1
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Liu Y, Lin XX, Hu SS, Zheng ED, Ye Y, Xu BB, Wu LC. The microbiota comparative analysis of the characteristics between colorectal adenomatous polyps and normal mucosal intestinal. Eur J Gastroenterol Hepatol 2024; 36:1305-1313. [PMID: 39166388 DOI: 10.1097/meg.0000000000002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
OBJECTIVE The aim of this study is to systematically examine and compare the characteristics distinguishing colorectal adenomatous polyps from normal mucosal intestinal microbiota. METHODS A total of 30 specimens were obtained from patients diagnosed with colorectal adenomatous polyps (adenoma group) who underwent endoscopic removal at Wenzhou People's Hospital between September 2021 and November 2021. Concurrently, 30 normal mucosal specimens were collected from patients without adenomatous polyps (control group). Subsequently, microbiome total DNA extraction was carried out, followed by PCR amplification targeting the V3-V4 region of the 16S rDNA. High-throughput sequencing was conducted using the Illumina MiSeq platform. Subsequent to sequencing, bioinformatics analysis was used to assess the diversity, composition, and functional aspects of the intestinal microbiota in both study groups. RESULTS A notable dissimilarity in the microbiota structure was identified, specifically within the transverse colon, between these two groups ( P < 0.05). Species composition analysis revealed that Escherichia , Fusobacterium , and Bacteroides were predominant bacteria in both groups, with Escherichia and Enterobacter displaying significant differences at the genera level between the control group and the adenoma group ( P < 0.05). Correlation analysis and functional prediction demonstrated substantial disparities in interactions among dominant intestinal microbial genera within patients from both groups. Additionally, it was discovered that the intestinal microbiomes in patients in the adenoma group exhibited a significantly higher pathogenic potential. CONCLUSION Upon conducting a comprehensive analysis, it was discerned that the microbiota present in the transverse colon of the control group exhibited distinctive characteristics that may contribute to the maintenance of intestinal health.
Collapse
Affiliation(s)
- Ya Liu
- Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Anusha S, Negi PS. Tenebrio molitor (Mealworm) protein as a sustainable dietary strategy to improve health span in D-galactose-induced aged mice. Int J Biol Macromol 2024; 281:136610. [PMID: 39419135 DOI: 10.1016/j.ijbiomac.2024.136610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Aging is an irreversible and continuous biological process involving intricate and interconnected mechanisms. The present work is focused on unravelling the anti-aging mechanisms of mealworm protein and protein-enriched fruit bar and vegetable soup in D-galactose-induced aged mice. Mealworm protein and enriched products significantly enhanced body weight, organ indices, and gut health. Behavioral assessments reflected enhanced neuroprotective effects. Mealworm protein and its enriched products demonstrated protective effects through anti-inflammatory activity with the highest reduction of TNFα (17.1 %), IL-6 (55.5 %), and IL-1β (75.1 %) levels and upregulated the anti-inflammatory marker (IL-4). Gene expression studies confirmed the induction of anti-aging effects by promoting metabolism, reducing cellular senescence, and enhancing anti-oxidant enzyme activity. The treatments extended telomere lengths by 3-4 times, further affirming the potential anti-aging efficacy of mealworm protein and its enriched products. Mealworm protein demonstrated positive effects on weight gain, anti-inflammatory responses, and telomere length; while fruit and vegetable products enhanced antioxidant activity, and positively influenced gut health. Further, a synergistic effect was observed by combining them, which resulted in improved overall anti-aging effect. The present work provides valuable insights into the multifaceted anti-aging mechanisms associated with mealworm protein and enriched products, highlighting their potential as functional foods with significant health-promoting effects.
Collapse
Affiliation(s)
- Siddaraju Anusha
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
4
|
Liu S, Dai X, Zhao J, Zhang X, Zhu M, Wang K, Fu D. Blended Tea Ameliorates T2DM via Modulation of Gut Microflora. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01222-6. [PMID: 39153160 DOI: 10.1007/s11130-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Increasing evidences suggest that type 2 diabetes mellitus (T2DM) is closely related to gut microflora dysbiosis, which can be improved by dietary intervention. Four natural plant products, including Cyclocarya paliurus, Fu brick tea, Ampelopsis grossedentata, and Lithocarpus litseifolius, were blended to form a blended tea product for obtaining the better flavor. The blended tea was also expected to have excellent pharmacological activity. Therefore, the ameliorative effect of blended tea on T2DM and underlying mechanisms were studied in this study. The results showed that the blended tea extract effectively attenuated the symptoms of glucose and lipid metabolism-related disorders in T2DM mice fed by high-fat and high-sucrose diet. Furthermore, blended tea extract intervention significantly attenuated gut microbiota dysbiosis, the abundance of bacteria such as Bacteroidetes and Firmicutes, which aid in the hydrolysis and utilization of carbohydrates, significantly increased, while the abundance of pathogenic bacteria such as Proteobacteria significantly decreased. Certain core microorganisms involved in energy metabolism, including Ruminococcaceae_UCG-005, Butyricimonas, Roseburia, Oscillibacter, [Eubacterium]_nodatum_group, Muribaculaceae, Prevotellaceae UCG 001, were also found to be improved by blended tea extract. Collectively, our results demonstrated that the blended tea may ameliorate T2DM through modulation of gut microflora. The blended tea may serve as novel functional drink for the treatment of T2DM and dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Sui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyue Dai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jinqi Zhao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuwen Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Donghe Fu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
5
|
Liu Z, Liu J, Tang R, Zhang Z, Tian S. Procyanidin B1 and Coumaric Acid from Highland Barley Alleviated High-Fat-Diet-Induced Hyperlipidemia by Regulating PPARα-Mediated Hepatic Lipid Metabolism and Gut Microbiota in Diabetic C57BL/6J Mice. Foods 2024; 13:1843. [PMID: 38928784 PMCID: PMC11202444 DOI: 10.3390/foods13121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
A whole-grain highland barley (WHB) diet has been recognized to exhibit the potential for alleviating hyperlipidemia, which is mainly characterized by lipids accumulation in the serum and liver. Previously, procyanidin B1 (PB) and coumaric acid (CA) from WHB were found to alleviate serum lipid accumulation in impaired glucose tolerance mice, while the effect on modulating the hepatic lipid metabolism remains unknown. In this study, the results showed the supplementation of PB and CA activated the expression of peroxisome proliferator-activated receptor α (PPARα) and the target genes of cholesterol 7-α hydroxylase (CYP7A1) and carnitine palmitoyl transferase I (Cpt1) in the liver cells of high-fat-diet (HFD)-induced diabetic C57BL/6J mice, resulting in decreases in the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C) contents, and an increase in the high-density lipoprotein (HDL-C) content. High-throughput sequencing of 16S rRNA indicated that supplementation with PB and CA ameliorated the gut microbiota dysbiosis, which was associated with a reduction in the relative abundance of Ruminococcaceae and an increase in the relative abundance of Lactobacillus, Desulfovibrio, and Akkermansia. Spearman's correlation analysis revealed that these genera were closely related to obesity-related indices. In summary, the activation of PPARα expression by PB and CA from WHB was important for the alleviation of hyperlipidemia and the structural adjustment of the gut microbiota.
Collapse
Affiliation(s)
- Zehua Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, China
| | - Jianshen Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Ruoxin Tang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Zhaowan Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Shuangqi Tian
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| |
Collapse
|
6
|
Gu N, Yan J, Tang W, Zhang Z, Wang L, Li Z, Wang Y, Zhu Y, Tang S, Zhong J, Cheng C, Sun X, Huang Z. Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 2024; 21:147. [PMID: 38835057 DOI: 10.1186/s12974-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.
