1
|
Ma Z, Wang W, Chen X, Gehman K, Yang H, Yang Y. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change. PEST MANAGEMENT SCIENCE 2024; 80:5759-5770. [PMID: 38989640 DOI: 10.1002/ps.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Climate change significantly impacts global maize production via yield reduction, posing a threat to global food security. Disease-related crop damage reduces quality and yield and results in economic losses. However, the occurrence of diseases caused by climate change, and thus crop yield loss, has not been given much attention. RESULTS This study aims to investigate the potential impact of six major diseases on maize yield loss over the next 20 to 80 years under climate change. To this end, the Maximum Entropy model was implemented, based on Coupled Model Intercomparison Project 6 data. The results indicated that temperature and precipitation are identified as primary limiting factors for disease onset. Southern corn rust was projected to be the most severe disease in the future; with a few of the combined occurrence of all the selected diseases covered in this study were predicted to progressively worsen over time. Yield losses caused by diseases varied per continent, with North America facing the highest loss, followed by Asia, South America, Europe, Africa, and Oceania. CONCLUSION This study provides a basis for regional projections and global control of maize diseases under future climate conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihui Ma
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| | - Wenbao Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| | - Xuanjing Chen
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China (Ministry of Agriculture and Rural Affairs), Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Hua Yang
- Corn Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Parada J, Tortella G, Seabra AB, Fincheira P, Rubilar O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics (Basel) 2024; 13:215. [PMID: 38534650 DOI: 10.3390/antibiotics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.
Collapse
Affiliation(s)
- Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|
4
|
Mohammadi S, Jabbari F, Cidonio G, Babaeipour V. Revolutionizing agriculture: Harnessing nano-innovations for sustainable farming and environmental preservation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105722. [PMID: 38225077 DOI: 10.1016/j.pestbp.2023.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
The agricultural sector is currently confronted with a significant crisis stemming from the rapid changes in climate patterns, declining soil fertility, insufficient availability of essential macro and micronutrients, excessive reliance on chemical fertilizers and pesticides, and the presence of heavy metals in soil. These numerous challenges pose a considerable threat to the agriculture industry. Furthermore, the exponential growth of the global population has led to a substantial increase in food consumption, further straining agricultural systems worldwide. Nanotechnology holds great promise in revolutionizing the food and agriculture industry, decreasing the harmful effects of agricultural practices on the environment, and improving productivity. Nanomaterials such as inorganic, lipid, and polymeric nanoparticles have been developed for increasing productivity due to their unique properties. Various strategies can enhance product quality, such as the use of nano-clays, nano zeolites, and hydrogel-based materials to regulate water absorption and release, effectively mitigating water scarcity. The production of nanoparticles can be achieved through various methods, each of which has its own unique benefits and limitations. Among these methods, chemical synthesis is widely favored due to the impact that various factors such as concentration, particle size, and shape have on product quality and efficiency. This review provides a detailed examination of the roles of nanotechnology and nanoparticles in sustainable agriculture, including their synthetic methods, and presents an analysis of their associated advantages and disadvantages. To date, there are serious concerns and awareness about healthy agriculture and the production of healthy products, therefore the development of nanotech-enabled devices that act as preventive and early warning systems to identify health issues, offering remedial measures is necessary.
Collapse
Affiliation(s)
- Sajad Mohammadi
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Italy
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran 14155-4777, Iran
| | - Gianluca Cidonio
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran 14155-4777, Iran.
