1
|
Pietruszyńska-Reszetarska A, Pietruszyński R, Irzmański R. The Significance of Genetically Determined Methylation and Folate Metabolism Disorders in the Pathogenesis of Coronary Artery Disease: A Target for New Therapies? Int J Mol Sci 2024; 25:6924. [PMID: 39000032 PMCID: PMC11241586 DOI: 10.3390/ijms25136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Methylation is a biochemical process involving the addition of a methyl group (-CH3) to various chemical compounds. It plays a crucial role in maintaining the homeostasis of the endothelium, which lines the interior surface of blood vessels, and has been linked, among other conditions, to coronary artery disease (CAD). Despite significant progress in CAD diagnosis and treatment, intensive research continues into genotypic and phenotypic CAD biomarkers. This review explores the significance of the methylation pathway and folate metabolism in CAD pathogenesis, with a focus on endothelial dysfunction resulting from deficiency in the active form of folate (5-MTHF). We discuss emerging areas of research into CAD biomarkers and factors influencing the methylation process. By highlighting genetically determined methylation disorders, particularly the MTHFR polymorphism, we propose the potential use of the active form of folate (5-MTHF) as a novel CAD biomarker and personalized pharmaceutical for selected patient groups. Our aim is to improve the identification of individuals at high risk of CAD and enhance their prognosis.
Collapse
Affiliation(s)
| | - Robert Pietruszyński
- Cardiology Outpatient Clinic, Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz—Central Veterans’ Hospital, 90-549 Lodz, Poland;
| | - Robert Irzmański
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
2
|
Liang S, Zhang H, Jiao L, Shao R, Lan Y, Liao X, Mai K, Ai Q, Wan M. Vitamin D promotes the folate transport and metabolism in zebrafish ( Danio rerio). Am J Physiol Endocrinol Metab 2024; 326:E482-E492. [PMID: 38324257 DOI: 10.1152/ajpendo.00380.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.
Collapse
Affiliation(s)
- Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Lin Jiao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Crous‐Bou M, Molloy A, Ciccolallo L, de Sesmaisons Lecarré A, Fabiani L, Horvath Z, Karavasiloglou N, Naska A. Scientific opinion on the tolerable upper intake level for folate. EFSA J 2023; 21:e08353. [PMID: 37965303 PMCID: PMC10641704 DOI: 10.2903/j.efsa.2023.8353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for folic acid/folate. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of folate (including folic acid and the other authorised forms, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts), namely risk of cobalamin-dependent neuropathy, cognitive decline among people with low cobalamin status, and colorectal cancer and prostate cancer. The evidence is insufficient to conclude on a positive and causal relationship between the dietary intake of folate and impaired cognitive function, risk of colorectal and prostate cancer. The risk of progression of neurological symptoms in cobalamin-deficient patients is considered as the critical effect to establish an UL for folic acid. No new evidence has been published that could improve the characterisation of the dose-response between folic acid intake and resolution of megaloblastic anaemia in cobalamin-deficient individuals. The ULs for folic acid previously established by the Scientific Committee on Food are retained for all population groups, i.e. 1000 μg/day for adults, including pregnant and lactating women, 200 μg/day for children aged 1-3 years, 300 μg/day for 4-6 years, 400 μg/day for 7-10 years, 600 μg/day for 11-14 years and 800 μg/day for 15-17 years. A UL of 200 μg/day is established for infants aged 4-11 months. The ULs apply to the combined intake of folic acid, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts, under their authorised conditions of use. It is unlikely that the ULs for supplemental folate are exceeded in European populations, except for regular users of food supplements containing high doses of folic acid/5-methyl-tetrahydrofolic acid salts.