Collapse
Affiliation(s)
- Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Emergency Department, Chengdu First People's Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Sebastià C, Folch JM, Ballester M, Estellé J, Passols M, Muñoz M, García-Casco JM, Fernández AI, Castelló A, Sánchez A, Crespo-Piazuelo D. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2024; 9:e0104923. [PMID: 38095419 PMCID: PMC10804976 DOI: 10.1128/msystems.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.
Collapse
Affiliation(s)
- Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Ana I. Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
8
|
Sparfel L, Ratodiarivony S, Boutet-Robinet E, Ellero-Simatos S, Jolivet-Gougeon A. Akkermansia muciniphila and Alcohol-Related Liver Diseases. A Systematic Review. Mol Nutr Food Res 2024; 68:e2300510. [PMID: 38059838 DOI: 10.1002/mnfr.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.
Collapse
Affiliation(s)
- Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sandy Ratodiarivony
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
- Teaching Hospital, CHU Rennes, 2 rue Henri Le Guilloux 35033, Rennes, F-35000, France
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241, INSERM 1241, Rennes, F-35000, France
| |
Collapse
|
9
|
Xiang Y, Wang S, Huang H, Li X, Li H, Tu Y, Wei Y, Song F, Ji X. A novel holin from an Enterococcus faecalis phage and application in vitro and in vivo. Microb Pathog 2024; 186:106471. [PMID: 38048838 DOI: 10.1016/j.micpath.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Enterococcus faecalis, a conditional pathogenic bacterium, is prevalent in the intestinal, oral, and reproductive tracts of humans and animals, causing a variety of infectious diseases. E. faecalis is the main species detected in secondary persistent infection from root canal therapy failure. Due to the abuse of antibacterial agents, E. faecalis has evolved its resistant ability. Therefore, it is difficult to treat clinical diseases infected by E. faecalis. Exploring new alternative drugs for treating E. faecalis infection is urgent. We cloned and expressed the gene of phage holin, purified the recombinant protein, and analyzed the antibacterial activity, lysis profile, and ability to remove bacterial biofilm. It showed that the crude enzyme of phage holin pEF191 exhibited superior bacterial inhibiting activity and a broader lysis host range compared to the parent phage PEf771. In addition, pEF191 demonstrated high efficacy in eliminating E. faecalis biofilm. The therapeutic results of the Sprague-Dawley (SD) rats model infected showed that pEf191 did not affect SD rats, indicating that pEF191 provided greater protection against E. faecalis infection in SD rats. Based on the 16 S rDNA data of SD rats intestinal microorganism population, holin pEF191 exhibited no impact on the diversity of intestinal microorganisms at the phylum and genus levels and improved the relative abundance of favorable bacteria. Thus, pEF191 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Suping Wang
- Facculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Huang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Xuelin Li
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yungui Tu
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, China
| | - Yunlin Wei
- Facculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fei Song
- Department of Minimally invasive intervention, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China.
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
10
|
Zhang B, Shi M, Xu S, Zhang H, Li Y, Hu D. Analysis on Changes and Influencing Factors of the Intestinal Microbiota of Alpine Musk Deer between the Place of Origin and Migration. Animals (Basel) 2023; 13:3791. [PMID: 38136828 PMCID: PMC10740494 DOI: 10.3390/ani13243791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In China, the population of wild musk deer, belonging to the family Moschidae, has drastically decreased in recent years owing to human activities and environmental changes. During the 1990s, artificial breeding of Alpine musk deer was conducted in Xinglong Mountain, Gansu Province, China, and their ex situ conservation was explored for over a decade. Ex situ protection is beneficial for expanding the population of animals and maintaining their genetic diversity; however, it can also induce metabolic diseases and parasitic infections and reduce reproductive capacity. The gut microbiota of animals has a considerable impact on host energy metabolism and immune regulation, thereby playing a crucial role in the overall health and reproductive success of the host. In this study, by comparing the differences in the intestinal microbiome of the musk deer according to their place of origin and migration, the changes in their gut microbiota and the influencing factors were explored to provide a theoretical basis for monitoring the health status of the musk deer. We used 16S rRNA high-throughput sequencing technology to analyze the structure and diversity of the gut microbiota of Alpine musk deer in Gansu (G, place of origin) and Sichuan (S, place of migration). The results showed that the dominant bacteria and genera in the intestinal microbiome of captive musk deer were similar in the places of origin and migration, but significant differences were observed in their relative abundance (p < 0.05). Regarding Firmicutes and Actinobacteria, which are related to plant cellulose digestion, the relative abundance in group G was higher than that in group S; regarding Proteobacteria and Verrucomicrobia, which are related to fat and starch intake, the relative abundance in group S was higher than that in group G; the relative abundance of Bacillus and Clostridium sensu stricto, which are related to fiber digestibility, was higher in group G than in group S; the relative abundance of conditional pathogens Acinetobacter and Escherichia-Shigella was higher in group S than in group G. The results of α and β diversity analysis also showed significant differences between the two groups (p < 0.05). The ACE and Shannon indices of musk deer in group G were considerably higher than those in group S, and the Simpson index of musk deer in group S was greater than that in group G, indicating that the abundance and diversity of intestinal microbiome were higher in musk deer of Gansu than those of Sichuan. Comparison of the changes in the intestinal microbiome of the musk deer according to the place of origin and migration showed that the plant cellulose content in the food of the musk deer, the fat content in the concentrated feed, and changes in the feeding environment have an impact on the intestinal microbiome. Effective monitoring of the health and immunity of the musk deer is crucial for ensuring their overall health, which in turn will aid in formulating a scientific and reasonable management plan for their conservation.
Collapse
Affiliation(s)
- Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Minghui Shi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shanghua Xu
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Haonan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yimeng Li
- Department of Life Sciences, National Natural History Museum of China, Beijing 100050, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
12
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
13
|
Zuniga-Chaves I, Eggers S, Kates AE, Safdar N, Suen G, Malecki KMC. Neighborhood socioeconomic status is associated with low diversity gut microbiomes and multi-drug resistant microorganism colonization. NPJ Biofilms Microbiomes 2023; 9:61. [PMID: 37640705 PMCID: PMC10462741 DOI: 10.1038/s41522-023-00430-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Social disparities continue to limit universal access to health care, directly impacting both lifespan and quality of life. Concomitantly, the gut microbiome has been associated with downstream health outcomes including the global rise in antibiotic resistance. However, limited evidence exists examining socioeconomic status (SES) associations with gut microbiome composition. To address this, we collected information on the community-level SES, gut microbiota, and other individual cofactors including colonization by multidrug-resistant organisms (MDROs) in an adult cohort from Wisconsin, USA. We found an association between SES and microbial composition that is mediated by food insecurity. Additionally, we observed a higher prevalence of MDROs isolated from individuals with low diversity microbiomes and low neighborhood SES. Our integrated population-based study considers how the interplay of several social and economic factors combine to influence gut microbial composition while providing a framework for developing future interventions to help mitigate the SES health gap.