| |
Collapse
|
5
|
Proshad R, Dey HC, Khan MSU, Baroi A, Kumar S, Idris AM. Source-oriented risks apportionment of toxic metals in river sediments of Bangladesh: a national wide application of PMF model and pollution indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6769-6792. [PMID: 36633753 DOI: 10.1007/s10653-022-01455-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Intense human activities, particularly industrial and agricultural output, has enriched metal(loid)s in riverine sediment and endangered aquatic ecosystems and human health. Promoting proper river management requires an assessment of the possible ecological hazards and pollution posed by metal(loid)s in sediments. However, there are limited large-scale risk assessments of metal(loid)s contamination in riverine sediment in heavily populated nations like Bangladesh. This study compiled data on sediment metal(loid)s, for example, Cd, As, Cu, Ni, Cr, Pb, Mn, and Zn, from 24 major rivers located across Bangladesh between 2011 and 2022 and applied positive matrix factorization (PMF) to identify the critical metal(loid)s sources and PMF model-based ecological risks. Based on studied metal(loid)s, 12-78% of rivers posed higher contents than the upper continental crust and 8% of the river sediments for Cr and Ni, whereas 4% for Cd and As exceeded probable effect concentration. Cr and Ni in the sum of toxic units (STU), whereas Mn, As and Cd in potential ecological risk (PER) posed the highest contribution to contaminate sediments. In the studied rivers, sediment contaminant Mn derived from natural sources; Zn and Ni originated from mixed sources; Cr and Cu were released from the tannery and industrial emissions and Cd originated from agricultural practices. Source-based PER and NIRI indicated that mixed source (4% rivers) and tannery and industrial emission (4% rivers) posed very high risks in sediments. For the creation of macroscale policies and the restoration of contaminated rivers, our national-scale comprehensive study offers helpful references.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sazal Kumar
- University of Newcastle, NSW, 2308, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
6
|
Comi M, Becot F, Bendixsen C. Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4778. [PMID: 36981685 PMCID: PMC10049460 DOI: 10.3390/ijerph20064778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, we first assess the state of agricultural health and safety research as it pertains to the dynamic challenges facing automating agriculture on a warming planet. Then, we turn to social science fields such as rural sociology, science and technology studies, and environmental studies to leverage relevant insights on the introduction of new technologies, environmental risks, and associated workplace hazards. Increased rates of automation in agriculture alongside new risks associated with climate change create the need for anticipatory governance and adaptive research to study novel mechanisms of worker health and safety. The use of the PRISMA framework led to the 137 articles for our review. We identify three themes in the literature on agricultural health and safety: (1) adoption outcomes, (2) discrete cases of health risks, and (3) an emphasis on care and wellbeing in literature on dairy automation Our review led to the identification of research gaps, noting that current research (a) tends to examine these forces separately, instead of together, (b) has not made robust examination of these forces as socially embedded, and (c) has hesitated to examine the broad, transferable themes for how these forces work across industries. In response to these gaps, we suggest that attention to outside disciplines may provide agricultural health and safety research with a toolset to examine needed inquiry into the multiplicity of experiences of rural stakeholders, the industry specific problems arising from automation and climate change, and the socially embedded aspects of agricultural work in the future.
Collapse
|
7
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
8
|
Wen Q, Zhao H, Shao Y, Li J, Hu Y, Qi Y, Wang F, Shen J. Heat stress and excessive maturity of fruiting bodies suppress GABA accumulation by modulating GABA metabolism in Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. Food Res Int 2023; 165:112549. [PMID: 36869537 DOI: 10.1016/j.foodres.2023.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
GABA is a health-promoting bioactive substance. Here, the GABA biosynthetic pathways were investigated, and then the dynamic quantitative changes in GABA and the expression levels of genes related to GABA metabolism under heat stress or at different developmental stages of fruiting bodies in Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm were determined. We found that the polyamine degradation pathway was the main route of GABA production under growth normal condition. The accumulation of GABA and the expression of most genes related to GABA biosynthesis, including genes encoding glutamate decarboxylase (PoGAD-2), polyamine oxidase (PoPAO-1), diamine oxidase (PoDAO) and aminoaldehyde dehydrogenase (PoAMADH-1 and PoAMADH-2), were significantly suppressed by heat stress and the excessive maturity of fruiting bodies. Finally, the effects of GABA on the mycelial growth, heat tolerance and the morphogenesis and development of fruiting bodies were studied, the results showed that the deficiency of endogenous GABA inhibited the mycelial growth and primordial formation and aggravated heat damage, whereas exogenous application of GABA could improve thermotolerance and promote the development of fruiting bodies.
Collapse
Affiliation(s)
- Qing Wen
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China.
| | - Haoyang Zhao
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Yanhong Shao
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Jiatao Li
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Yanru Hu
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Yuancheng Qi
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Fengqin Wang
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China
| | - Jinwen Shen
- College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, PR China.
| |
Collapse
|
9
|
Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160476. [PMID: 36436627 DOI: 10.1016/j.scitotenv.2022.160476] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.
Collapse
Affiliation(s)
- Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh 211007, India.