Collapse
|
4
|
Ginani CTA, da Luz JRD, de Medeiros KS, Sarmento ACA, Coppedè F, das Graças Almeida M. Association of C677T and A1298C polymorphisms of the MTHFR gene with maternal risk for Down syndrome: A meta-analysis of case-control studies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108470. [PMID: 37689109 DOI: 10.1016/j.mrrev.2023.108470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Several studies around the world support the hypothesis that genetic polymorphisms involved in folate metabolism could be related to the maternal risk for Down syndrome (DS). Most of them investigated the role of MTHFR C677T and/or A1298C polymorphisms as maternal risk factors for DS, but their results are often conflicting and still inconclusive. METHODS We conducted a systematic review and meta-analysis to clarify the association of MTHFR C677T and/or A1298C polymorphisms with the maternal risk of DS. Our search strategy selected 42 eligible case control studies for a total of 4131 case mothers and 5452 control mothers. The Newcastle-Ottawa Scale was used to assess the methodological quality of the selected studies. To assess the confidence of statistically significant associations we applied false positive report probability test, and we performed the trial sequential analysis to minimize the type I error and random error. RESULTS We observed significant associations between the MTHFR C677T polymorphism and maternal risk for DS for each of the genetic models investigated (dominant, recessive, codominant, and allelic contrast). Subgroup analysis by region revelated significant association in the Asian population for all the genetic models investigated. Significant associations were also found for certain genetic models in North American, South American, and Middle Eastern populations, while no association was observed in Europeans. The MTHFR A1298C polymorphism did not show any association with the maternal risk of DS, either alone or in combination with the C677T one. The results of false positive report probability to verify the confidence of a significant association suggest that the association between the MTHFR C677T polymorphism and the maternal risk for DS is noteworthy, with high confidence in Asians. CONCLUSION The results of this meta-analysis support that the MTHFR C677T polymorphism, but not the A1298C one, is associated with the maternal risk for DS. Further studies are required to better characterize the contribution of gene-gene and gene-nutrient interactions as well as those of other regional or ethnic factors that could explain the observed different effect size in different populations.
Collapse
Affiliation(s)
- Carla Talita Azevedo Ginani
- Post-graduation Program in Health Sciences, Federal University of Rio Grande do Norte, Health Sciences Center, Natal, Rio Grande do Norte, Brazil; Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Organic Chemistry and biochemistry Laboratory, State University of Amapá (UEAP), Macapá, Brazil; Institute of Education, Research and Innovation of the League Against Cancer, Natal, Rio Grande do Norte, Brazil
| | - Kleyton Santos de Medeiros
- Institute of Education, Research and Innovation of the League against Cancer, Natal, Rio Grande do Norte, Brazil
| | - Ayane Cristine Alves Sarmento
- Post-graduation Program in Health Sciences, Federal University of Rio Grande do Norte, Health Sciences Center, Natal, Rio Grande do Norte, Brazil
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy; Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, Via Savi 10, 56126 Pisa, Italy.
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Federal University of Rio Grande do Norte, Health Sciences Center, Natal, Rio Grande do Norte, Brazil; Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
5
|
Liu XH, Cao ZJ, Chen LW, Zhang DL, Qu XX, Li YH, Tang YP, Bao YR, Ying H. The association between serum folate and gestational diabetes mellitus: a large retrospective cohort study in Chinese population. Public Health Nutr 2023; 26:1014-1021. [PMID: 36093642 PMCID: PMC10346082 DOI: 10.1017/s136898002200194x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy. DESIGN In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage-response relationship between serum folate and the risk of GDM. SETTING A sigle, urban hospital in Shanghai, China. PARTICIPANTS A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included. RESULTS Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs). CONCLUSIONS The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| | - Zhi-Juan Cao
- Department of Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Li-Wei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dong-Lan Zhang
- Division of Health Services Research, Department of Foundations of Medicine, New York University, Long Island, School of Medicine, Mineola, NY, USA
| | - Xiao-Xian Qu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| | - Yu-Hong Li
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| | - Yu-Ping Tang
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| | - Yi-Rong Bao
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 550 Hunan RD, Shanghai201204, People’s Republic of China
| |
Collapse
|
6
|
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Williamson J, McCullough D, Arthurs AL, Jones LA, Bogias KJ, Mol BW, Dalton J, Dekker GA, Roberts CT. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023; 15:1553. [PMID: 37049394 PMCID: PMC10097170 DOI: 10.3390/nu15071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.