Collapse
Affiliation(s)
- Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Ashley E Kates
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kristen M C Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Environmental and Occupational Health Sciences, School of Public Health, University of Chicago Illinois, IL, Chicago, USA.
| |
Collapse
|
14
|
Hill EB, Konigsberg IR, Ir D, Frank DN, Jambal P, Litkowski EM, Lange EM, Lange LA, Ostendorf DM, Scorsone JJ, Wayland L, Bing K, MacLean PS, Melanson EL, Bessesen DH, Catenacci VA, Stanislawski MA, Borengasser SJ. The Microbiome, Epigenome, and Diet in Adults with Obesity during Behavioral Weight Loss. Nutrients 2023; 15:3588. [PMID: 37630778 PMCID: PMC10458964 DOI: 10.3390/nu15163588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity has been linked to the gut microbiome, epigenome, and diet, yet these factors have not been studied together during obesity treatment. Our objective was to evaluate associations among gut microbiota (MB), DNA methylation (DNAme), and diet prior to and during a behavioral weight loss intervention. Adults (n = 47, age 40.9 ± 9.7 years, body mass index (BMI) 33.5 ± 4.5 kg/m2, 77% female) with data collected at baseline (BL) and 3 months (3 m) were included. Fecal MB was assessed via 16S sequencing and whole blood DNAme via the Infinium EPIC array. Food group and nutrient intakes and Healthy Eating Index (HEI) scores were calculated from 7-day diet records. Linear models were used to test for the effect of taxa relative abundance on DNAme and diet cross-sectionally at each time point, adjusting for confounders and a false discovery rate of 5%. Mean weight loss was 6.2 ± 3.9% at 3 m. At BL, one MB taxon, Ruminiclostridium, was associated with DNAme of the genes COL20A1 (r = 0.651, p = 0.029), COL18A1 (r = 0.578, p = 0.044), and NT5E (r = 0.365, p = 0.043). At 3 m, there were 14 unique MB:DNAme associations, such as Akkermansia with DNAme of GUSB (r = -0.585, p = 0.003), CRYL1 (r = -0.419, p = 0.007), C9 (r = -0.439, p = 0.019), and GMDS (r = -0.559, p = 0.046). Among taxa associated with DNAme, no significant relationships were seen with dietary intakes of relevant nutrients, food groups, or HEI scores. Our findings indicate that microbes linked to mucin degradation, short-chain fatty acid production, and body weight are associated with DNAme of phenotypically relevant genes. These relationships offer an initial understanding of the possible routes by which alterations in gut MB may influence metabolism during weight loss.
Collapse
Affiliation(s)
- Emily B. Hill
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| | - Iain R. Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
| | - Diana Ir
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| | - Elizabeth M. Litkowski
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Aurora, CO 80045, USA
| | - Ethan M. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045, USA
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Aurora, CO 80045, USA
| | - Danielle M. Ostendorf
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared J. Scorsone
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Liza Wayland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen Bing
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward L. Melanson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel H. Bessesen
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maggie A. Stanislawski
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
| | - Sarah J. Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| |
Collapse
|
15
|
Cheng X, Han X, Zhou L, Sun Y, Zhou Q, Lin X, Gao Z, Wang J, Zhao W. Cabernet sauvignon dry red wine ameliorates atherosclerosis in mice by regulating inflammation and endothelial function, activating AMPK phosphorylation, and modulating gut microbiota. Food Res Int 2023; 169:112942. [PMID: 37254366 DOI: 10.1016/j.foodres.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Limited evidence suggests that the abundance of antioxidant polyphenols in dry red wine (DRW) may prevent cardiovascular diseases, a benefit likely attributed to abundant antioxidant polyphenols present in DRW. Here, we examined the anti-atherosclerotic effect of Cabernet Sauvignon DRW (CSDRW) in a mouse model of atherosclerosis (AS) using metabolomic profiling and molecular techniques. Oral administration of CSDRW reduced atherosclerotic lesion size in ApoE-/- mice, alleviated hyperlipidemia, ameliorated hepatic lipid accumulation mediated by AMPK activation, and promoted lipid metabolism via PPARγ-LXR-α-ABCA1 pathway regulation. CSDRW increased the relative abundance of beneficial gut microbiota, including Bacteroidetes, Verrucomicrobiota, and Akkermansiaceae. Metabolic analysis using liquid chromatography-tandem mass spectrometry revealed that CSDRW contained various polyphenols, including flavanol, phenolic acid, flavonol, and resveratrol, which possibly mediate the beneficial effects in AS by reducing inflammation, restoring normal endothelial function, regulating hepatic lipid metabolism, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China; School of Public Health, Hebei University, Baoding 071000, PR China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhe Gao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
16
|
Zhu M, Ouyang J, Zhou F, Zhao C, Zhu W, Liu C, Huang P, Li J, Tang J, Zhang Z, Huang J, Wu M, Wang K, Liu Z. Polysaccharides from Fu brick tea ameliorate obesity by modulating gut microbiota and gut microbiota-related short chain fatty acid and amino acid metabolism. J Nutr Biochem 2023; 118:109356. [PMID: 37087075 DOI: 10.1016/j.jnutbio.2023.109356] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Fu brick tea (FBT) is a traditional tea manufactured by solid-state fermentation of tea leaves (Camellia sinensis). Although anti-obesity effects have been reported for FBT, the associated role of FBT polysaccharides (PSs) and the underlying mechanisms remain unknown. In this study, we found that FBTPSs inhibited obesity, hyperlipidemia, and inflammation; improved intestinal barrier function; and alleviated gut microbiota dysbiosis in high-fat diet-fed rats. Akkermansia muciniphila, Bacteroides, Parasutterella, Desulfovibrio, and Blautia were the core microbes regulated by FBTPSs. FBTPSs regulated the production of gut microbiota-related metabolites, including short-chain fatty acids (SCFAs), branched-chain amino acids, and aromatic amino acids throughout the development of obesity, and regulated the SCFA-GPR signaling pathway. FBTPS-treated fecal microbiota transplant ameliorated obesity, alleviated gut microbiota dysbiosis, and improved gut microbiota-associated metabolites, suggesting that the anti-obesity effect of FBTPSs was gut microbiota-dependent. FBTPSs may serve as novel prebiotic agents for the treatment of obesity and dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Mingzhi Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Ouyang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Fang Zhou
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chenjie Zhao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Wan Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chunfang Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Peifang Huang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jiafeng Li
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junwei Tang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhang Zhang
- China Tea (Hunan) Anhua 1st Factory Co., Ltd., Yiyang, 413500, China
| | - Jianan Huang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Kunbo Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhonghua Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China..
| |
Collapse
|
17
|
Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers - A pilot study. Food Chem 2023; 406:134989. [PMID: 36527987 DOI: 10.1016/j.foodchem.2022.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.
Collapse
|
18
|
Hitache Z, Al-Dalali S, Pei H, Cao X. Review of the Health Benefits of Cereals and Pseudocereals on Human Gut Microbiota. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
19
|
Ivashkin V, Shifrin O, Maslennikov R, Poluektova E, Korolev A, Kudryavtseva A, Krasnov G, Benuni N, Barbara G. Eubiotic effect of rifaximin is associated with decreasing abdominal pain in symptomatic uncomplicated diverticular disease: results from an observational cohort study. BMC Gastroenterol 2023; 23:82. [PMID: 36959568 PMCID: PMC10037807 DOI: 10.1186/s12876-023-02690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Rifaximin effectively treats symptomatic uncomplicated diverticular disease (SUDD) and has shown eubiotic potential (i.e., an increase in resident microbial elements with potential beneficial effects) in other diseases. This study investigated changes in the fecal microbiome of patients with SUDD after repeated monthly treatment with rifaximin and the association of these changes with the severity of abdominal pain. METHODS This was a single-center, prospective, observational, uncontrolled cohort study. Patients received rifaximin 400 mg twice a day for 7 days per month for 6 months. Abdominal pain (assessed on a 4-point scale from 0 [no pain] to 3 [severe pain]) and fecal microbiome (assessed using 16 S rRNA gene sequencing) were assessed at inclusion (baseline) and 3 and 6 months. The Spearman's rank test analyzed the relationship between changes in the gut microbiome and the severity of abdominal pain. A p-value ≤ 0.05 was considered statistically significant. RESULTS Of the 23 patients enrolled, 12 patients completed the study and were included in the analysis. Baseline abdominal pain levels decreased significantly after 3 (p = 0.036) and 6 (p = 0.008) months of treatment with rifaximin. The abundance of Akkermansia in the fecal microbiome was significantly higher at 3 (p = 0.017) and 6 (p = 0.015) months versus baseline. The abundance of Ruminococcaceae (p = 0.034), Veillonellaceae (p = 0.028), and Dialister (p = 0.036) were significantly increased at 6 months versus baseline, whereas Anaerostipes (p = 0.049) was significantly decreased. The severity of abdominal pain was negatively correlated with the abundance of Akkermansia (r=-0.482; p = 0.003) and Ruminococcaceae (r=-0.371; p = 0.026) but not with Veillonellaceae, Dialister, or Anaerostipes. After 3 months of rifaximin, abdominal pain was significantly less in patients with Akkermansia in their fecal microbiome than in patients without Akkermansia (p = 0.022). CONCLUSION The eubiotic effect of rifaximin was associated with decreased abdominal pain in patients with SUDD.
