studies.
Collapse
|
9
|
Lyu Y, Su C, Verbrugghe A, Van de Wiele T, Martos Martinez-Caja A, Hesta M. Past, Present, and Future of Gastrointestinal Microbiota Research in Cats. Front Microbiol 2020; 11:1661. [PMID: 32793152 PMCID: PMC7393142 DOI: 10.3389/fmicb.2020.01661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The relationship between microbial community and host has profound effects on the health of animals. A balanced gastrointestinal (GI) microbial population provides nutritional and metabolic benefits to its host, regulates the immune system and various signaling molecules, protects the intestine from pathogen invasion, and promotes a healthy intestinal structure and an optimal intestinal function. With the fast development of next-generation sequencing, molecular techniques have become standard tools for microbiota research, having been used to demonstrate the complex intestinal ecosystem. Similarly to other mammals, the vast majority of GI microbiota in cats (over 99%) is composed of the predominant bacterial phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Many nutritional and clinical studies have shown that cats' microbiota can be affected by several different factors including body condition, age, diet, and inflammatory diseases. All these factors have different size effects, and some of these may be very minor, and it is currently unknown how important these are. Further research is needed to determine the functional variations in the microbiome in disease states and in response to environmental and/or dietary modulations. Additionally, further studies are also needed to explain the intricate relationship between GI microbiota and the genetics and immunity of its host. This review summarizes past and present knowledge of the feline GI microbiota and looks into the future possibilities and challenges of the field.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chunxia Su
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ana Martos Martinez-Caja
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
10
|
Dodd SAS, Cave NJ, Adolphe JL, Shoveller AK, Verbrugghe A. Plant-based (vegan) diets for pets: A survey of pet owner attitudes and feeding practices. PLoS One 2019; 14:e0210806. [PMID: 30645644 PMCID: PMC6333351 DOI: 10.1371/journal.pone.0210806] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022] Open
Abstract
People who avoid eating animals tend to share their homes with animal companions, and moral dilemma may arise when they are faced with feeding animal products to their omnivorous dogs and carnivorous cats. One option to alleviate this conflict is to feed pets a diet devoid of animal ingredients-a 'plant-based' or 'vegan' diet. The number of pet owners who avoid animal products, either in their own or in their pets' diet, is not currently known. The objective of this study was to estimate the number of meat-avoiding pet owners, identify concerns regarding conventional animal- and plant-based pet food, and estimate the number of pets fed a plant-based diet. A questionnaire was disseminated online to English-speaking pet owners (n = 3,673) to collect data regarding pet owner demographics, diet, pet type, pet diet, and concerns regarding pet foods. Results found that pet owners were more likely to be vegetarian (6.2%; 229/3,673) or vegan (5.8%; 212/3,673) than previously reported for members of the general population. With the exception of one dog owned by a vegetarian, vegans were the only pet owners who fed plant-based diets to their pets (1.6%; 59/3,673). Of the pet owners who did not currently feed plant-based diets but expressed interest in doing so, a large proportion (45%; 269/599) desired more information demonstrating the nutritional adequacy of plant-based diets. Amongst all pet owners, the concern most commonly reported regarding meat-based pet foods was for the welfare of farm animals (39%; 1,275/3,231). The most common concern regarding strictly plant-based pet foods was regarding the nutritional completeness of the diet (74%; 2,439/3,318). Amongst vegans, factors which predicted the feeding of plant-based diets to their pets were concern regarding the cost of plant-based diets, a lack of concern regarding plant-based diets being unnatural, and reporting no concern at all regarding plant-based diets for pets. Given these findings, further research is warranted to investigate plant-based nutrition for domestic dogs and cats.
Collapse
Affiliation(s)
- Sarah A. S. Dodd
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nick J. Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Verbrugghe A, Hesta M. Cats and Carbohydrates: The Carnivore Fantasy? Vet Sci 2017; 4:vetsci4040055. [PMID: 29140289 PMCID: PMC5753635 DOI: 10.3390/vetsci4040055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/02/2023] Open
Abstract
The domestic cat’s wild ancestors are obligate carnivores that consume prey containing only minimal amounts of carbohydrates. Evolutionary events adapted the cat’s metabolism and physiology to this diet strictly composed of animal tissues and led to unique digestive and metabolic peculiarities of carbohydrate metabolism. The domestic cat still closely resembles its wild ancestor. Although the carnivore connection of domestic cats is well recognised, little is known about the precise nutrient profile to which the digestive physiology and metabolism of the cat have adapted throughout evolution. Moreover, studies show that domestic cats balance macronutrient intake by selecting low-carbohydrate foods. The fact that cats evolved consuming low-carbohydrate prey has led to speculations that high-carbohydrate diets could be detrimental for a cat’s health. More specifically, it has been suggested that excess carbohydrates could lead to feline obesity and diabetes mellitus. Additionally, the chances for remission of diabetes mellitus are higher in cats that consume a low-carbohydrate diet. This literature review will summarise current carbohydrate knowledge pertaining to digestion, absorption and metabolism of carbohydrates, food selection and macronutrient balancing in healthy, obese and diabetic cats, as well as the role of carbohydrates in prevention and treatment of obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph N1G 2W1 ON, Canada.