Collapse
Affiliation(s)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Shalem Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Jessica Williamson
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Lauren A. Jones
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | | | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Julia Dalton
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
| | - Gustaaf A. Dekker
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
- Lyell McEwin Hospital, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Folate inhibits lipid deposition via the autophagy pathway in chicken hepatocytes. Poult Sci 2022; 102:102363. [PMID: 36525749 PMCID: PMC9791176 DOI: 10.1016/j.psj.2022.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Excessive fat deposition affects the efficiency and quality of broiler meat production. To understand the molecular mechanism underlying abdominal fat content of broiler lines under divergent selection, we have attempted multiple genetics and genomics methods previously. However, the molecular mechanism of hepatic fat deposition remains largely unknown. On broiler lines divergently selected for abdominal fat content, we performed integrated mRNA and lncRNA sequencing on liver tissues. Key genes and signaling pathways related to the biosynthesis, elongation and metabolism of fatty acids, metabolic pathways, and folate biosynthesis were revealed. Then, primary hepatocytes (sex determined) were isolated and cultured, and treatment concentrations of folate and palmitic acid were optimized. Expression profiling on primary hepatocytes treated by folate and/or palmitic acid revealed that folic acid inhibited lipid deposition in a sex-dependent way, through regulating transcriptional and protein levels of genes related to DNA methylation, lipid metabolism (mTOR/SREBP-1c/PI3K), and autophagy (LAMP2/ATG5) pathways. Taken together, folate could interfere with hepatic lipid deposition possibly through the involvement of the autophagy pathway in broilers.
Collapse
|
8
|
Kandel R, Singh KP. Higher Concentrations of Folic Acid Cause Oxidative Stress, Acute Cytotoxicity, and Long-Term Fibrogenic Changes in Kidney Epithelial Cells. Chem Res Toxicol 2022; 35:2168-2179. [PMID: 36354958 DOI: 10.1021/acs.chemrestox.2c00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kidney fibrosis is a common step during chronic kidney disease (CKD), and its incidence has been increasing worldwide. Aberrant recovery after repeated acute kidney injury leads to fibrosis. The mechanism of fibrogenic changes in the kidney is not fully understood. Folic acid-induced kidney fibrosis in mice is an established in vivo model to study kidney fibrosis, but the mechanism is poorly understood. Moreover, the effect of higher concentrations of folic acid on kidney epithelial cells in vitro has not yet been studied. Oxidative stress is a common property of nephrotoxicants. Therefore, this study evaluated the role of folic acid-induced oxidative stress in fibrogenic changes by using the in vitro renal proximal tubular epithelial cell culture model. To obtain comprehensive and robust data, three different cell lines derived from human and mouse kidney epithelium were treated with higher concentrations of folic acid for both acute and long-term durations, and the effects were determined at the cellular and molecular levels. The result of cell viability by the MTT assay and the measurement of reactive oxygen species (ROS) levels by the DCF assay revealed that folic acid caused cytotoxicity and increased levels of ROS in acute exposure. The cotreatment with antioxidant N-acetyl cysteine (NAC) protected the cytotoxic effect, suggesting the role of folic acid-induced oxidative stress in cytotoxicity. In contrast, the long-term exposure to folic acid caused increased growth, DNA damage, and changes in the expression of marker genes for EMT, fibrosis, oxidative stress, and oxidative DNA damage. Some of these changes, particularly the acute effects, were abrogated by cotreatment with antioxidant NAC. In summary, the novel findings of this study suggest that higher concentrations of folic acid-induced oxidative stress act as the driver of cytotoxicity as an acute effect and of fibrotic changes as a long-term effect in kidney epithelial cells.