Collapse
Affiliation(s)
- Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation
| | - Oleg Shifrin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation.
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation.
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation
| | - Alexander Korolev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nona Benuni
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| |
Collapse
|
20
|
Jayachandran M, Christudas S, Zheng X, Xu B. Dietary fiber konjac glucomannan exerts an antidiabetic effect via inhibiting lipid absorption and regulation of PPAR-γ and gut microbiome. Food Chem 2023; 403:134336. [DOI: 10.1016/j.foodchem.2022.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
21
|
Jian H, Liu Y, Wang X, Dong X, Zou X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut-Liver-Brain Axes? Int J Mol Sci 2023; 24:ijms24043900. [PMID: 36835309 PMCID: PMC9959343 DOI: 10.3390/ijms24043900] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Appreciation of the importance of Akkermansia muciniphila is growing, and it is becoming increasingly relevant to identify preventive and/or therapeutic solutions targeting gut-liver-brain axes for multiple diseases via Akkermansia muciniphila. In recent years, Akkermansia muciniphila and its components such as outer membrane proteins and extracellular vesicles have been known to ameliorate host metabolic health and intestinal homeostasis. However, the impacts of Akkermansia muciniphila on host health and disease are complex, as both potentially beneficial and adverse effects are mediated by Akkermansia muciniphila and its derivatives, and in some cases, these effects are dependent upon the host physiology microenvironment and the forms, genotypes, and strain sources of Akkermansia muciniphila. Therefore, this review aims to summarize the current knowledge of how Akkermansia muciniphila interacts with the host and influences host metabolic homeostasis and disease progression. Details of Akkermansia muciniphila will be discussed including its biological and genetic characteristics; biological functions including anti-obesity, anti-diabetes, anti-metabolic-syndrome, anti-inflammation, anti-aging, anti-neurodegenerative disease, and anti-cancer therapy functions; and strategies to elevate its abundance. Key events will be referred to in some specific disease states, and this knowledge should facilitate the identification of Akkermansia muciniphila-based probiotic therapy targeting multiple diseases via gut-liver-brain axes.
Collapse
|
22
|
Zhang J, Ou C, Chen M. Curcumin attenuates cadmium-induced atherosclerosis by regulating trimethylamine-N-oxide synthesis and macrophage polarization through remodeling the gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114057. [PMID: 36084504 DOI: 10.1016/j.ecoenv.2022.114057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies have shown that cadmium (Cd) exposure primarily occurs through diet, and Cd ingestion is a risk factor for atherosclerosis (AS). However, the underlying mechanism remains unclear. As a target organ, the gastrointestinal tract may play a key role in Cd-induced AS. Additionally, as curcumin is insoluble in water but stable in the stomach of acidic pH, it may play regulative roles in the gut. OBJECTIVES We assess the effect of Cd exposure on gut flora, trimethylamine-N-oxide (TMAO) metabolism and macrophage polarization, further investigate whether curcumin protects against Cd-induced AS by remodeling gut microbiota. METHODS AND RESULTS The results of 16 S rRNA sequencing show that Cd exposure causes diversity reduction and compositional alteration of the microbial community, resulting in the increasing TMAO synthesis, the imbalance of lipid metabolism, and the M1-type macrophage polarization in the mouse model (ApoE-/-) of AS. As a result, the plaque area is increased with Cd exposure, shown by oil red O staining. TMAO synthesis is positively correlated with the concentration of blood Cd, and the dynamics of specific bacteria in this process were revealed at the phylum to genus levels. Moreover, the effects of intestinal flora and TMAO on Cd-induced AS are further confirmed via microbial transplantation from a mouse model not exposed to Cd, as the transplantation decreases plaque area. Finally, the gavage with curcumin reverses the Cd-induced pathological progression via gut flora restoration. CONCLUSIONS We first demonstrate that Cd exposure worsens the progression of AS via intestinal flora imbalance and increased TMAO synthesis. Curcumin was verified as a potential novel intervention for preventing Cd-induced AS via remodeling gut microbiota. This study elucidates a new approach for treating AS in regions with significant Cd exposure.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China.
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou 510280, China.
| |
Collapse
|
23
|
Rehan M, Al-Bahadly I, Thomas DG, Avci E. Development of a Robotic Capsule for in vivo Sampling of Gut Microbiota. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Rehan
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G. Thomas
- Monogastric Research Centre, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| |
Collapse
|
24
|
Liu M, Huang B, Wang L, Lu Q, Liu R. Peanut skin procyanidins ameliorate insulin resistance via modulation of gut microbiota and gut barrier in type 2 diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5935-5947. [PMID: 35442513 DOI: 10.1002/jsfa.11945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Peanut skin procyanidins (PSP) have been shown to possess antidiabetic activities. However, the mechanism remains poorly understood due to its low bioavailability. This study aims to investigate the preventive effect of PSP on type 2 diabetes (T2D) in mice through regulating gut microbiota and gut barrier in mice with streptozotocin (STZ)-induced T2D. During the 30 consecutive days of the study, T2D mice were administered PSP intragastrically at 75, 150 and 300 mg kg-1 body weight d-1 . RESULTS PSP treatment obviously alleviated glucolipid metabolism disorders, decreased the levels of lipopolysaccharide (LPS), interleukin (IL)-6 and myeloperoxidase(MPO), and increased that of IL-10. PSP treatment enhanced the abundance of Lachnospiraceae_NK4A136_group, Alloprevotella, Akkermansia and Faecalibaculum, and reduced that of Muribaculaceae. Some of these were associated with the production of short-chain fatty acids and anti-inflammatory effect, suggesting their important roles in T2D mice. More importantly, PSP improved the gut barrier integrality by restoring gut morphology and enhancing tight junction protein expression including ZO1, claudin1 and occludin in colon. Subsequently, PSP ameliorated insulin resistance by decreasing the LPS/Toll-like receptor 4/c-Jun N-terminal kinase inflammatory response, and enhancing insulin receptor substrate 1/ phosphatidylinositol-3-kinase/protein kinase B insulin signaling pathways in the liver. CONCLUSION Peanut skin procyanidins may alleviate the symptoms of T2D by mitigating inflammatory response, modulating gut microbiota and improving intestinal integrity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
25
|
Li K, Methé BA, Fitch A, Gentry H, Kessinger C, Patel A, Petraglia V, Swamy P, Morris A. Gut and oral microbiota associations with viral mitigation behaviors during the COVID-19 pandemic. Front Cell Infect Microbiol 2022; 12:966361. [PMID: 36159641 PMCID: PMC9500509 DOI: 10.3389/fcimb.2022.966361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Imposition of social and health behavior mitigations are important control measures in response to the coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Although postulated that these measures may impact the human microbiota including losses in diversity from heightened hygiene and social distancing measures, this hypothesis remains to be tested. Other impacts on the microbiota and host mental and physical health status associations from these measures are also not well-studied. Here we examine changes in stool and oral microbiota by analyzing 16S rRNA gene sequence taxonomic profiles from the same individuals during pre-pandemic (before March 2020) and early pandemic (May-November 2020) phases. During the early pandemic phase, individuals were also surveyed using questionnaires to report health histories, anxiety, depression, sleep and other lifestyle behaviors in a cohort of predominantly Caucasian adults (mean age = 61.5 years) with the majority reporting at least one underlying co-morbidity. We identified changes in microbiota (stool n = 288; oral n = 89) between pre-pandemic and early pandemic time points from the same subject and associated these differences with questionnaire responses using linear statistical models and hierarchical clustering of microbiota composition coupled to logistic regression. While a trend in loss of diversity was identified between pre-pandemic and early pandemic time points it was not statistically significant. Paired difference analyses between individuals identified fewer significant changes between pre-pandemic and early pandemic microbiota in those who reported fewer comorbidities. Cluster transition analyses of stool and saliva microbiota determined most individuals remained in the same cluster assignments from the pre-pandemic to early pandemic period. Individuals with microbiota that shifted in composition, causing them to depart a pre-pandemic cluster, reported more health issues and pandemic-associated worries. Collectively, our study identified that stool and saliva microbiota from the pre-pandemic to early pandemic periods largely exhibited ecological stability (especially stool microbiota) with most associations in loss of diversity or changes in composition related to more reported health issues and pandemic-associated worries. Longitudinal observational cohorts are necessary to monitor the microbiome in response to pandemics and changes in public health measures.