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke B-9820, Belgium.
| |
Collapse
|
12
|
Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 2017; 5:e3019. [PMID: 28265505 PMCID: PMC5337088 DOI: 10.7717/peerj.3019] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Much of the recent research in companion animal nutrition has focussed on understanding the role of diet on faecal microbiota composition. To date, diet-induced changes in faecal microbiota observed in humans and rodents have been extrapolated to pets in spite of their very different dietary and metabolic requirements. This lack of direct evidence means that the mechanisms by which microbiota influences health in dogs are poorly understood. We hypothesised that changes in faecal microbiota correlate with physiological parameters including apparent macronutrient digestibility. METHODS Fifteen adult dogs were assigned to two diet groups, exclusively fed either a premium kibbled diet (kibble; K; n = 8) or a raw red meat diet (meat; M; n = 7) for nine weeks. Apparent digestibility of macronutrients (protein, fat, gross energy and dry matter), faecal weight, faecal health scores, faecal VFA concentrations and faecal microbial composition were determined. Datasets were integrated using mixOmics in R. RESULTS Faecal weight and VFA levels were lower and the apparent digestibility of protein and energy were higher in dogs on the meat diet. Diet significantly affected 27 microbial families and 53 genera in the faeces. In particular, the abundances of Bacteriodes, Prevotella, Peptostreptococcus and Faecalibacterium were lower in dogs fed the meat diet, whereas Fusobacterium, Lactobacillus and Clostridium were all more abundant. DISCUSSION Our results show clear associations of specific microbial taxa with diet composition. For example, Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae were highly correlated to parameters such as protein and fat digestibility in the dog. By understanding the relationship between faecal microbiota and physiological parameters we will gain better insights into the effects of diet on the nutrition of our pets.
Collapse
Affiliation(s)
- Emma N Bermingham
- AgResearch Ltd., Food Nutrition & Health Team , Palmerston North , New Zealand
| | - Paul Maclean
- AgResearch Ltd., Bioinformatics & Statistics Team , Lincoln , New Zealand
| | - David G Thomas
- Massey University, Institute of Veterinary, Animal & Biomedical Sciences , Palmerston North , New Zealand
| | - Nicholas J Cave
- Massey University, Institute of Veterinary, Animal & Biomedical Sciences , Palmerston North , New Zealand
| | - Wayne Young
- AgResearch Ltd., Food Nutrition & Health Team , Palmerston North , New Zealand
| |
Collapse
|
13
|
Abstract
Feline hepatic lipidosis (FHL) is a common and potentially fatal liver disorder. Although the pathophysiologic mechanisms of FHL remain elusive, there is an imbalance between the influx of fatty acids from peripheral fat stores into the liver, de novo liposynthesis, and the rate of hepatic oxidation and dispersal of hepatic TAG via excretion of very-low density lipoproteins. The diagnosis of FHL is based on anamnestic, clinical, and clinicopathologic findings, associated with diagnostic imaging of the liver, and cytology, or histological examination of liver biopsies. Fluid therapy, electrolyte correction and adequate early nutrition are essential components of the therapy for FHL.
Collapse
Affiliation(s)
- Chiara Valtolina
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands.
| | - Robert P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
14
|
Memon MA, Shmalberg J, Adair HS, Allweiler S, Bryan JN, Cantwell S, Carr E, Chrisman C, Egger CM, Greene S, Haussler KK, Hershey B, Holyoak GR, Johnson M, Jeune SL, Looney A, McConnico RS, Medina C, Morton AJ, Munsterman A, Nie GJ, Park N, Parsons-Doherty M, Perdrizet JA, Peyton JL, Raditic D, Ramirez HP, Saik J, Robertson S, Sleeper M, Dyke JV, Wakshlag J. Integrative veterinary medical education and consensus guidelines for an integrative veterinary medicine curriculum within veterinary colleges. Open Vet J 2016; 6:44-56. [PMID: 27200270 PMCID: PMC4824037 DOI: 10.4314/ovj.v6i1.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Integrative veterinary medicine (IVM) describes the combination of complementary and
alternative therapies with conventional care and is guided by the best available
evidence. Veterinarians frequently encounter questions about complementary and
alternative veterinary medicine (CAVM) in practice, and the general public has
demonstrated increased interest in these areas for both human and animal health.
