1
|
Baker EJ, Calder PC, Kermack AJ, Brown JE, Mustapha M, Kitson-Reynolds E, Garvey JJ. Omega-3 LC-PUFA consumption is now recommended for women of childbearing age and during pregnancy to protect against preterm and early preterm birth: implementing this recommendation in a sustainable manner. Front Nutr 2024; 11:1502866. [PMID: 39677502 PMCID: PMC11639083 DOI: 10.3389/fnut.2024.1502866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Preterm birth (delivery prior to 37 weeks) appears to be rising globally, increasing the risk of a myriad of down-stream disorders which affect families, their offspring and society, including increased morbidity, mortality and economic costs. Strategies for prevention of preterm birth have therefore become a priority among healthcare providers. One proposed strategy is increased consumption of Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA) (from food or supplements) in women of childbearing age and during pregnancy. It is hypothesized that Omega-3 LC-PUFAs, through several different actions, reduce the risk of early onset labor or lengthen gestation. An expert group, acting on behalf of several relevant organizations, recently published guidance based on compelling trial evidence for increased Omega-3 LC-PUFA intake to protect women of childbearing age and during pregnancy from preterm birth (PTB) and early preterm birth (ePTB). Here, we consider how this guidance can be achieved in a sustainable manner. We present data on suitable, efficacious alternatives to fish as a source of Omega-3 LC-PUFAs, so that while aiming to protect families and society against PTB and ePTB there is no increased burden on other species on our vulnerable planet. Finally, how the guidance can be implemented in practice is discussed, with consideration for those most at risk and effective ways of communicating this important message.
Collapse
Affiliation(s)
- Ella J. Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Alex J. Kermack
- Department of Obstetrics and Gynaecology, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- School of Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan E. Brown
- Department of Nutrition, Food and Exercise, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Moriam Mustapha
- London Neonatal Operational Delivery Network, London, United Kingdom
| | - Ellen Kitson-Reynolds
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
2
|
Wang Y, Wang Y, Shehzad Q, Su Y, Xu L, Yu L, Zeng W, Fang Z, Wu G, Wei W, Jin Q, Zhang H, Wang X. Does omega-3 PUFAs supplementation improve metabolic syndrome and related cardiovascular diseases? A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2024; 64:9455-9482. [PMID: 37222574 DOI: 10.1080/10408398.2023.2212817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Literature is inconsistent regarding the effects of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation on patients with metabolic syndrome (MetS) and related cardiovascular diseases (CVDs). Therefore, the aim of this systematic review and meta-analysis is to summarize data from available randomized controlled trials (RCTs) on the effect of omega-3 PUFAs on lipid profiles, blood pressure, and inflammatory markers. We systematically searched PubMed, Embase, and Cochrane Library databases to identify the relevant RCTs until 1 November 2022. Weighed mean difference (WMD) was combined using a random-effects model. Standard methods were applied to assess publication bias, sensitivity analysis, and heterogeneity among included studies. A total of 48 RCTs involving 8,489 subjects met the inclusion criteria. The meta-analysis demonstrated that omega-3 PUFAs supplementation significantly reduced triglyceride (TG) (WMD: -18.18 mg/dl; 95% CI: -25.41, -10.95; p < 0.001), total cholesterol (TC) (WMD: -3.38 mg/dl; 95% CI: -5.97, -0.79; p = 0.01), systolic blood pressure (SBP) (WMD: -3.52 mmHg; 95% CI: -5.69, -1.35; p = 0.001), diastolic blood pressure (DBP) (WMD: -1.70 mmHg; 95% CI: -2.88, -0.51; p = 0.005), interleukin-6 (IL-6) (WMD: -0.64 pg/ml; 95% CI: -1.04, -0.25; p = 0.001), tumor necrosis factor-α (TNF-α) (WMD: -0.58 pg/ml; 95% CI: -0.96, -0.19; p = 0.004), C-reactive protein (CRP) (WMD: -0.32 mg/l; 95% CI: -0.50, -0.14; p < 0.001), and interleukin-1 (IL-1) (WMD: -242.95 pg/ml; 95% CI: -299.40, -186.50; p < 0.001), and significantly increased in high-density lipoprotein (HDL) (WMD: 0.99 mg/dl; 95% CI: 0.18, 1.80; p = 0.02). However, low-density lipoprotein (LDL), monocyte chemoattractant protein-1 (MCP-1), intracellular adhesion molecule-1 (ICAM-1), and soluble endothelial selectin (sE-selectin) were not affected. In subgroup analyses, a more beneficial effect on overall health was observed when the dose was ≤ 2 g/day; Omega-3 PUFAs had a stronger anti-inflammatory effect in patients with CVDs, particularly heart failure; Supplementation with omega-3 PUFAs was more effective in improving blood pressure in MetS patients and blood lipids in CVDs patients, respectively. Meta-regression analysis showed a linear relationship between the duration of omega-3 PUFAs and changes in TG (p = 0.023), IL-6 (p = 0.008), TNF-α (p = 0.005), and CRP (p = 0.025). Supplementation of omega-3 PUFAs had a favorable effect on improving TG, TC, HDL, SBP, DBP, IL-6, TNF-α, CRP, and IL-1 levels, yet did not affect LDL, MCP-1, ICAM-1, and sE-selectin among patients with MetS and related CVDs.