Collapse
Affiliation(s)
- Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Barbara A. Methé
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Heather Gentry
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Cathy Kessinger
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Asha Patel
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Vickie Petraglia
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pruthvi Swamy
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Alison Morris
- Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
26
|
George SE, James J, Devereux R, Wan Y, Diamond GL, Bradham KD, Scheckel KG, Thomas DJ. Ingestion of remediated lead-contaminated soils affects the fecal microbiome of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155797. [PMID: 35561906 PMCID: PMC9830667 DOI: 10.1016/j.scitotenv.2022.155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 05/08/2023]
Abstract
The relationship between ingestion of diets amended with a Pb-contaminated soil and the composition of the fecal microbiome was examined in a mouse model. Mice consumed diets amended with a Pb-contaminated soil in its native (untreated) state or after treatment for remediation with phosphoric acid or triple superphosphate alone or in combination with iron-waste material or biosolids compost. Subacute dietary exposure of mice receiving treated soil resulted in modulation of the fecal intestinal flora, which coincided with reduced relative Pb bioavailability in the bone, blood and kidney and differences in Pb speciation compared to untreated soil. Shifts in the relative abundance of several phyla including Verrucomicrobia, Tenericutes, Firmicutes, Proteobacteria, and TM7 (Candidatus Saccharibacteria) were observed. Because the phyla persist in the presence of Pb, it is probable that they are resistant to Pb. This may enable members of the phyla to bind and limit Pb uptake in the intestine. Families Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, Verrucomicrobiaceae, Prevotellaceae, Lactobacilaceae, and Bacteroidaceae, which have been linked to health or disease, also were modulated. This study is the first to explore the relationship between the murine fecal microbiome and ingested Pb contaminated soils treated with different remediation options designed to reduce bioavailability. Identifying commonalities in the microbiome that are correlated with more positive health outcomes may serve as biomarkers to assist in the selection of remediation approaches that are more effective and pose less risk.
Collapse
Affiliation(s)
- S Elizabeth George
- Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, U.S. Environmental Protection Agency, Office of Research & Development, Gulf Breeze, FL 32561, United States.
| | - Joseph James
- Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, U.S. Environmental Protection Agency, Office of Research & Development, Gulf Breeze, FL 32561, United States
| | - Richard Devereux
- Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, U.S. Environmental Protection Agency, Office of Research & Development, Gulf Breeze, FL 32561, United States
| | - Yongshan Wan
- Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, U.S. Environmental Protection Agency, Office of Research & Development, Gulf Breeze, FL 32561, United States
| | - Gary L Diamond
- SRC, Inc., North Syracuse, New York 13212, United States
| | - Karen D Bradham
- Center for Environmental Measurement & Modeling, Watershed & Ecosystem Characterization Division, U.S. Environmental Protection Agency, Office of Research & Development, Research Triangle Park, NC 27711, United States
| | - Kirk G Scheckel
- Center for Environmental Solutions and Emergency Response, Land Remediation & Technology Division, U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, OH 45224, United States
| | - David J Thomas
- Center for Computational Toxicology & Exposure, Chemical Characterization & Exposure Division, U.S. Environmental Protection Agency, Office of Research & Development, Research Triangle Park, NC 27711, United States
| |
Collapse
|
27
|
Egea MB, Pierce G, Park SH, Lee SI, Heger F, Shay N. Consumption of Antioxidant-Rich “Cerrado” Cashew Pseudofruit Affects Hepatic Gene Expression in Obese C57BL/6J High Fat-Fed Mice. Foods 2022; 11:foods11172543. [PMID: 36076729 PMCID: PMC9455023 DOI: 10.3390/foods11172543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Gavin Pierce
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Si-Hong Park
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Sang-In Lee
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Fabienne Heger
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Schloss Hohenheim 1, 70599 Stuttgart, Germany
| | - Neil Shay
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
- Correspondence:
| |
Collapse
|
28
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
29
|
Sriwichaiin S, Thiennimitr P, Thonusin C, Sarichai P, Buddhasiri S, Kumfu S, Nawara W, Kittichotirat W, Fucharoen S, Chattipakorn N, Chattipakorn SC. Deferiprone has less benefits on gut microbiota and metabolites in high iron-diet induced iron overload thalassemic mice than in iron overload wild-type mice: A preclinical study. Life Sci 2022; 307:120871. [PMID: 35952729 DOI: 10.1016/j.lfs.2022.120871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to investigate the changes in gut microbiota in iron-overload thalassemia and the roles of an iron chelator on gut dysbiosis/inflammation, and metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO). MAIN METHODS Adult male C57BL/6 mice both wild-type (WT: n = 15) and heterozygous β-thalassemia (BKO: n = 15) were fed on either a normal (ND: n = 5/group) or a high‑iron diet for four months (HFe: n = 10/group). HFe-treated WT and HFe-treated BKO groups were further subdivided into two subgroups and each subgroup given either vehicle (n = 5/subgroup) or deferiprone (n = 5/subgroup) during the last month. Gut microbiota profiles, gut barrier characteristics, levels of proinflammatory cytokines, and plasma SCFAs and TMAO were determined at the end of the study. KEY FINDINGS HFe-fed WT mice showed distinct gut microbiota profiles from those of ND-fed WT mice, whereas HFe-fed BKO mice showed slightly different gut microbiota profiles from ND-fed BKO. Gut inflammation and barrier disruption were found only in HFe-fed BKO mice, however, an increase in plasma TMAO levels and decreased levels of SCFAs were observed in both WT and BKO mice with HFe-feeding. Treatment with deferiprone, gut dysbiosis and disturbance of metabolites were attenuated in HFe-fed WT mice, but not in HFe-fed BKO mice. Increased Verrucomicrobia and Ruminococcaceae were associated with the beneficial effects of deferiprone. SIGNIFICANCE Iron-overload leads to gut dysbiosis/inflammation and disturbance of metabolites, and deferiprone alleviates those conditions more effectively in WT than in those that are thalassemic.
