1
|
Suyanto E, Gorantla JN, Santi M, Fatchiyah F, Ketudat-Cairns M, Talabnin C, Ketudat Cairns JR. Enzymatic synthesis of phenolic acid glucosyl esters to test activities on cholangiocarcinoma cells. Appl Microbiol Biotechnol 2024; 108:69. [PMID: 38183488 DOI: 10.1007/s00253-023-12895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024]
Abstract
While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (β-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that β-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • β-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.
Collapse
Affiliation(s)
- Eko Suyanto
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Jaggaiah N Gorantla
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santi
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Fatchiyah Fatchiyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| |
Collapse
|
2
|
Sadia H, Qureshi IZ, Naveed M, Aziz T, Alharbi M, Alasmari AF, Albekairi TH. Natural AI-based drug designing by modification of ascorbic acid and curcumin to combat buprofezin toxicity by using molecular dynamics study. Sci Rep 2024; 14:28445. [PMID: 39557884 PMCID: PMC11574189 DOI: 10.1038/s41598-024-79275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Buprofezin, a widely employed insecticide in agricultural practices, has elicited significant apprehension due to its prospective deleterious effects on non-target organisms and ecological systems. Its enduring presence in terrestrial and aquatic environments presents potential hazards to human health and biodiversity, thereby necessitating the investigation of safer alternatives or strategies for mitigation. The research focuses on five principal receptors: CAT (Catalase), IL-1B (Interleukin-1 Beta), IL-6 (Interleukin-6), TNF-alpha (Tumor Necrosis Factor-alpha), and SOD (Superoxide Dismutase). These receptors are integral to the processes of inflammation, oxidative stress, and immune responses, rendering them critical for comprehending the biochemical pathways affected by toxic substances and the potential for protective interventions. The investigation employed WADDAICA (Webserver-Aided Drug Design by Artificial Intelligence) to formulate AI-driven pharmaceuticals, complemented by ADME (Absorption, Distribution, Metabolism, Excretion) evaluations, Molecular Dynamics (MD) simulations, as well as MMGBSA and MMPBSA methodologies to examine the stability and interactions of the compounds with the designated receptors. Docking experiments disclosed that the interaction of CAT with the ascorbic acid AI-derived drug demonstrated a binding energy of -7.1 kcal/mol, signifying a robust interaction, while the complex of IL-1B with the curcumin AI-derived drug exhibited a binding energy of -7.3 kcal/mol. The ADME analysis revealed favorable gastrointestinal absorption and aqueous solubility for both compounds. Furthermore, the drug-likeness metrics were deemed satisfactory, with no breaches of Lipinski's rule of five, suggesting promising potential for subsequent advancement as therapeutic agents.
Collapse
Affiliation(s)
- Haleema Sadia
- Laboratory of Animal and Human Physiology, Department of Zoology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, 47132, Greece.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 428] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
4
|
Mehta N, Pokharna P, Shetty SR. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr Health 2023; 29:415-433. [PMID: 36445072 PMCID: PMC9713540 DOI: 10.1177/02601060221139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: The discovery of vitamin C (ascorbic acid) is related to the ancient history of persistent research on the origins of the haemorrhagic disease scurvy. Vitamin C is an important nutrient that aids in a variety of biological and physiological processes. Scientists have been researching the function of vitamin C in the prevention and ailment of sepsis and pneumonia for decades. This has created a potential platform for applying these results to individuals suffering from severe coronavirus infection (COVID-19). Vitamin C's ability to activate and enhance the immune system makes it a promising treatment in the present COVID-19 pandemic. Vitamin C also aids in the activation of vitamin B, the production of certain neurotransmitters, and the transformation of cholesterol into bile acids. Hence, vitamin C is used for the treatment of many diseases. Aim: This review highlights the Vitamin C investigations that are performed by various researchers on patients with COVID 19 infection, the clinical studies and their observations. The authors have additionally updated information on the significance of vitamin C insufficiency, as well as its relevance and involvement in diseases such as cancer, wound healing, iron deficiency anaemia, atherosclerosis and neurodegenerative disorders. Here, we discuss them with the references. Methods: The method used in order to perform literature search was done using SciFinder, PubMed and ScienceDirect. Results: There is a potential role of vitamin C in various diseases including neurodegenerative disorders, COVID-19 and other diseases and the results are highlighted in the review with the help of clinical and preclinical data. Conclusion: More research on vitamin C and the undergoing clinical trials might prove a potential role of vitamin C in protecting the population from current COVID-19 pandemic.