Consequently, veterinary students should receive adequate exposure to the principles,
theories, and current knowledge supporting or refuting such techniques. A proposed
curriculum guideline would broadly introduce students to the objective evaluation of
new veterinary treatments while increasing their preparation for responding to
questions about IVM in clinical practice. Such a course should be evidence-based,
unbiased, and unaffiliated with any particular CAVM advocacy or training group. All
IVM courses require routine updating as new information becomes available.
Controversies regarding IVM and CAVM must be addressed within the course and
throughout the entire curriculum. Instructional honesty regarding the uncertainties
in this emerging field is critical. Increased training of future veterinary
professionals in IVM may produce an openness to new ideas that characterizes the
scientific method and a willingness to pursue and incorporate evidence-based medicine
in clinical practice with all therapies, including those presently regarded as
integrative, complementary, or alternative.
Collapse
Affiliation(s)
- M A Memon
- Department of Clinical Science, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - J Shmalberg
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - H S Adair
- Department of Small Animal Clinical Sciences (Egger) and Department of Large Animal Clinical Sciences (Adair), College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - S Allweiler
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J N Bryan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - S Cantwell
- Medicine Wheel Veterinary Services, Ocala, FL, USA
| | - E Carr
- Department of Small Animal Clinical Sciences (Robertson) and Department of Large Animal Clinical Sciences (Carr), College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - C Chrisman
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - C M Egger
- Department of Small Animal Clinical Sciences (Egger) and Department of Large Animal Clinical Sciences (Adair), College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - S Greene
- Department of Clinical Science, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - K K Haussler
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - B Hershey
- Integrative Veterinary Oncology, Phoenix, AZ, USA
| | - G R Holyoak
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - M Johnson
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - S Le Jeune
- Veterinary Medical Teaching Hospital (Peyton) and Department of Surgical and Radiological Sciences (Le Jeune), School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - R S McConnico
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C Medina
- Coral Springs Animal Hospital, Coral Springs, FL, USA
| | - A J Morton
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - A Munsterman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - G J Nie
- Angel Animal Hospital, Springfield, MO, USA
| | - N Park
- Integrative Ophthalmology for Pets, Los Angeles, CA, USA
| | | | | | - J L Peyton
- Veterinary Medical Teaching Hospital (Peyton) and Department of Surgical and Radiological Sciences (Le Jeune), School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - H P Ramirez
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - J Saik
- Winterville Animal Clinic, Winterville, GA, USA
| | - S Robertson
- Department of Small Animal Clinical Sciences (Robertson) and Department of Large Animal Clinical Sciences (Carr), College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - M Sleeper
- Departments of Small Animal Clinical Sciences (Shmalberg, Chrisman, Johnson, Sleeper), Large Animal Clinical Sciences (Morton), and Biomedical Sciences (Ramirez), College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - J Van Dyke
- Canine Rehabilitation Institute, Wellington, FL, USA
| | - J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Abstract
Dietary macronutrients include protein, fat, and carbohydrates. Current nutritional recommendations establish minimums but not maximums for protein and fat but not for carbohydrates; thus, commercial feline maintenance diets have a wide range of macronutrient distribution depending on manufacturer, ingredients, and processing. There is growing interest and discussion, however, in defining the ideal macronutrient composition of feline diets to maximize longevity and health. Current recommendations should be tailored to each patient based on age, body condition, presence of muscle mass atrophy, and the presence of disease.
Collapse
Affiliation(s)
- Cecilia Villaverde
- Departament de Ciència Animal i dels Aliments (Animal and Food Science Department), Universitat Autònoma de Barcelona, Edifici V, Campus UAB, Bellaterra 08193, Spain.