Collapse
Affiliation(s)
- Sirawit Sriwichaiin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phinitphong Sarichai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinart Kumfu
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wichwara Nawara
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand; Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
30
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
31
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
32
|
Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms. Nutrients 2022; 14:nu14081568. [PMID: 35458130 PMCID: PMC9027170 DOI: 10.3390/nu14081568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we evaluated the effects of different feeding methods on the characteristics of intestinal flora and gas production in infants and toddlers by using an in vitro simulated intestinal microecology fermentation and organoid model. We found that the feeding method influences intestinal gas and fecal ammonia production in infants and toddlers. Supplementation with milk powder for infants in the late lactation period could promote the proliferation of beneficial bacteria, including Bifidobacteria. Intestinal flora gas production in a culture medium supplemented with fucosyllactose (2′-FL) was significantly lower than that in media containing other carbon sources. In conclusion, 2′-FL may reduce gas production in infant and toddler guts through two mechanisms: first, it cannot be used by harmful intestinal bacteria to produce gas; second, it can inhibit intestinal mucosa colonization by harmful bacteria by regulating the expression of intestinal epithelial pathogenic genes/signaling pathways, thus reducing the proliferation of gas-producing harmful bacteria in the gut.
Collapse
|
33
|
Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr 2022; 63:7357-7377. [PMID: 35238258 DOI: 10.1080/10408398.2022.2045894] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.
Collapse
Affiliation(s)
- Sima Ghaffari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
34
|
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Hupp T, Duchnowska R, Marek-Trzonkowska N, Połom K. Next-generation probiotics - do they open new therapeutic strategies for cancer patients? Gut Microbes 2022; 14:2035659. [PMID: 35167406 PMCID: PMC8855854 DOI: 10.1080/19490976.2022.2035659] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota and its association with cancer development/treatment has been intensively studied during the past several years. Currently, there is a growing interest toward next-generation probiotics (NGPs) as therapeutic agents that alter gut microbiota and impact on cancer development. In the present review we focus on three emerging NGPs, namely Faecalibacterium prausnitzii, Akkermansia muciniphila, and Bacteroides fragilis as their presence in the digestive tract can have an impact on cancer incidence. These NGPs enhance gastrointestinal immunity, maintain intestinal barrier integrity, produce beneficial metabolites, act against pathogens, improve immunotherapy efficacy, and reduce complications associated with chemotherapy and radiotherapy. Notably, the use of NGPs in cancer patients does not have a long history and, although their safety remains relatively undefined, recently published data has shown that they are non-toxigenic. Notwithstanding, A. muciniphila may promote colitis whereas enterotoxigenic B. fragilis stimulates chronic inflammation and participates in colorectal carcinogenesis. Nevertheless, the majority of B. fragilis strains provide a beneficial effect to the host, are non-toxigenic and considered as the best current NGP candidate. Overall, emerging studies indicate a beneficial role of these NGPs in the prevention of carcinogenesis and open new promising therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland,CONTACT Karolina Kaźmierczak-Siedlecka Department of Surgical Oncology, Medical University of Gdansk, Ul. Smoluchowskiego 18, 80-214Gdańsk, Poland
| | | | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science University of Gdańsk, Gdańsk, Poland,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
35
|
Dietary Boswellia serrata Acid Alters the Gut Microbiome and Blood Metabolites in Experimental Models. Nutrients 2022; 14:nu14040814. [PMID: 35215464 PMCID: PMC8877038 DOI: 10.3390/nu14040814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Boswellia serrata, commonly known as frankincense, has been used for centuries as a natural anti-inflammatory and anti-microbial remedy for many illnesses. However, the effect of the bioactive ingredient of it, 3-O-acetyl-11-keto-b-boswellic acid (AKBA), on both the gut microbiome and blood metabolites, is not known. In this study, we observe the effect of this isolated active ingredient orally on both male and female mice. Gut microbiota and blood metabolites were determined at the beginning and end of a 14-day consumption period. AKBA significantly decreased gut bacterial richness in male mice, and had no effect on female mice. Akkermansia muciniphila, associated with weight loss and anti-inflammation, was found to be significantly increased in both male and female mice, along with an increase in Bifidobacterium in female mice. Akkermansia muciniphila and Bifidobacterium were plated on media containing varying levels of AKBA (0%, 0.001%, 0.01%, and 0.1%). All concentrations of AKBA completely inhibited growth of Akkermansia muciniphila but had no effect on Bifidobacterium. Several blood metabolites differed with AKBA between both males and females. These results show the potential benefits of dietary Boswellia serrata on the modulation of gut microbiome composition, along with differences between sexes.
Collapse
|
36
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
37
|
β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydr Polym 2022; 275:118719. [PMID: 34742442 DOI: 10.1016/j.carbpol.2021.118719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Trichinellosis caused by Trichinella spiralis is a serious zoonosis with a worldwide. β-Glucans (BG) are readily used across the world with noted health benefits, yet the effect and mechanism of BG on host defense against helminth infection remain poorly understood. We observed that BG could trigger worm expulsion via mucus layer independently of type 2 immunity, but was dependent on the gut microbiota in mice. BG restored the abundance of Bacteroidetes and Proteobacteria changed by T. spiralis infection to the control group level and markedly increased the relative abundance of Verrucomicrobia. Akkermansia (belonging to Verrucomicrobia) were significantly expanded in the BG + T. spiralis group. Notably, daily oral supplementation of pasteurized A. muciniphila has a stronger deworming effect than live bacteria and interacted with TLR2. These findings of this study is an easily implementable strategy to facilitate expulsion of gastrointestinal helminth.
Collapse
|
38
|
Kalia VC, Gong C, Shanmugam R, Lin H, Zhang L, Lee JK. The Emerging Biotherapeutic Agent: Akkermansia. Indian J Microbiol 2021; 62:1-10. [PMID: 34931096 PMCID: PMC8674859 DOI: 10.1007/s12088-021-00993-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
The human gastrointestinal tract (GIT) is a well-recognized hub of microbial activities. The microbiota harboring the mucus layer of the GIT act as a defense against noxious substances, and pathogens including Clostridium difficile, Enterococcus faecium, Escherichia coli, Salmonella Typhimurium. Toxins, pathogens, and antibiotics perturb the commensal floral composition within the GIT. Imbalanced gut microbiota leads to dysbiosis, manifested as diseases ranging from obesity, diabetes, and cancer to reduced lifespan. Among the bacteria present in the gut microbiome, the most beneficial are those representing Firmicutes and Bacteroidetes. Recent studies have revealed the emergence of a novel biotherapeutic agent, Akkermansia, which is instrumental in regaining eubiosis and conferring various health benefits.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Chunjie Gong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 People’s Republic of China
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Hui Lin
- College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People’s Republic of China
| | - Liaoyuan Zhang
- College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People’s Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
39
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
40
|
Modulation of Gut Microbiota by Lactobacillus casei Fermented Raspberry Juice In Vitro and In Vivo. Foods 2021; 10:foods10123055. [PMID: 34945605 PMCID: PMC8702086 DOI: 10.3390/foods10123055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the modulation of gut microbiota by fermented raspberry juice (FRJ) both in vitro and in vivo. Results showed that total phenolic content and antioxidant activities of FRJ reached the highest after fermentation for 42 h. Seventeen phenolic compounds were contained in FRJ, mainly including ellagic acid (496.64 ± 2.91 μg/g) and anthocyanins (total concentration: 387.93 μg/g). FRJ modulated the gut microbiota into a healthy in vitro status, with increase of valeric and isovaleric acids production. In healthy mice, all FRJ treatments improved the production of acetic, butyric and isovaleric acids as well as the gene expression of ZO-1, Claudin-1, Claudin-4, Ocdudin, E-cadherin and Muc-2. Moreover, variable gut microbial compositions were found among the groups fed diet-supplemented the different doses of FRJ, within low and median doses of FRJ may regulate the microbiota to a healthier state compared to the high dose supplementation. This study indicated that fermentation is a potential way to produce plant-based juices, which could reshape the gut microbiota and improve the host health.