Collapse
Affiliation(s)
- Yongjin Wang
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qayyum Shehzad
- National Engineering Laboratory for Agri-product quality Traceability, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Yijia Su
- College of Fashion and Art Design, Minnan University of Science and Technology, Fujian, China
| | - Lirong Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Le Yu
- Jiahe Foods Industry CO., LTD, Suzhou, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, State Key Lab of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Casula M, Fais G, Manis C, Scano P, Concas A, Cao G, Caboni P. The production of FAHFA is enhanced when Haematococcus pluvialis is grown in CO 2. Food Chem 2024; 449:139165. [PMID: 38574520 DOI: 10.1016/j.foodchem.2024.139165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.
Collapse
Affiliation(s)
- Mattia Casula
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy
| | - Paola Scano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy
| | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giacomo Cao
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy.
| |
Collapse
|
4
|
Yan R, Song Y, Liu D, Yu W, Sun Y, Tang C, Yang X, Ding W, Yu N, Zhang Z, Ling M, Li X, Zhao C, Xing Y. Multi-omics reveals the role of MCM2 and hnRNP K phosphorylation in mouse renal aging through genomic instability. Exp Cell Res 2024; 440:114115. [PMID: 38844260 DOI: 10.1016/j.yexcr.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related β-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Collapse
Affiliation(s)
- Rong Yan
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yiping Song
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Liu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenzhuo Yu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Congmin Tang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuechun Yang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjing Ding
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan, China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Ling
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqiu Xing
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Takić M, Ranković S, Girek Z, Pavlović S, Jovanović P, Jovanović V, Šarac I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int J Mol Sci 2024; 25:4909. [PMID: 38732139 PMCID: PMC11084241 DOI: 10.3390/ijms25094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.
Collapse
Affiliation(s)
- Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Slavica Ranković
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Zdenka Girek
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Suzana Pavlović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| | - Petar Jovanović
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuska 1, 11000 Belgrade, Serbia; (S.R.); (S.P.); (P.J.); (I.Š.)
| |
Collapse
|
6
|
Barathikannan K, Chelliah R, Vinothkanna A, Prathiviraj R, Tyagi A, Vijayalakshmi S, Lim MJ, Jia AQ, Oh DH. Untargeted metabolomics-based network pharmacology reveals fermented brown rice towards anti-obesity efficacy. NPJ Sci Food 2024; 8:20. [PMID: 38555366 PMCID: PMC10981755 DOI: 10.1038/s41538-024-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024] Open
Abstract
There is a substantial rise in the global incidence of obesity. Brown rice contains metabolic substances that can help minimize the prevalence of obesity. This study evaluated nine brown rice varieties using probiotic fermentation using Pediococcus acidilacti MNL5 to enhance bioactive metabolites and their efficacy. Among the nine varieties, FBR-1741 had the highest pancreatic lipase inhibitory efficacy (87.6 ± 1.51%), DPPH assay (358.5 ± 2.80 mg Trolox equiv./100 g, DW), and ABTS assay (362.5 ± 2.32 mg Trolox equiv./100 g, DW). Compared to other fermented brown rice and FBR-1741 varieties, UHPLC-Q-TOF-MS/MS demonstrated significant untargeted metabolite alterations. The 17 most abundant polyphenolic metabolites in the FBR-1741 variety and 132 putative targets were assessed for obesity-related target proteins, and protein interaction networks were constructed using the Cystoscope software. Network pharmacology analysis validated FBR-1741 with active metabolites in the C. elegans obesity-induced model. Administration of FBR-1741 with ferulic acid improved lifespan decreased triglycerides, and suppressed the expression of fat-related genes. The enhanced anti-obesity properties of FBR-1741 suggest its implementation in obesity-functional food.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon, 24341, Korea
- Saveetha School of Engineering, Saveetha (SIMATS) University, Tamil Nadu, 600124, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, 24341, South Korea
| | - Annadurai Vinothkanna
- School of Life Sciences, Hainan University, 570228, Haikou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | | | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Min-Jin Lim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Deog- Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
7
|