Collapse
Affiliation(s)
- Nikhil Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Purvi Pokharna
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Saritha R Shetty
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| |
Collapse
|
5
|
Fahmy S, Nasr S, Ramzy A, Dawood AS, Abdelnaser A, Azzazy HMES. Cytotoxic and Antioxidative Effects of Geranium Oil and Ascorbic Acid Coloaded in Niosomes against MCF-7 Breast Cancer Cells. ACS OMEGA 2023; 8:22774-22782. [PMID: 37396262 PMCID: PMC10308595 DOI: 10.1021/acsomega.3c01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Geranium oil (GO) has antiproliferative, antiangiogenic, and anti-inflammatory properties. Ascorbic acid (AA) is reported to inhibit the formation of reactive oxygen species, sensitize cancer cells, and induce apoptosis. In this context, AA, GO, and AA-GO were loaded into niosomal nanovesicles to ameliorate the physicochemical properties of GO and improve its cytotoxic effects using the thin-film hydration technique. The prepared nanovesicles had a spherical shape with average diameters ranging from 200 to 300 nm and exhibited outstanding surface negative charges, high entrapment efficiencies, and a controlled sustained release over 72 h. Entrapping AA and GO in niosomes resulted in a lower IC50 value than free AA and GO when tested on MCF-7 breast cancer cells. In addition, flow cytometry analysis showed higher apoptotic cells in the late apoptotic stage upon treating the MCF-7 breast cancer cells with AA-GO niosomal vesicles compared to treatments with free AA, free GO, and AA or GO loaded into niosomal nanovesicles. Assessing the antioxidant effect of the free drugs and loaded niosomal nanovesicles showed enhanced antioxidant activity of AA-GO niosomal vesicles. These findings suggest the AA-GO niosomal vesicles as a potential treatment strategy against breast cancer, possibly through scavenging free radicals.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, Cairo 11835, Egypt
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Soad Nasr
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Asmaa Ramzy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Abdelhameed S. Dawood
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Anwar Abdelnaser
- Institute
of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
6
|
Wang X, Gao K, Ma J, Liu F, Wang X, Li D, Yang M. Analysis of the chloride ion removal mechanism from simulated wastewater by discarded vitamin tablets. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2483-2494. [PMID: 36450668 DOI: 10.2166/wst.2022.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vitamin (VM) tablets are often discarded or incinerated as medical waste, and untreated highly chlorinated wastewater is discharged, polluting the environment. In this study, Cu2+ was reduced by vitamin C (VC, a component of VM), and the precipitate formed by the reaction of its product with Cl- in water was used to remove Cl- from simulated wastewater. This allows for the resourceful use of waste VM, while also achieving the goal of dechlorinating wastewater. Meanwhile, the effect of various parameters on dechlorination was studied, and the dechlorination mechanism was analyzed. According to the results, the removal rate of Cl- increased first and then decreased with pH, removal time and reaction temperature. Using VC in VM to dechlorinate simulated wastewater, the removal rate of Cl- was 94.31% under optimum conditions: pH 2.5, temperature 30 °C and reaction time 10 minutes. According to the dechlorination process, it can be inferred that Cu2+ is reduced to Cu+ by VC, and Cu+ and Cl- coprecipitate to remove Cl-. Therefore, it is feasible to use discarded VM to treat high concentration chlorine-containing wastewater.