Collapse
Affiliation(s)
- Ramji Kandel
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
9
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
10
|
Folic Acid: Sources, Chemistry, Absorption, Metabolism, Beneficial Effects on Poultry Performance and Health. Vet Med Int 2022; 2022:2163756. [PMID: 36032042 PMCID: PMC9417761 DOI: 10.1155/2022/2163756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there has been an increasing interest in the study of the effects of folic acid (FA) on poultry because it was observed that FA could overcome problems in poultry health while improving its performance. FA, or folate, is a water-soluble B vitamin essential in poultry, so FA intake must be available in the feed. Sources of FA in feed come from plants or animals, and animal sources have relatively more stable FA. The ingested FA will be absorbed in the intestinal lumen and transported into the liver through the blood vessels. Therefore, FA has a positive effect on the performance and health status of poultry. The effect of FA on poultry performance is to increase reproductive tract development, FA content in eggs, hatchability, weight gain, average initial body weight, feed intake, relative growth rate, chick body weight, breast fillet percentage, and reduce FCR and white striping score. At the same time, the effect on poultry health influences antioxidant activities, thyroid hormones, blood biochemicals, anti-inflammatory gene expressions, and immune responses. The present review deals with FA sources, chemistry, absorption, metabolism, effects on performance, and poultry health, which are based on valid basic information.
Collapse
|
11
|
CRIF1 Deficiency Increased Homocysteine Production by Disrupting Dihydrofolate Reductase Expression in Vascular Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10111645. [PMID: 34829516 PMCID: PMC8614757 DOI: 10.3390/antiox10111645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbilical vein endothelial cells (HUVECs) and mice to induce endothelial cell dysfunction; then, we monitored homocysteine accumulation. We found that CRIF1 downregulation caused significant increases in intracellular and plasma concentrations of homocysteine, which were associated with decreased levels of folate cycle intermediates such as 5-methyltetrahydrofolate (MTHF) and tetrahydrofolate (THF). Moreover, dihydrofolate reductase (DHFR), a key enzyme in folate-mediated metabolism, exhibited impaired activity and decreased protein expression in CRIF1 knockdown endothelial cells. Supplementation with folic acid did not restore DHFR expression levels or MTHF and homocysteine concentrations in endothelial cells with a CRIF1 deletion or DHFR knockdown. However, the overexpression of DHFR in CRIF1 knockdown endothelial cells resulted in decreased accumulation of homocysteine. Taken together, our findings suggest that CRIF1-deleted endothelial cells accumulated more homocysteine, compared with control cells; this was primarily mediated by the disruption of DHFR expression.
Collapse
|
12
|
Zhang Y, Zhang N, Liu L, Wang Y, Xing J, Li X. Transcriptome Analysis of Effects of Folic Acid Supplement on Gene Expression in Liver of Broiler Chickens. Front Vet Sci 2021; 8:686609. [PMID: 34604366 PMCID: PMC8481781 DOI: 10.3389/fvets.2021.686609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid is a water-soluble B vitamin, and plays an important role in regulating gene expression and methylation. The liver is the major site of lipid biosynthesis in the chicken. Nevertheless, how gene expression and regulatory networks are affected by folic acid in liver of broilers are poorly understood. This paper conducted the RNA-seq technology on the liver of broilers under folic acid challenge investigation. First, 405 differentially expressed genes (DEGs), including 157 significantly upregulated and 248 downregulated, were detected between the control group (C) and the 5 mg folic acid group (M). Second, 68 upregulated DEGs and 142 downregulated DEGs were determined between C group and 10 mg folic acid group (H). Third, there were 165 upregulated genes and 179 downregulated genes between M and H groups. Of these DEGs, 903 DEGs were successfully annotated in the public databases. The functional classification based on GO and KEEGG showed that “general function prediction only” represented the largest functional classes, “cell cycle” (C vs. M; M vs. H), and “neuroactive ligand-receptor interaction” (C vs. H) were the highest unique sequences among three groups. SNP analysis indicated that numbers of C, M and H groups were 145,450, 146,131, and 123,004, respectively. Total new predicted alternative splicing events in C, M, and H groups were 9,521, 9,328, and 8,929, respectively. A protein-protein interaction (PPI) network was constructed, and the top 10 hub genes were evaluated among three groups. The results of real time PCR indicated that mRNA abundance of PPARγ and FAS in abdominal fat of M and H groups were reduced compared with the C group (P < 0.05). Ultramicroscopy results showed that folic acid could reduce lipid droplets in livers from chickens. Finally, contents of LPL, PPARγ, and FAS in abdominal fat were decreased with the folic acid supplmented diets (P < 0.01). These findings reveal the effects of folic acid supplemention on gene expression in liver of broilers, which can provide information for understanding the molecular mechanisms of folic acid regulating liver lipid metabolism.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Ningbo Zhang
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Yan Wang
- School of Life Sciences, Linyi University, Linyi, China
| | - Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Xiuling Li
- School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
13
|
Lu C, Liu Y, Li J, Liu L, Du G. Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis. J Microbiol Biotechnol 2021; 31:154-162. [PMID: 31893598 PMCID: PMC9705839 DOI: 10.4014/jmb.1910.10069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 μg/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 μg/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 μg/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 μg/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 μg/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.