| | - Andrea J Fascetti
- Department of Molecular Biosciences, University of California Davis, One Shields Avenue, Davis, CA 95616-8741, USA
| |
Collapse
|
16
|
Carter RA, Bauer JE, Kersey JH, Buff PR. Awareness and evaluation of natural pet food products in the United States. J Am Vet Med Assoc 2014; 245:1241-8. [DOI: 10.2460/javma.245.11.1241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hoelmkjaer KM, Bjornvad CR. Management of obesity in cats. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:97-107. [PMID: 32670850 PMCID: PMC7337193 DOI: 10.2147/vmrr.s40869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a common nutritional disorder in cats, especially when they are neutered and middle-aged. Obesity predisposes cats to several metabolic and clinical disorders, including insulin resistance, diabetes mellitus, lameness, and skin disease. Prevention and treatment of obesity is therefore of great importance in veterinary practice. Correct assessment of body composition is important for recognizing early states of obesity and for monitoring success of weight-loss programs. Various methods for assessing body composition have been proposed, of which a 9-point body-condition score has been validated in cats, and is possibly the most simple to use in the clinic; however, for extremely obese individuals, it is less useful. When calculating the appropriate daily caloric intake for a weight-loss plan, the aim is to maintain a safe weight-loss rate, increasing the chance of preserving lean body mass and decreasing the risk of developing hepatic lipidosis, while also producing a sufficient weight-loss rate to keep owners motivated. A weight-loss rate of 0.5%–2% per week is recommended, which for a cat that needs to lose 3 kg body weight results in an anticipated time for reaching the target weight of 24–60 weeks. There are several purpose-made weight-loss diets available. The optimal composition of a weight-loss diet for cats is unknown, but most of the available products have lower caloric density, an increased nutrient:energy ratio, and higher protein and fiber content. Regular follow-up visits allow the caloric intake to be adjusted based on progress, and possibly increase the chance of success. This review discusses the risk factors for and consequences of obesity, and gives directions for formulating a weight-loss plan, including daily caloric intake, choice of diet, and common problems based on the current literature. This review further provides a nutritional comparison of the current composition of selected commercial veterinary-specific weight-loss diets.
Collapse
Affiliation(s)
- Kirsten M Hoelmkjaer
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Charlotte R Bjornvad
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Evidence of endoplasmic reticulum stress and liver inflammation in the American mink Neovison vison with benign hepatic steatosis. J Comp Physiol B 2014; 184:913-27. [PMID: 25079677 DOI: 10.1007/s00360-014-0845-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/18/2014] [Accepted: 07/06/2014] [Indexed: 01/11/2023]
Abstract
We investigated the presence of inflammatory signs in the progression of fatty liver disease induced by fasting. Sixty standard black American mink (Neovison vison) were fasted for 0, 1, 3, 5, or 7 days and one group for 7 days followed by re-feeding for 28 days. Liver sections were evaluated histologically and liver mRNA levels indicating endoplasmic reticulum (ER) stress, adipogenic transformation, and inflammation were assessed by quantitative real-time PCR. After 3 days of fasting, the mink had developed moderate liver steatosis. Increased hyaluronan reactivity in lymphocytic foci but no Mallory-Denk bodies were seen in livers of the mink fasted for 5-7 days. Up-regulation of glucose-regulated protein, 78 kDa was observed on day 7 indicating ER stress, especially in the females. Liver lipoprotein lipase and monocyte chemoattractant protein 1 mRNA levels increased in response to 5-7 days of food deprivation, while tumor necrosis factor α (TNF-α) was the highest in the mink fasted for 5 days. The expression of the genes of interest, except for TNF-α, correlated with each other and with the liver fat content. The mRNA levels were found to change more rapidly below n-3/n-6 polyunsaturated fatty acid ratio threshold of 0.15. Following re-feeding, hepatocyte morphology and mRNA abundance returned to pre-fasting levels. Within the studied timeframe, evidence for ER stress, adipogenic transformation, and liver inflammation suggested incipient transition from steatosis to steatohepatitis with potential for development of more severe liver disease. This may present a possibility to influence disease progression before histologically observable steatohepatitis.
Collapse
|
19
|
Buff PR, Carter RA, Bauer JE, Kersey JH. Natural pet food: a review of natural diets and their impact on canine and feline physiology. J Anim Sci 2014; 92:3781-91. [PMID: 25006071 DOI: 10.2527/jas.2014-7789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this review is to clarify the definition of "natural" as it pertains to commercial pet food and to summarize the scientific findings related to natural ingredients in pet foods and natural diets on the impact of pet health and physiology. The term "natural," when used to market commercial pet foods or pet food ingredients in the United States, has been defined by the Association of American Feed Control Officials and requires, at minimum, that the pet food be preserved with natural preservatives. However, pet owners may consider natural as something different than the regulatory definition. The natural pet food trend has focused on the inclusion of whole ingredients, including meats, fruits, and vegetables; avoiding ingredients perceived as heavily processed, including refined grains, fiber sources, and byproducts; and feeding according to ancestral or instinctual nutritional philosophies. Current scientific evidence supporting nutritional benefits of natural pet food products is limited to evaluations of dietary macronutrient profiles, fractionation of ingredients, and the processing of ingredients and final product. Domestic cats select a macronutrient profile (52% of ME from protein) similar to the diet of wild cats. Dogs have evolved much differently in their ability to metabolize carbohydrates and select a diet lower in protein (30% of ME from protein) than the diet of wild wolves. The inclusion of whole food ingredients in natural pet foods as opposed to fractionated ingredients may result in higher nutrient concentrations, including phytonutrients. Additionally, the processing of commercial pet food can impact digestibility, nutrient bioavailability, and safety, which are particularly important considerations with new product formats in the natural pet food category. Future opportunities exist to better understand the effect of natural diets on health and nutrition outcomes and to better integrate sustainable practices in the production of natural pet foods.