Collapse
Affiliation(s)
- Xing Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kangning Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jingyi Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xi Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dengxin Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ming Yang
- Research Center of Analysis & Measurement, Donghua University, Shanghai 201620, China E-mail:
| |
Collapse
|
7
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
8
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
9
|
da Silva GB, Yamauchi MA, Bagatini MD. Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem 2022; 478:949-966. [PMID: 36168075 DOI: 10.1007/s11010-022-04564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
A number of studies have shown that oxidative stress is related to the pathogenesis of several immunological diseases, such as Hashimoto's thyroiditis (HT), although there is no plausible mechanism to explain it. Thus, we aimed at hypothesizing and providing some possible mechanisms linking oxidative stress to autoimmunity aspects and its implications for HT, as well as adjuvant therapeutic proposals to mitigate the deleterious effects. Our hypothesis is that deficient eating habits, autoimmune regulator gene predisposing gene, dysbiosis and molecular mimicry, unfolded proteins and stress in the endoplasmic reticulum, and thymus involution appear to be the main potential factors leading to HT oxidative stress. Likewise, we show that the use of minerals selenium and zinc, vitamins D and C, as well as probiotics, can be interesting adjuvant therapies for the control of oxidative damage and poor prognosis of HT. Further clinical trials are needed to understand the real beneficial and side effects of these supplements.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil.
| |
Collapse
|
10
|
Wang J, Fan Y, Qian J, Wang S, Li Y, Xu M, Chen F, Wang J, Qiu Y, Lin L, He B, Liu F. Relationship Between Dietary Fiber and Vitamin C Intake and Oral Cancer. Front Public Health 2022; 10:880506. [PMID: 35646749 PMCID: PMC9133876 DOI: 10.3389/fpubh.2022.880506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Dietary fiber and vitamin C has been reported to play a possible role in tumorigenesis. However, few studies have estimated their association with oral cancer risk. In this project, we investigated the relationship between dietary fiber and vitamin C and oral cancer risk in adults in Southern China. Methods 382 patients newly diagnosed with oral cancer were matched to 382 hospital derived controls by frequency matching in age and sex. Pre-diagnostic consumption of dietary fiber and vitamin C intake were measured through food frequency questionnaire. Association between nutrients intake and oral cancer risk were evaluated by logistic regression. OR value and 95% confidence interval was calculated. Results Intake of dietary fiber and vitamin C was significantly lower in oral cancer patients (8.15 g/day) than in control participants (8.88 g/day). Increased dietary fiber or vitamin C intake was linked to a decreased incidence of OC after adjustment of age, marital status, residence, BMI, occupation, education, tobacco smoking, alcohol consumption and family history of cancer Ptrend< 0.001). Compared with the lowest tertile, the adjusted OR of the top tertile of dietary fiber was 0.47 (95 % CI 0.32, 0.68). While the adjusted OR of the highest tertile was 0.60 (95 % CI 0.42, 0.87) compared with the lowest tertile of vitamin C. Conclusions Dietary intake of fiber and vitamin C were lower in oral cancer patients than in control participants. Dietary fiber and vitamin C were inversely related to risk of oral cancer risk.