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, SP6 Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
10
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Zhang L, Wu J. Less is more: Vital roles of bioactive equivalency in assessing food quality. EFOOD 2022. [DOI: 10.1002/efd2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macao China
| | - Jian‐Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macao China
| |
Collapse
|
12
|
Joo K, Lee J(J, Hwang J. NAM and TPB Approach to Consumers' Decision-Making Framework in the Context of Indoor Smart Farm Restaurants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14604. [PMID: 36361490 PMCID: PMC9654818 DOI: 10.3390/ijerph192114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The movement toward smart farming, which has productivity and eco-friendly roles, is emerging in the foodservice industry in the form of indoor smart farm restaurants. The purpose of this study was to investigate the consumer decision-making processes in the context of indoor smart farm restaurants. The investigational framework was designed around the norm activation model (NAM) and the theory of planned behavior (TPB), with the moderating role of age. In particular, this study merged NAM and TPB to assess the effect of awareness of consumption consequences on consumers' attitudes as well as the role played by subjective norms in the formation of personal norms. Data were collected from 304 respondents in South Korea. As a result of structural equation modeling, the proposed hypotheses of causal relationships were generally supported, excluding only the relationship between subjective norm and behavioral intention. The moderating role of age was identified in the relationships between (1) subjective norm and attitude, and (2) personal norm and behavioral intention. This study presents not only theoretical contributions as the first empirical study on consumer behavior in the context of indoor smart farm restaurants but also presents practical suggestions from the perspective of green marketing.
Collapse
Affiliation(s)
- Kyuhyeon Joo
- The College of Hospitality and Tourism Management, Sejong University, Seoul 143747, Korea
| | - Junghoon (Jay) Lee
- School of Hospitality Leadership, East Carolina University, 306 Rivers Building, Greenville, NC 27858-4353, USA
| | - Jinsoo Hwang
- The College of Hospitality and Tourism Management, Sejong University, Seoul 143747, Korea
| |
Collapse
|
13
|
Mechanisms of Kale (Brassica oleracea var. acephala) Tolerance to Individual and Combined Stresses of Drought and Elevated Temperature. Int J Mol Sci 2022; 23:ijms231911494. [PMID: 36232818 PMCID: PMC9570052 DOI: 10.3390/ijms231911494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Rising temperatures and pronounced drought are significantly affecting biodiversity worldwide and reducing yields and quality of Brassica crops. To elucidate the mechanisms of tolerance, 33 kale accessions (B. oleracea var. acephala) were evaluated for individual (osmotic and elevated temperature stress) and combined stress (osmotic + temperature). Using root growth, biomass and proline content as reliable markers, accessions were evaluated for stress responses. Four representatives were selected for further investigation (photosynthetic performance, biochemical markers, sugar content, specialized metabolites, transcription level of transcription factors NAC, HSF, DREB and expression of heat shock proteins HSP70 and HSP90): very sensitive (392), moderately sensitive (395), tolerant (404) and most tolerant (411). Accessions more tolerant to stress conditions were characterized by higher basal content of proline, total sugars, glucosinolates and higher transcription of NAC and DREB. Under all stress conditions, 392 was characterized by a significant decrease in biomass, root growth, photosynthesis performance, fructan content, especially under osmotic and combined stress, a significant increase in HSF transcription and HSP accumulation under temperature stress and a significant decrease in NAC transcription under all stresses. The most tolerant accession under all applied stresses, 411 showed the least changes in all analyzed parameters compared with the other accessions.
Collapse
|
14
|
Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption. SUSTAINABILITY 2022. [DOI: 10.3390/su14148410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current scenario, climatic adversities and a growing population are adding woes to the concerns of food safety and security. Furthermore, with the implementation of Sustainable Development Goal (SDG) 12 by the United Nations (UN), focusing on sustainable production–consumption, climatic vulnerabilities need to be addressed. Hence, in order to map the sustainable production–consumption avenues, agricultural practices need to be investigated for practices like Climate-Smart Agriculture (CSA). A need has arisen to align the existing agricultural practices in the developing nation towards the avenues of CSA, in order to counter the abrupt climatic changes. Addressing the same, a relation hierarchical model is developed which clusters the various governing criteria and their allied attributes dedicated towards the adoption of CSA practices. Furthermore, the developed model is contemplated for securing the primacies of promising practices for the enactment of CSA using the duo of the Analytical Hierarchical Process (AHP) and Fuzzy AHP (FAHP). The outcomes result in the substantial sequencing of the key attributes acting as a roadmap toward the CSA. This emphasizes the adoption of knowledge-based smart practices, which leaps from the current agricultural practices toward the CSA. Furthermore, by intensifying the utilization of the improved and resilient seed varieties and implying the fundamentals of agroforestry, we secure primacy to counter the adversities of the climate.