Collapse
Affiliation(s)
- P R Buff
- The Nutro Company, Franklin, TN 37067
| | | | - J E Bauer
- Colorado State University, Fort Collins 80523-1620
| | | |
Collapse
|
20
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
21
|
Acute hormonal response to glucose, lipids and arginine infusion in overweight cats. J Nutr Sci 2014; 3:e8. [PMID: 25191616 PMCID: PMC4153071 DOI: 10.1017/jns.2014.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 11/26/2022] Open
Abstract
In cats, the incidence of obesity and diabetes is increasing, and little is known about
specific aspects of the endocrine control of food intake in this species. Recent data
suggest that ghrelin has an important role in the control of insulin secretion and vice
versa, but this role has never been demonstrated in cats. Here we aimed to improve our
understanding about the relationship between insulin, amylin and ghrelin secretion in
response to a nutrient load in overweight cats. After a 16 h fast, weekly, six overweight
male cats underwent randomly one of the four testing sessions: saline, glucose, arginine
and TAG. All solutions were isoenergetic and isovolumic, and were injected intravenously
as a bolus. Glucose, insulin, acylated ghrelin (AG), amylin and prolactin were assayed in
plasma before and 10, 20, 40, 60, 80 and 100 min after the nutrient load. A linear
mixed-effects model was used to assess the effect of bolus and time on the parameters. A
parenteral bolus of glucose or arginine increased insulin and ghrelin concentrations in
cats. Except for with the TAG bolus, no suppression of ghrelin was observed. The absence
of AG suppression after the intravenous load of arginine and glucose may suggest: (1) that
some nutrients do not promote satiation in overweight cats; or that (2) AG may be involved
in non-homeostatic consumption mechanisms. However, the role of ghrelin in food reward
remains to be assessed in cats.
Collapse
|
22
|
Evolution of glucose utilization: glucokinase and glucokinase regulator protein. Mol Phylogenet Evol 2013; 70:195-203. [PMID: 24075984 DOI: 10.1016/j.ympev.2013.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
Abstract
Glucose is an essential nutrient that must be distributed throughout the body to provide energy to sustain physiological functions. Glucose is delivered to distant tissues via be blood stream, and complex systems have evolved to maintain the levels of glucose within a narrow physiological range. Phosphorylation of glucose, by glucokinase, is an essential component of glucose homeostasis, both from the regulatory and metabolic point-of-view. Here we review the evolution of glucose utilization from the perspective of glucokinase. We discuss the origin of glucokinase, its evolution within the hexokinase gene family, and the evolution of its interacting regulatory partner, glucokinase regulatory protein (GCKR). Evolution of the structure and sequence of both glucokinase and GCKR have been necessary to optimize glucokinase in its role in glucose metabolism.
Collapse
|
23
|
Verbrugghe A, Bakovic M. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis. Nutrients 2013; 5:2811-35. [PMID: 23877091 PMCID: PMC3739000 DOI: 10.3390/nu5072811] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022] Open
Abstract
Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate) produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.
Collapse
Affiliation(s)
- Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; E-Mail:
| |
Collapse
|
24
|
Wang ZY, Jin L, Tan H, Irwin DM. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR). PLoS One 2013; 8:e60896. [PMID: 23573289 PMCID: PMC3613411 DOI: 10.1371/journal.pone.0060896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR) is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity. METHODOLOGY/PRINCIPAL FINDINGS GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified. CONCLUSIONS/SIGNIFICANCE GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard) or mutated (mammals) GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.
Collapse
Affiliation(s)
- Zhao Yang Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Freitas MB, Queiroz JF, Dias Gomes CI, Collares-Buzato CB, Barbosa HC, Boschero AC, Gonçalves CA, Pinheiro EC. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats. Gen Comp Endocrinol 2013; 183:1-6. [PMID: 23262275 DOI: 10.1016/j.ygcen.2012.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 12/23/2022]
Abstract
Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility.
Collapse
Affiliation(s)
- Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, MG , Brazil.
| | | | | | | | | | | | | | | |
Collapse
|