Collapse
Affiliation(s)
- Chuanchuan Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China,Corresponding authors Y.Liu Phone: +86-510-85197117 Fax: +86-510-85918309 E-mail:
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China,G.Du Phone: +86-510-85918309 Fax: +86-510-85918309 E-mail:
| |
Collapse
|
14
|
Koseki K, Maekawa Y, Bito T, Yabuta Y, Watanabe F. High-dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans. Redox Biol 2020; 37:101724. [PMID: 32961438 PMCID: PMC7509461 DOI: 10.1016/j.redox.2020.101724] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Using Caenorhabditis elegans as a model animal, we evaluated the effects of chronical supplementation with high-dose folic acid on physiological events such as life cycle and egg-laying capacity and folate metabolism. Supplementation of high-dose folic acid significantly reduced egg-laying capacity. The treated worms contained a substantial amount of unmetabolized folic acid and exhibited a significant downregulation of the mRNAs of cobalamin-dependent methionine synthase reductase and 5,10-methylenetetrahydrofolate reductase. In vitro experiments showed that folic acid significantly inhibited the activity of cobalamin-dependent methionine synthase involved in the metabolism of both folate and methionine. In turn, these metabolic disorders induced the accumulation of unmetabolized homocysteine, leading to severe oxidative stress in worms. These results were similar to the phenomena observed in mammals during folate deficiency. High-dose folic acid supplementation reduced egg-laying ability in worms. Substantial amounts of folic acid and homocysteine were accumulated in the worms. The mRNA expression of methylenetetrahydrofolate reductase was reduced in the treated worms. Folic acid was a potent inhibitor of cobalamin-dependent methionine synthase in in vitro tests. High-dose folic acid supplementation in worms resulted in severe oxidative stress.
Collapse
Affiliation(s)
- Kyohei Koseki
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukina Maekawa
- Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukinori Yabuta
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Fumio Watanabe
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan.