Collapse
Affiliation(s)
- Jing Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yi Fan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jiawen Qian
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Sijie Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanni Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Mingming Xu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
- Baochang He
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Fengqiong Liu
| |
Collapse
|
11
|
Atoum MF, Alzoughool FE, Al-Mazaydeh ZA, Rammaha MS, Tahtamouni LH. Vitamin B12 enhances the antitumor activity of 1,25-dihydroxyvitamin D3 via activation of caspases and targeting actin cytoskeleton. Tumour Biol 2022; 44:17-35. [PMID: 35180142 DOI: 10.3233/tub-211536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is an effective anticancer agent, and when combined with other agents it shows superior activities. Vitamin B12 has been shown to contribute to increasing the effectiveness of anticancer drugs when used in combination. Thus, the current study aimed at investigating the anticancer potential of the combination of 1,25(OH)2D3 and vitamin B12. METHODS MTT assay was used to determine the cytotoxic activity of combining 1,25(OH)2D3 and vitamin B12 against six different cancer cell lines and one normal cell line. The surviving fraction after clonogenic assay was measured, and the effects of 1,25(OH)2D3/B12 combination on the activity of different caspases, cell adhesion, actin cytoskeleton, cell morphology, and percentage of polarized cells were evaluated. RESULTS Vitamin B12 did not cause cytotoxicity, however, it enhanced the cytotoxicity of 1,25(OH)2D3 against cancer cells. The cytotoxic effects of 1,25(OH)2D3 and its combination with vitamin B12 was not evident in the normal mammary MCF10A cell line indicating cancer cell-specificity. The cytotoxic effects of 1,25(OH)2D3/B12 combination occurred in a dose-dependent manner and was attributed to apoptosis induction which was mediated by caspase 4 and 8. Moreover, 1,25(OH)2D3/B12-treated cells showed enhanced inhibition of clonogenic tumor growth, reduced cell adhesion, reduced cell area, reduced percentage of cell polarization, and disorganized actin cytoskeleton resulting in reduced migratory phenotype when compared to cells treated with 1,25(OH)2D3 alone. CONCLUSION 1,25(OH)2D3 and vitamin B12 exhibited synergistic anticancer effects against different cancer cell lines. The combination therapy of 1,25(OH)2D3 and vitamin B12 may provide a potential adjunctive treatment option for some cancer types.
Collapse
Affiliation(s)
- Manar F Atoum
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Foad E Alzoughool
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, The Hashemite University, Zarqa, Jordan.,Faculty of Health Sciences, Fujairah Women's College, Higher Colleges Technology, UAE
| | - Zainab A Al-Mazaydeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Majdoleen S Rammaha
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan.,Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
13
|
Narváez‐Cuenca C, Cuéllar‐Cepeda F, Cobos‐de‐Rangel O, Mosquera‐Vásquez T. Effects of purchase source (
local fresh
or main
food markets
) on the vitamin C and provitamin A carotenoids contents of some horticultural foods. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos‐Eduardo Narváez‐Cuenca
- Departamento de Química Food Chemistry Research Group Facultad de Ciencias Universidad Nacional de Colombia Bogotá Colombia
| | - Fabio‐Alexander Cuéllar‐Cepeda
- Departamento de Química Food Chemistry Research Group Facultad de Ciencias Universidad Nacional de Colombia Bogotá Colombia
| | - Olga Cobos‐de‐Rangel
- Facultad de Medicina Departamento de Nutrición y Dietética Universidad Nacional de Colombia, sede Bogotá Bogotá Colombia
| | - Teresa Mosquera‐Vásquez
- Facultad de Ciencias Agrarias Departamento de Agronomía Universidad Nacional de Colombia, sede Bogotá Bogotá Colombia
| |
Collapse
|
14
|
Klepo L, Ascalic M, Medunjanin D, Copra-Janicijevic A. A new spectrofluorimetric method for the determination of ascorbic acid with bromocresol purple in pharmaceutical samples. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Based on the interaction between ascorbic acid and bromocresol purple, a new simple, straightforward, and quick method for the quantification of ascorbic acid is proposed. The procedure is based on the determined quenching effect of ascorbic acid on the natural fluorescence signal of bromocresol purple in the reaction between ascorbic acid and bromocresol purple in phosphate buffer solution (pH 6). The reduction of bromocresol purple fluorescence intensity is detected at 641 nm, while excitation occurs at 318 nm. The linear relationship between the reduced fluorescence intensity of bromocresol purple and the concentration of ascorbic acid is in the range 4.65 × 10–5 to 4.65 × 10–6 mol L−1 (R2 = 0.9964), with the detection limit of 8.77 × 10–7 mol L−1 and quantification limit of 2.35 × 10–5 mol L−1. The findings in this study further show that the new method provides good precision and repeatability, as well as satisfactory recovery values in terms of accuracy. The new method is tested on fifteen samples with different amounts of ascorbic acid and additional components. The effects of interfering components such as citrus bioflavonoids, citric acid, folic acid, paracetamol, calcium, and magnesium carbonate on the intensity of fluorescence of bromocresol purple are also investigated. The effects of interfering components such as citrus bioflavonoids (routine and hesperidin), citric acid, folic acid, paracetamol, calcium, and magnesium carbonate on the intensity of fluorescence of bromocresol purple are also investigated. The results of iodometric titration point out that the new method is effective for the determination of ascorbic acid in pharmaceutical samples.