Collapse
|
41
|
Zhou F, Li YL, Zhang X, Wang KB, Huang JA, Liu ZH, Zhu MZ. Polyphenols from Fu Brick Tea Reduce Obesity via Modulation of Gut Microbiota and Gut Microbiota-Related Intestinal Oxidative Stress and Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14530-14543. [PMID: 34752089 DOI: 10.1021/acs.jafc.1c04553] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fu brick tea (FBT) is a microbial-fermented tea, which is produced by the solid-state fermentation of tea leaves. Previous studies have proved that FBT aqueous extracts could attenuate obesity and gut microbiota dysbiosis. However, the bioactive components in FBT that contribute to these activities remain unclear. In this study, we aimed to investigate the effects of FBT polyphenols (FBTPs) on obesity, gut microbiota, and gut microbiota-related intestinal oxidative stress and barrier function and to further investigate whether the antiobesity effect of FBTPs was dependent on the alteration of gut microbiota. The results showed that FBTP supplementation effectively attenuated obesity in high-fat diet (HFD)-fed rats. FBTP supplementation improved the intestinal oxidative stress and intestinal barrier function, including intestinal inflammation and the integrity of the intestinal barrier. Furthermore, FBTP intervention significantly attenuated HFD-induced gut microbiota dysbiosis, characterized by increased phylogenetic diversity and decreased Firmicutes/Bacteroidetes ratio. Certain core microbes, including Akkermansia muciniphila, Alloprevotella, Bacteroides, and Faecalibaculum, were also found to be improved by FBTPs. Moreover, the antiobesity effect of FBTPs was gut microbiota-dependent, as demonstrated by a fecal microbiota transplantation experiment. Collectively, we concluded that FBTPs reduced obesity by modulating the gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function. Therefore, FBTPs may be used as prebiotic agents to treat obesity and gut microbiota dysbiosis in obese individuals.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Long Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Kun-Bo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
42
|
Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
W ostatnich czasach można zaobserwować duży wzrost zainteresowania relacjami między człowiekiem a mikroorganizmami zasiedlającymi jego organizm. Licznie występują w oraz na ciele człowieka, a ich liczba przekracza liczbę komórek ludzkiego organizmu. Udoskonalenie technik badawczych pozwala lepiej zrozumieć molekularne podłoże tych oddziaływań, co być może pozwoli na wykorzystanie w terapiach tych mikroorganizmów, które korzystnie wpływają na organizm człowieka. W artykule podsumowano dotychczasową wiedzę na temat fizjologii licznie występującej w przewodzie pokarmowym bakterii Akkermansia muciniphila i jej wpływu na organizm gospodarza. Opisano właściwości A. muciniphila, jej funkcjonowanie w środowisku przewodu pokarmowego oraz relacje (zarówno antagonistyczne jak i symbiotyczne) z innymi tam bytującymi mikroorganizmami. Przedstawiono także mechanizmy oddziaływania A. muciniphila na barierę jelitową, układ immunologiczny oraz metabolizm energetyczny gospodarza. Ponadto opisano jej rolę w patogenezie i terapii chorób, w tym m.in. cukrzycy typu 2, nieswoistego zapalenia jelit, zaburzeń neurologicznych, astmy, a także jej wpływ na odpowiedź pacjenta na terapie przeciwnowotworowe oparte na działaniu układu odpornościowego. Duże zainteresowanie tą bakterią, a także przytoczone wyniki badań, w tym tych sprawdzających bezpieczeństwo jej stosowania, wskazują, że A. muciniphila może być obiecującym kandydatem na probiotyk nowej generacji. Niewątpliwie jednak przed dopuszczeniem A. muciniphila do powszechnego stosowania konieczne są dalsze badania z udziałem ludzi, a także wnikliwa ocena bezpieczeństwa jej stosowania.
Collapse
|
43
|
Liao J, Li Q, Lei C, Yu W, Deng J, Guo J, Han Q, Hu L, Li Y, Pan J, Zhang H, Chang YF, Tang Z. Toxic effects of copper on the jejunum and colon of pigs: mechanisms related to gut barrier dysfunction and inflammation influenced by the gut microbiota. Food Funct 2021; 12:9642-9657. [PMID: 34664585 DOI: 10.1039/d1fo01286j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential trace mineral, but its excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms that are associated with intestinal barrier function and inflammation. In this study, the influences of Cu on barrier function, microbiota, and its metabolites were examined in the jejunum and colon of pigs. Here, we identified that the physical and chemical barrier functions were impaired both in the jejunum and colon, as evidenced by the decreased expression of tight junction proteins (ZO-1, Occludin, Claudin-1, and JAM-1) and mucous secretion-related genes, positive rate of Muc2, and secretion of SIgA and SIgG. Additionally, inflammatory cytokines were overexpressed in the jejunum and colon. Furthermore, Cu might increase the abundances of Mycoplasma, Actinobacillus and unidentified_Enterobacteriaceae in the jejunum, which significantly affected pentose and glucoronate interconversions, histidine metabolism, folate biosynthesis, porphyrin metabolism, and purine metabolism. Meanwhile, the abundances of Lactobacillus and Methanobrevibacter were remarkably decreased and Streptococcus, unidentified_Enterobacteriaceae, and unidentified_Muribaculaceae were significantly increased in the colon, with an evident impact on glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings revealed that excess Cu had significant effects on the microbiota and metabolites in the jejunum and colon, which were involved in intestinal barrier dysfunction and inflammation.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jichang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| |
Collapse
|
44
|
Lu F, Li Y, Wang X, Hu X, Liao X, Zhang Y. Early-life polyphenol intake promotes Akkermansia growth and increase of host goblet cells in association with the potential synergistic effect of Lactobacillus. Food Res Int 2021; 149:110648. [PMID: 34600650 DOI: 10.1016/j.foodres.2021.110648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Mounting evidence suggests a critical role of gut microbiota in human colon health. Early life is a key developmental growth period, especially for building up gut microbiota and strengthening the colonic barrier. The connection between host colon and gut microbiota especially during early life is an area of increasing interest to researchers, also polyphenols improve host health through modulating this complex relationship. Postweaning (three-week-old) and adult (six-week-old) mice kept under specific pathogen-free conditions were used to investigate how early-life grape polyphenols supplementation influence the association between host colon and gut microbiota. Before grape polyphenols supplementation, postweaning mice had a higher original absolute abundance of Lactobacillus compared to adult mice. A 2-week grape polyphenols supplementation significantly boosted the abundance of Akkermansia and Lactobacillus and increased Lactobacillus-secreted lactate in postweaning mice. Early-life grape polyphenols supplementation also promoted the bloom of goblet cells and mucin 2, which benefitted both Akkermansia growth and colonic barrier. Moreover, the grape polyphenols-modulated bone morphogenetic protein (BMP), Notch and Wnt3 pathways triggered the bloom of goblet cells in GPs-administrated postweaning mice, and the increase in lactate could modulate those pathways. Meanwhile, adult mice were not affected by grape polyphenols supplementation. These results suggested that early-life polyphenol supplementation promoted Akkermansia growth and colonic barrier, which was in association with the sufficient abundance of Lactobacillus during early life. This study also indicated that Lactobacillus interact with Akkermansia through changing the physiology of host colonic goblet cells.