Collapse
|
15
|
Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. PLANTS (BASEL, SWITZERLAND) 2022; 11:1297. [PMID: 35631721 PMCID: PMC9146367 DOI: 10.3390/plants11101297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Technological applications in agriculture have evolved substantially to increase crop yields and quality to meet global food demand. Conventional techniques, such as seed saving, selective breeding, and mutation breeding (variation breeding), have dramatically increased crop production, especially during the 'Green Revolution' in the 1990s. However, newer issues, such as limited arable lands, climate change, and ever-increasing food demand, pose challenges to agricultural production and threaten food security. In the following 'Gene Revolution' era, rapid innovations in the biotechnology field provide alternative strategies to further improve crop yield, quality, and resilience towards biotic and abiotic stresses. These innovations include the introduction of DNA recombinant technology and applications of genome editing techniques, such as transcription activator-like effector (TALEN), zinc-finger nucleases (ZFN), and clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR/Cas) systems. However, the acceptance and future of these modern tools rely on the regulatory frameworks governing their development and production in various countries. Herein, we examine the evolution of technological applications in agriculture, focusing on the motivations for their introduction, technical challenges, possible benefits and concerns, and regulatory frameworks governing genetically engineered product development and production.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nazrin Abd-Aziz
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Teen-Lee Pua
- Topplant Laboratories Sdn. Bhd., Jalan Ulu Beranang, Negeri Sembilan 71750, Malaysia;
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
16
|
Green O, Finkelstein P, Rivero-Crespo MA, Lutz MDR, Bogdos MK, Burger M, Leroux JC, Morandi B. Activity-Based Approach for Selective Molecular CO 2 Sensing. J Am Chem Soc 2022; 144:8717-8724. [PMID: 35503368 DOI: 10.1021/jacs.2c02361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon dioxide (CO2) impacts every aspect of life, and numerous sensing technologies have been established to detect and monitor this ubiquitous molecule. However, its selective sensing at the molecular level remains an unmet challenge, despite the tremendous potential of such an approach for understanding this molecule's role in complex environments. In this work, we introduce a unique class of selective fluorescent carbon dioxide molecular sensors (CarboSen) that addresses these existing challenges through an activity-based approach. Besides the design, synthesis, and evaluation of these small molecules as CO2 sensors, we demonstrate their utility by tailoring their reactivity and optical properties, allowing their use in a broad spectrum of multidisciplinary applications, including atmospheric sensing, chemical reaction monitoring, enzymology, and live-cell imaging. Collectively, these results showcase the potential of CarboSen sensors as broadly applicable tools to monitor and visualize carbon dioxide across multiple disciplines.
Collapse
Affiliation(s)
- Ori Green
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Patrick Finkelstein
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Miguel A Rivero-Crespo
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Marius D R Lutz
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Michael K Bogdos
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Bill Morandi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| |
Collapse
|
17
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
18
|
A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Taren D, Akseer N, Davis CD, Miller JW, Moustaid-Moussa N, Novotny R, Slupsky CM, Saroja Voruganti V, Cameron JM. Eighty years of nutritional sciences, and counting. Nutr Rev 2021; 80:1-5. [PMID: 34891168 DOI: 10.1093/nutrit/nuab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Douglas Taren
- Department of Pediatrics Nutrition Section, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nadia Akseer
- Modern Scientist Global and the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cindy D Davis
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, College of Human Services and the Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Rachel Novotny
- Human Nutrition, Food and Animal Sciences Department, College of Tropical Agriculture and Human Resources, and the Children's Healthy Living Center of Excellence, University of Hawaii at Mānoa, Honolulu, Hawaii, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, California, USA
| | - V Saroja Voruganti
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Kannapolis, North Carolina, USA
| | - James M Cameron
- International Life Sciences Institute, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Carbajal-Valenzuela IA, Medina-Ramos G, Caicedo-Lopez LH, Jiménez-Hernández A, Ortega-Torres AE, Contreras-Medina LM, Torres-Pacheco I, Guevara-González RG. Extracellular DNA: Insight of a Signal Molecule in Crop Protection. BIOLOGY 2021; 10:biology10101022. [PMID: 34681122 PMCID: PMC8533321 DOI: 10.3390/biology10101022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Agriculture systems use multiple chemical treatments to prevent pests and diseases, and to fertilize plants and eliminate weeds around the crop. These practices are less accepted by the consumers each day, mostly because of the associated environmental, health, and ecological impact; thus, new sustainable green technologies are being developed to replace the use of chemical products. Among green technologies for agriculture practices, the use of plant elicitors represents an alternative with great potential, and extracellular DNA has shown beneficial effects on important production traits such as defence mechanisms, plant growth and development, and secondary metabolites production that results in yield increment and better-quality food. In this review, we reunite experimental evidence of the natural effect that extracellular DNA has on plants. We also aim to contribute a step closer to the agricultural application of extracellular DNA. Additionally, we suggest that extracellular DNA can have a biostimulant effect on plants, and can be applied as a highly sustainable treatment contributing to the circular economy of primary production. Abstract Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.