| |
Collapse
|
15
|
Williams BA, McCartney H, Adams E, Devlin AM, Singer J, Vercauteren S, Wu JK, Karakochuk CD. Folic acid supplementation in children with sickle cell disease: study protocol for a double-blind randomized cross-over trial. Trials 2020; 21:593. [PMID: 32600389 PMCID: PMC7325072 DOI: 10.1186/s13063-020-04540-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
Background Sickle cell disease (SCD) is a genetic disorder which causes dysfunctional red blood cells (RBC) and is thought to increase requirements for folate, an essential B vitamin, due to increased RBC production and turnover in the disease. High-dose supplementation with 1–5 mg/d folic acid, synthetic folate, has been the standard recommendation for children with SCD. There is concern about whether children with SCD need such high doses of folic acid, following mandatory folic acid fortification of enriched grains in Canada, and advancements in medical therapies which extend the average lifespan of RBCs. In animal and human studies, high folic acid intakes (1 mg/d) have been associated with accelerated growth of some cancers, and the biological effects of circulating unmetabolized folic acid (UMFA), which can occur with doses of folic acid ≥ 0.2 mg/d, are not fully understood. The objective of this study is to determine efficacy of, and alterations in folate metabolism from high-dose folic acid in children with SCD during periods of folic acid supplementation versus no supplementation. Methods In this double-blind randomized controlled cross-over trial, children with SCD (n = 36, aged 2–19 years) will be randomized to either receive 1 mg/d folic acid, the current standard of care, or a placebo for 12 weeks. After a 12-week washout period, treatments will be reversed. Total folate concentrations (serum and RBC), different folate forms (including UMFA), folate-related metabolites, and clinical outcomes will be measured at baseline and after treatment periods. The sum of the values measured in the two periods will be calculated for each subject and compared across the two sequence groups by means of a test for independent samples for the primary (RBC folate concentrations) and secondary (UMFA) outcomes. Dietary intake will be measured at the beginning of each study period. Discussion As the first rigorously designed clinical trial in children with SCD, this trial will inform and assess current clinical practice, with the ultimate goal of improving nutritional status of children with SCD. Trial registration ClinicalTrials.govNCT04011345. Registered on July 8, 2019
Collapse
Affiliation(s)
- Brock A Williams
- Food, Nutrition, and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.,BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Heather McCartney
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Erin Adams
- Department of Pharmacy, BC Children's Hospital, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Angela M Devlin
- BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.,Department of Pediatrics, Faculty of Medicine, The University of British Columbia, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Joel Singer
- School of Population and Public Health, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,The Centre for Health Evaluation and Outcome Science, St. Paul's Hospital, 588 - 1081 Burrard Street, Vancouver, British Columbia, V6Z 1Y6, Canada
| | - Suzanne Vercauteren
- BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.,Department of Pediatrics, Faculty of Medicine, The University of British Columbia, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada.,Department of Pathology and Laboratory Medicine, BC Children's Hospital, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - John K Wu
- BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.,Department of Pediatrics, Faculty of Medicine, The University of British Columbia, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Crystal D Karakochuk
- Food, Nutrition, and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada. .,BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
16
|
Steluti J, Miranda AM, De Carli E, Palchetti CZ, Fisberg RM, Marchioni DML. Unmetabolized folic acid is associated with TNF-α, IL-1β and IL-12 concentrations in a population exposed to mandatory food fortification with folic acid: a cross-sectional population-based study in Sao Paulo, Brazil. Eur J Nutr 2020; 60:1071-1079. [PMID: 32588217 DOI: 10.1007/s00394-020-02307-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The study assessed associations between inflammatory markers, as cytokines, adhesion molecules and unmetabolized folic acid (UMFA) among a population exposed to mandatory fortification. METHODS Data were collected from a cross-sectional population-based survey (n = 302) conducted in São Paulo City, Brazil. UMFA was assayed by a modified affinity-HPLC method with electrochemical detection to measure the different forms of the folate in plasma. We used a commercial test kit to analyze cytokines and adhesion molecules. Multiple logistic regressions were applied to investigate the association between inflammatory markers and UMFA. Multiple models were adjusted for sex, age, self-reported skin color, BMI and smoking status. RESULTS The prevalence of detectable UMFA in this population was high (81.2%), with median concentration of 1.67 nmol/L. The odds ratios (95% CIs) for having higher immunological markers levels among individuals in the highest tertile of UMFA were 0.44 (0.24; 0.81) for TNF-α, 0.92 (0.49; 1.75) for CRP, 1.32 (0.70; 2.48) for ICAM, 0.99 (0.54; 1.81) for VCAM, 0.45 (0.25; 0.83) for IL-1β, 0.74 (0.40; 1.38) for IL-6, 1.34 (0.73; 2.44) for IL-8, 0.65 (0.36; 1.18) for IL-10 and 0.49 (0.27; 0.89) for IL-12. CONCLUSION UMFA concentrations were inversely associated with elevated proinflammatory markers (TNF-α, IL-1β and IL-12). These results signalize a link between folate metabolism and the inflammatory status of adults in an apparently folate-replete population.