Article Highlights
A new spectrofluorimetric method for determination of ascorbic acid in pharmaceutical samples using bromocresol purple.
Determination of optimal parameters for ascorbic acid determination in a variety of pharmaceutical samples.
Examination of the influence of additional substances in the pharmaceutical samples on the analysis.
Collapse
|
15
|
Alam W, Ullah H, Santarcangelo C, Di Minno A, Khan H, Daglia M, Arciola CR. Micronutrient Food Supplements in Patients with Gastro-Intestinal and Hepatic Cancers. Int J Mol Sci 2021; 22:8014. [PMID: 34360782 PMCID: PMC8347237 DOI: 10.3390/ijms22158014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis is the second most common cause of mortality across all types of malignancies, followed by hepatic and stomach cancers. Chemotherapy and radiotherapy are key approaches to treating cancer patients, but these carry major concerns, such as a high risk of side effects, poor accessibility, and the non-selective nature of chemotherapeutics. A number of natural products have been identified as countering various forms of cancer with fewer side effects. The potential impact of vitamins and minerals on long-term health, cognition, healthy development, bone formation, and aging has been supported by experimental and epidemiological studies. Successful treatment may thus be highly influenced by the nutritional status of patients. An insufficient diet could lead to detrimental effects on immune status and tolerance to treatment, affecting the ability of chemotherapy to destroy cancerous cells. In recent decades, most cancer patients have been taking vitamins and minerals to improve standard therapy and/or to decrease the undesirable side effects of the treatment together with the underlying disease. On the other hand, taking dietary supplements during cancer therapy may affect the effectiveness of chemotherapy. Thus, micronutrients in complementary oncology must be selected appropriately and should be taken at the right time. Here, the potential impact of micronutrients on gastro-intestinal and hepatic cancers is explored and their molecular targets are laid down.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
16
|
Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M. Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model. Biomed Pharmacother 2021; 134:111140. [PMID: 33360052 DOI: 10.1016/j.biopha.2020.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine and theobromine are abundantly present in tea and cocoa, respectively. This study was performed to assess the chemopreventive effects of these phytochemicals, alone or together, on dimethylhydrazine (DMH)-induced colon cancer. Thirty male Wistar rats were divided into five groups and subcutaneously injected with saline (negative control group) or 30 mg/kg DMH (the other groups) two times/week for 12 weeks. The negative and positive control animals were orally treated with drinking water, and the other groups were gavaged with theanine (400 mg/kg), theobromine (100 mg/kg), or their mixture for two weeks before and throughout the injection period. At the end of the study, the morphological and histopathological features, Ki-67 proliferation marker, and the expression of Akt/mTOR, JAK2/STAT3, MAPK/ERK, and TGF-β/Smad pathways were investigated. Theanine and theobromine, alone or together, reduced the number of cancerous and precancerous lesions, the volume of tumors, the Ki-67 immunostaining, and the expression of Akt/mTOR and JAK2/STAT3 oncogenic pathways. The simultaneous treatment was more effective in the down-regulation of Akt and mTOR compared to either theanine or theobromine alone. Theobromine administration also caused more inhibitory effects on the Ki-67 and Akt/mTOR expression than theanine. Besides, all dietary interventions increased the mRNA and protein expression of Smad2. In conclusion, theanine and theobromine, alone and in combination, inhibited tumorigenesis through down-regulation of the Akt/mTOR and JAK2/STAT3 pathways and an increment of the Smad2 tumor suppressor. The inhibition of the Akt/mTOR pathway was more pronounced by simultaneous treatment.