Collapse
Affiliation(s)
- Feng Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuanyuan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
45
|
Ashrafian F, Keshavarz Azizi Raftar S, Shahryari A, Behrouzi A, Yaghoubfar R, Lari A, Moradi HR, Khatami S, Omrani MD, Vaziri F, Masotti A, Siadat SD. Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice. Sci Rep 2021; 11:17898. [PMID: 34504116 PMCID: PMC8429653 DOI: 10.1038/s41598-021-95738-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, Akkermansia muciniphila an anaerobic member of the gut microbiota, has been proposed as a next-generation probiotic. The aim of this study was evaluation of the effect of alive and pasteurized A. muciniphila on health status, intestinal integrity, immune response, lipid metabolism, and gut microbial composition in normal-diet fed mice as well as direct effects of the bacterium on Caco-2 cell line. A total of 30 mice were distributed into three different groups, control, alive, and pasteurized A. muciniphila-treated group. After acclimation, control and treatment groups were administrated with PBS and 109 CFU/200µL of bacterial suspension for 5 weeks, respectively. Besides, Caco-2 separately exposed to alive, pasteurized A. muciniphila and PBS for 24 h. The results showed that administration of A. muciniphila leads to reduction in body, liver, and white adipose weight. Histology data revealed both treatments had no adverse effects in colon, liver, and adipose tissues as well as induced better gut structure. Moreover, biochemical parameters and inflammatory biomarkers in plasma demonstrated that pasteurized A. muciniphila had more pronounce effect. Furthermore, alive A. muciniphia had better effects on the modulation of gene expression related to fatty acid synthesis, energy homeostasis, and immune response in the liver; meanwhile, these effects in the adipose was more in the pasteurized A. muciniphila administration. More importantly, the improvement of gut health by enhancing strengthen intestinal integrity and maintaining immune homeostasis was seen in both treatments; notably, pasteurized A. muciniphila had more effective. Similarly, treatment with the pasteurized form more effectively upregulated tight junction and regulated immune response-related genes in Caco-2 cell line. Both treatments triggered the improvement of microbiota communities, particularly the alive form. Therefore, both forms of A. muciniphila could modulate lipid and immune homeostasis, improved some gut microbiota, and promoted the overall health, while all these effects were dominantly observed in pasteurized form. In conclusion, pasteurized A. muciniphila can be considered as new medical supplement to maintain health state and prevent diseases in normal mice through different mechanisms.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arefeh Shahryari
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Rezvan Yaghoubfar
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- grid.420169.80000 0000 9562 2611Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- grid.412573.60000 0001 0745 1259Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shohreh Khatami
- grid.420169.80000 0000 9562 2611Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- grid.411600.2Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- grid.414125.70000 0001 0727 6809Research Laboratories, Children’s Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Seyed Davar Siadat
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Gut Microbiome, Functional Food, Atherosclerosis, and Vascular Calcifications-Is There a Missing Link? Microorganisms 2021; 9:microorganisms9091913. [PMID: 34576810 PMCID: PMC8472650 DOI: 10.3390/microorganisms9091913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is represented by the genome of all microorganisms (symbiotic, potential pathogens, or pathogens) residing in the intestine. These ecological communities are involved in almost all metabolic diseases and cardiovascular diseases are not excluded. Atherosclerosis, with a continuously increasing incidence in recent years, is the leading cause of coronary heart disease and stroke by plaque rupture and intraplaque hemorrhage. Vascular calcification, a process very much alike with osteogenesis, is considered to be a marker of advanced atherosclerosis. New evidence, suggesting the role of dietary intake influence on the diversity of the gut microbiome in the development of vascular calcifications, is highly debated. Gut microbiota can metabolize choline, phosphatidylcholine, and L-carnitine and produce vasculotoxic metabolites, such as trimethylamine-N-oxide (TMAO), a proatherogenic metabolite. This review article aims to discuss the latest research about how probiotics and the correction of diet is impacting the gut microbiota and its metabolites in the atherosclerotic process and vascular calcification. Further studies could create the premises for interventions in the microbiome as future primary tools in the prevention of atherosclerotic plaque and vascular calcifications.
Collapse
|
47
|
Luna M, Guss JD, Vasquez-Bolanos LS, Castaneda M, Rojas MV, Strong JM, Alabi DA, Dornevil SD, Nixon JC, Taylor EA, Donnelly E, Fu X, Shea MK, Booth SL, Bicalho R, Hernandez CJ. Components of the Gut Microbiome That Influence Bone Tissue-Level Strength. J Bone Miner Res 2021; 36:1823-1834. [PMID: 33999456 PMCID: PMC8793322 DOI: 10.1002/jbmr.4341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7-10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (-28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D Guss
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Macy Castaneda
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Manuela Vargas Rojas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jasmin M Strong
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Denise A Alabi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie D Dornevil
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob C Nixon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Material Science and Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - M Kyla Shea
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rodrigo Bicalho
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
48
|
Zhou Q, Gu R, Xue B, Li P, Gu Q. Phenyl lactic acid alleviates Samonella Typhimurium-induced colitis via regulating microbiota composition, SCFA production and inflammatory responses. Food Funct 2021; 12:5591-5606. [PMID: 34017972 DOI: 10.1039/d1fo00166c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colitis caused by non-typhoidal Salmonella (NST) infection is increasingly serious and widespread, so new effective treatment strategies with little or no side-effects are urgently needed. Our previous research found that phenyl lactic acid (PLA) derived from Lactobacillus plantarum ZJ316 can effectively inhibit Salmonella enterica Typhimurium (S. Typhimurium). In this study, we further investigated the protective effects of this PLA against S. Typhimurium-induced colitis in mice. An infection model was established using female C57BL/6J mice by oral administration of 109 CFU mL-1 of S. Typhimurium, and PLA was supplied for 10 days after infection. In colitic mice, PLA administration reduced the disease activity index, prevented the colon shortening and spleen enlargement, decreased liver enzyme (AST and ALT) activities, and alleviated the colonic tissue damage. RT-qPCR analysis showed that PLA significantly down-regulated the levels of NF-κB, TLR4 and pro-inflammatory cytokines (IFN-γ, IL-1β and TNF-α), but stimulated the mRNA expression of the anti-inflammatory cytokine IL-10. Changes in intestinal microecology were analyzed by 16S rRNA sequencing. PLA modulated colonic microbiota dysbiosis by increasing the abundance of Lactobacillus, Butyricicoccus and Roseburia, and reducing Salmonella and Alloprevotella at the genus level. In addition, PLA significantly increased the concentrations of short-chain fatty acids (SCFAs) in the colon, especially propionic acid and butyric acid. These findings revealed that PLA has potential benefits on alleviating S. Typhimurium-induced colitis mainly through intestinal microbiota regulation and inflammation elimination, providing a new perspective for the NTS infection treatment strategy.
Collapse
Affiliation(s)
- Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Rongcheng Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Bingyao Xue
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
49
|
Gut Microbiome in a Russian Cohort of Pre- and Post-Cholecystectomy Female Patients. J Pers Med 2021; 11:jpm11040294. [PMID: 33921449 PMCID: PMC8070538 DOI: 10.3390/jpm11040294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.
Collapse
|
50
|
Wu J, Zhou X, Dou Z, Wu T, Liu R, Sui W, Zhang M. Different Molecular Weight Black Garlic Melanoidins Alleviate High Fat Diet Induced Circadian Intestinal Microbes Dysbiosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3069-3081. [PMID: 33661003 DOI: 10.1021/acs.jafc.0c07723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to explore the effects of different molecular weight black garlic melanoidins (MLDs) on high fat diet (HFD) induced dysrhythmia of intestinal microorganisms. The results showed that a HFD disturbed the periodic fluctuation of the gut microbiome and that oral gavage of low molecular weight melanoidin (LMM) or high molecular weight melanoidin (HMM) reversed these cyclical variations in part, which resulted in an increase in the number of bacteria producing short-chain fatty acids (SCFAs) and a decrease in the oscillation of inflammation-related bacteria within a specific time period over the course of 1 day. Moreover, structural analysis showed different structure characterizations of LMM and HMM, which are related to the differences in flora oscillation. Therefore, the data showed that LMM and HMM relieve the circadian rhythm disorder of intestinal microbiota induced by a HFD in mice, which supported the further study of MLDs as a new dietary assistant strategy to improve chronic diseases.
Collapse
Affiliation(s)
- Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaodan Zhou
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zishan Dou
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
- Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|