Collapse
Affiliation(s)
- Josiane Steluti
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil. .,Public Policies and Collective Health Department, Health and Society Institute, Federal University of Sao Paulo, Santos, 11015-020, Brazil.
| | - Andreia Machado Miranda
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Eduardo De Carli
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Cecília Zanin Palchetti
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | | |
Collapse
|
17
|
Design, synthesis and biological activity of N 5-substituted tetrahydropteroate analogs as non-classical antifolates against cobalamin-dependent methionine synthase and potential anticancer agents. Eur J Med Chem 2020; 190:112113. [PMID: 32058237 DOI: 10.1016/j.ejmech.2020.112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Cobalamin-dependent methionine synthase (MetH) is involved in the process of tumor cell growth and survival. In this study, a novel series of N5-electrophilic substituted tetrahydropteroate analogs without glutamate residue were designed as non-classical antifolates and evaluated for their inhibitory activities against MetH. In addition, the cytotoxicity of target compounds was evaluated in human tumor cell lines. With N5-chloracetyl as the optimum group, further structure research on the benzene substituent and on the 2,4-diamino group was also performed. Compound 6c, with IC50 value of 12.1 μM against MetH and 0.16-6.12 μM against five cancer cells, acted as competitive inhibitor of MetH. Flow cytometry studies indicated that compound 6c arrested HL-60 cells in the G1-phase and then inducted late apoptosis. The molecular docking further explained the structure-activity relationship.
Collapse
|
18
|
Presence of circulating folic acid in plasma and its relation with dietary intake, vitamin B complex concentrations and genetic variants. Eur J Nutr 2018; 58:3069-3077. [DOI: 10.1007/s00394-018-1852-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
|
19
|
One-Carbon Metabolism and Lipid Metabolism in DOHaD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:3-9. [DOI: 10.1007/978-981-10-5526-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.
Collapse
Affiliation(s)
- Victoria Sid
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Yaw L Siow
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,c Agriculture and Agri-Food Canada, Winnipeg, MB R3C 1B2, Canada
| | - Karmin O
- a St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,d Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
21
|
Intake and Biomarkers of Folate and Risk of Cancer Morbidity in Older Adults, NHANES 1999-2002 with Medicare Linkage. PLoS One 2016; 11:e0148697. [PMID: 26862893 PMCID: PMC4749334 DOI: 10.1371/journal.pone.0148697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
Background After the 1998 mandatory folic acid fortification of enriched cereal-grain products in the U.S., safety concerns were raised that excess consumption of folic acid and high blood folate biomarkers detected in adults may increase the risk of certain types of cancer. Methods Baseline data from about 1400 participants in the National Health and Nutrition Examination Survey (NHANES) 1999–2002, aged ≥ 57 years were linked to Medicare and mortality files through December 31, 2007. Using cox proportional hazards regression models, we assessed associations between dietary folate equivalents, folate biomarkers, the presence of unmetabolized folic acid and, overall cancer incidence. Results With 8,114 person-years of follow-up (median follow-up, 6.3 years), about 125 cancer cases were identified. After adjusting for confounders, the hazard ratios of the highest quartile versus the second quartile of RBC folate and dietary folate equivalents were 0.54 (95% CI: 0.31–0.93) and 0.54 (95% CI: 0.30–0.95), respectively. Additionally, serum and RBC folate as continuous variables were inversely and significantly associated with cancer incidence (p<0.01). No significant associations were observed between the presence of unmetabolized folic acid, intake of naturally-occurring food folate or folic acid separately, and cancer incidence. Conclusions High total folate intake and biomarkers in older adults appear to be protective against cancer in post-folic acid fortification years. This study does not show a negative impact of current level of folic acid fortification on cancer risk. As this is one of the few studies to examine the association between unmetabolized folic acid and cancer outcome, a study including a larger nationwide representative sample of the U.S. population is needed.
Collapse
|