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021; 11:biom11010087. [PMID: 33445656 PMCID: PMC7828105 DOI: 10.3390/biom11010087] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Plant-derived exosome-like nanovesicles (EPDENs) have recently been isolated and evaluated as potential bioactive nutraceutical biomolecules. It has been hypothesized that EPDENs may exert their activity on mammalian cells through their specific cargo. In this study, we isolated and purified EPDENs from the strawberry juice of Fragaria x ananassa (cv. Romina), a new cultivar characterized by a high content of anthocyanins, folic acid, flavonols, and vitamin C and an elevated antioxidant capacity. Fragaria-derived EPDENs were purified by a series of centrifugation and filtration steps. EPDENs showed size and morphology similar to mammalian extracellular nanovesicles. The internalization of Fragaria-derived EPDENs by human mesenchymal stromal cells (MSCs) did not negatively affect their viability, and the pretreatment of MSCs with Fragaria-derived EPDENs prevented oxidative stress in a dose-dependent manner. This is possibly due to the presence of vitamin C inside the nanovesicle membrane. The analysis of EPDEN cargo also revealed the presence of small RNAs and miRNAs. These findings suggest that Fragaria-derived EPDENs may be considered nanoshuttles contained in food, with potential health-promoting activity.
Collapse
Affiliation(s)
- Francesca Perut
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Laura Roncuzzi
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Sofia Avnet
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Annamaria Massa
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40100 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Francesca Giampieri
- Department of Clinical Specialistic and Odontostomatological Sciences, University Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Nicola Baldini
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366566
| |
Collapse
|
18
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
19
|
Minutolo M, Chiaiese P, Di Matteo A, Errico A, Corrado G. Accumulation of Ascorbic Acid in Tomato Cell Culture: Influence of the Genotype, Source Explant and Time of In Vitro Cultivation. Antioxidants (Basel) 2020; 9:antiox9030222. [PMID: 32156031 PMCID: PMC7139686 DOI: 10.3390/antiox9030222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
The production and commercialization of natural antioxidants is gaining increasing importance due to their wide range of biological effects and applications. In vitro cell culture is a valuable source of plant bioactive compounds, especially those highly dependent on environmental factors. Nonetheless, research on the accumulation in plant cultured cells of water-soluble antioxidant vitamins, such as the ascorbic acid (AsA), is very limited. Tomato fruits are a main dietary source of vitamin C and in this work, we explored the potential of in vitro cultured cells for AsA accumulation. Specifically, using a full factorial design, we examined the effect of the source explant, the time in tissue culture and the genetic difference present in two Introgression Line (IL7-3 and IL12-4) that harbor Quantitative Trait Loci (QTLs) for ascorbic acid in fruits. Moreover, we performed an expression analysis of genes involved in AsA metabolism to highlight the molecular mechanisms that can account for the difference between fruit explants and calli. Our work indicated that cultured tomato cells accumulate AsA well beyond the amount present in fruits and that the three factors under investigation and their interaction significantly influence AsA accumulation. The time in tissue culture is the main single factor and, different from the expectations for secondary metabolites, explants from unripe, mature green fruits provided the highest increase in AsA. Moreover, in controlled conditions the genetic differences between the ILs and the control genotype are less relevant for calli cultivated for longer time. Our work showed the potential of tomato cell culture to produce AsA and prompt further refinements towards its possible large-scale exploitation.