Collapse
Affiliation(s)
- Ireri Alejandra Carbajal-Valenzuela
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Gabriela Medina-Ramos
- Molecular Plant Pathology Laboratory, Polytechnic University of Guanajuato, Cortazar 38496, Mexico
- Correspondence: (G.M.-R.); or (R.G.G.-G.); Tel.: +52-1-461-441-4300 (G.M.-R.); +52-1-442-192-1200 (ext. 6093) (R.G.G.-G.)
| | - Laura Helena Caicedo-Lopez
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Alejandra Jiménez-Hernández
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Adrian Esteban Ortega-Torres
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Luis Miguel Contreras-Medina
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Irineo Torres-Pacheco
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Ramón Gerardo Guevara-González
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
- Correspondence: (G.M.-R.); or (R.G.G.-G.); Tel.: +52-1-461-441-4300 (G.M.-R.); +52-1-442-192-1200 (ext. 6093) (R.G.G.-G.)
| |
Collapse
|
21
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
22
|
Ashaolu TJ, Ashaolu JO. Perspectives on the trends, challenges and benefits of green, smart and organic (GSO) foods. Int J Gastron Food Sci 2020; 22:100273. [PMID: 33101552 PMCID: PMC7574864 DOI: 10.1016/j.ijgfs.2020.100273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Rapid rate of industrialization has turned our planet around in favor of fast foods, food fraud, food terrorism, food waste, food adulteration, food poisoning, food contamination and food injustice, paving the path for green, smart and organic products. Green foods are grown and harvested in the absence of any form of environmental pollution or harmful conditions. Smart foods are termed to be good for the consumers, farmers and the planet. Organic foods are regarded as “credence goods” because some of the attributes that consumers may consider are neither obvious nor easily verified. Therefore, these three terms are interconnected as they forge a substantive common denominator - healthfulness. The concepts of green, smart and organic (GSO) foods are herein recounted together with their interdependence and relationship to health and sustainability. The processes, policies and global trends of GSO foods were discussed, whilst not undermining the benefits and challenges associated with them.
Collapse
Affiliation(s)
- Tolulope J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Impact of the SARS-CoV-2 on the Italian Agri-Food Sector: An Analysis of the Quarter of Pandemic Lockdown and Clues for a Socio-Economic and Territorial Restart. SUSTAINABILITY 2020. [DOI: 10.3390/su12145651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent outbreak of a new Coronavirus has developed into a global pandemic with about 10.5 million reported cases and over 500,000 deaths worldwide. Our prospective paper reports an updated analysis of the impact that this pandemic had on the Italian agri-food sector during the national lockdown and discusses why and how this unprecedented economic crisis could be a turning point to deal with the overall sustainability of food and agricultural systems in the frame of the forthcoming European Green Deal. Its introductory part includes a wide-ranging examination of the first quarter of pandemic emergency, with a specific focus on the primary production, to be understood as agriculture (i.e., crops and livestock, and their food products), fisheries, and forestry. The effect on the typical food and wine exports, and the local environment tourism segments is also taken into account in this analysis, because of their old and deep roots into the cultural and historical heritage of the country. The subsequent part of the paper is centered on strategic lines and research networks for an efficient socio-economic and territorial restart, and a faster transition to sustainability in the frame of a circular bio-economy. Particular emphasis is given to the urgent need of investments in research and development concerning agriculture, in terms of not only a fruitful penetration of the agro-tech for a next-generation agri-food era, but also a deeper attention to the natural and environmental resources, including forestry. As for the rest of Europe, Italy demands actions to expand knowledge and strengthen research applied to technology transfer for innovation activities aimed at providing solutions for a climate neutral and resilient society, in reference to primary production to ensure food security and nutrition quality. Our expectation is that science and culture return to play a central role in national society, as their main actors are capable of making a pivotal contribution to renew and restart the whole primary sector and agri-food industry, addressing also social and environmental issues, and so accelerating the transition to sustainability.
Collapse
|