Collapse
|
20
|
Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102117. [PMID: 31676375 DOI: 10.1016/j.nano.2019.102117] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
Abstract
Vitamin C (Vit C) is a potent antioxidant with several applications in the cosmetic and pharmaceutical fields. However, the biggest challenge in the utilization of Vit C is to maintain its stability and improve its delivery to the active site. Several strategies have been developed such as: controlling the oxygen levels during formulation and storage, low pH, reduction of water content in the formulation and the addition of preservative agents. Additionally, the utilization of derivatives of Vit C and the development of micro and nanoencapsulated delivery systems have been highlighted. In this article, the multiple applications and mechanisms of action of vitamin C will be reviewed and discussed, as well as the new possibilities of delivery and improvement of stability.
Collapse
Affiliation(s)
- Amanda Costa Caritá
- Department of Translational Medicine-Federal University of São Paulo, Brazil.
| | - Bruno Fonseca-Santos
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Jemima Daniela Shultz
- Department of Translational Medicine-Federal University of São Paulo, Brazil; Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Marlus Chorilli
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|
21
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
22
|
Wang P, Qin X, Liu M, Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res 2018; 133:9-20. [PMID: 29719203 DOI: 10.1016/j.phrs.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The metabolites of vitamin D3 (VD3) mediated by different cytochrome P450 (CYP) enzymes, play fundamental roles in many physiological processes in relation to human health. These metabolites regulate a variety of cellular signal pathways through the direct binding of activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Thus, the polymorphisms of VDR and VD3 metabolizing enzymes lead to differentiated efficiency of VD3 and further affect serum VD3 levels. Moreover, VDR activation is demonstrated to inhibit the growth of various cancers, including colorectal cancer. However, excessive intake of vitamin D may lead to hypercalcemia, which limits the application of vitamin D tremendously. In this review, we have summarized the advances in VD3 research, especially the metabolism map of VD3 and the molecular mechanisms of inhibiting growth and inducing differentiation in colorectal cancer mediated by VDR-associated cellular signal pathways. The relationship between VDR polymorphism and the risk of colorectal cancer is also illustrated. In particular, novel pathways of the activation of VD3 started by CYP11A1 and CYP3A4 are highlighted, which produce several noncalcemic and antiproliferative metabolites. At last, the hypothesis is put forward that further research of CYP-mediated VD3 metabolites may develop therapeutic agents for colorectal cancer without resulting in hypercalcemia.
Collapse
Affiliation(s)
- Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Sciences Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
23
|
Kurokawa H, Ito H, Matsui H. Monascus purpureus induced apoptosis on gastric cancer cell by scavenging mitochondrial reactive oxygen species. J Clin Biochem Nutr 2017; 61:189-195. [PMID: 29203960 PMCID: PMC5703783 DOI: 10.3164/jcbn.17-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Monascus purpureus is a red dye derived from yeast rice and has been used as color additives for food in East Asia. Monascus purpureus consists of several bioactive components. Some of these components work as a radical scavenger, thus monascus purpureus would also eliminate reactive oxygen species. Cancer cells maintain the high level of reactive oxygen species than normal cell and are death by imbalance in pro-oxidant/antioxidant homeostasis. In this study, we investigated whether monascus purpureus induced cancer specific cell death by scavenging reactive oxygen species. Compared to normal cell, monascus purpureus had cancer specific cytotoxicity. Monascus purpureus and lovastatin, its component, scavenged free radicals caused by a xanthine/xanthine oxidase system, thus Monascus purpureus is likely to scavenge reactive oxygen species by a synergistic effect between lovastatin and other components. Monascus purpureus also decreased reactive oxygen species derived from mitochondria in cancer cells, and cellular apoptosis was induced via activation of caspase-9. Induction of apoptosis by reduction of reactive oxygen species generation decreased acid ceramidase, and this mechanism could be involved with increasing ceramide accumulation in cells.
Collapse
Affiliation(s)
- Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiromu Ito
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
24
|
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells. Front Pharmacol 2017; 8:38. [PMID: 28210221 PMCID: PMC5288649 DOI: 10.3389/fphar.2017.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Henry J Greten
- Heidelberg School of Chinese MedicineHeidelberg, Germany; Abel Salazar Biomedical Sciences Institute, University of PortoPorto, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|