Wei B, Peng Z, Zheng W, Yang S, Wu M, Liu K, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice: Insights from microbiome and metabolomics. Food Chem 2024; 436:137719. [PMID: 37839120 DOI: 10.1016/j.foodchem.2023.137719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Probiotic-fermented plant-based foods are associated with weight loss. Here, we hypothesized probiotic-fermented tomato (FT) as a functional food with potential to alleviate obesity, thus the obesity-alleviating effects and mechanisms of FT on high-fat diet-induced obese mice were explored via biochemical, gut microbiome, and serum metabolomics analysis. The results showed that FT performed better than unfermented tomato in reducing body weight gain and fat accumulation, improving dyslipidemia and glucose homeostasis, and relieving inflammation and adipocytokine dysregulation. Particularly, live probiotic-fermented tomato (LFT) was associated with improved diversity, composition, and structure of gut microbiota, suppressed obesity-related genera growth (e.g., Clostridium, Olsenella, and Mucispirillum), and promoted beneficial genera growth (e.g., Roseburia, Coprococcus, and Oscillospira), which were associated negatively with body weight, TC, TG, and TNF-α levels. Additionally, LFT was associated with positive changes in glycerophospholipids, sphingolipids, unsaturated fatty acids, and amino acids levels. Collectively, as a functional food, LFT possessed potential for obesity alleviation.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Min Wu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Kui Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
8
|
Anneke, Kim HJ, Kim D, Shin DJ, Do KT, Yang CB, Jeon SW, Jung JH, Jang A. Characteristics of Purified Horse Oil by Supercritical Fluid Extraction with Different Deodorants Agents. Food Sci Anim Resour 2024; 44:443-463. [PMID: 38764514 PMCID: PMC11097038 DOI: 10.5851/kosfa.2024.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
This study investigated the impact of activated carbon, palm activated carbon, and zeolite on horse oil (HO) extracted from horse neck fat using supercritical fluid extraction with deodorant-untreated HO (CON) as a comparison. The yield and lipid oxidation of deodorant untreated HO (CON) were not significantly affected by the three deodorants. However, deodorant-treated HOs exhibited significantly elevated levels of α-linolenic acid (C18:3n3) and eicosenoic acid (C20:1n9) compared to CON (p<0.05), while other fatty acids remained consistent. Zeolite-purified HO demonstrated significantly lower levels of volatile organic compounds (VOCs) than other treatments (p<0.05). Remarkably, zeolite decreased the concentration of pentane, 2,3-dimethyl (gasoline odor), by over 90%, from 177.17 A.U. ×106 in CON to 15.91 A.U. ×106. Zeolite also effectively eliminates sec-butylamine (ammonia and fishy odor) as compared to other deodorant-treated HOs (p<0.05). Additionally, zeolite reduced VOCs associated with the fruity citrus flavor, such as nonanal, octanal, and D-limonene in HO (p<0.05). This study suggests that integrating zeolite in supercritical fluid extraction enhances HO purification by effectively eliminating undesirable VOCs, presenting a valuable approach for producing high-quality HO production in the cosmetic and functional food industries.
Collapse
Affiliation(s)
- Anneke
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Hye-Jin Kim
- Center for Food and Bioconvergence, Seoul
National University, Seoul 08826, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Kyoung-tag Do
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Chang-Beom Yang
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Sung-Won Jeon
- Major of Animal Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | | | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The very-long chain (VLC) omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) promote optimal development, physiological function and healthy ageing and help to manage disease. EPA and DHA are sourced mainly from fish, which is not sustainable. This review explores alternative sustainable sources. RECENT FINDINGS Recent research confirms that higher intake and status of EPA and DHA are associated with health benefits including lower risk of incident type-2 diabetes and cardiovascular disease mortality. Meta-analyses confirm benefits of intravenous EPA and DHA in hospitalized adults. Algal oils and seed oils from some genetically modified (GM) plants are sources of EPA and DHA. An oil from GM camelina showed equivalence with fish oil in human trials. Ahiflower oil, a source of stearidonic acid, had biological effects in experimental studies that might translate into health benefits. An intravenous lipid emulsion based on Ahiflower oil has been tested in experimental research. Pine nut oil (PNO) is a source of pinolenic acid, which is not an omega-3 PUFA but has similar actions. SUMMARY Algal oils, oils from GM seed crops, Ahiflower oil and other sources of stearidonic acid, and nonomega-3 oils including PNO, are plant-sourced sustainable alternatives to fish-sourced VLC omega-3 PUFAs.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Sokoła-Wysoczańska E, Czyż K, Wyrostek A. Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles-A Study on a Rat Model. Foods 2024; 13:385. [PMID: 38338520 PMCID: PMC10855811 DOI: 10.3390/foods13030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Dyslipidemia is a serious condition affecting an increasing number of people, and thus, preventive measures, including supplementation, are being developed. We aimed to compare the effect of linseed oil, its ethyl esters and fish oil supplementation on the serum lipid profiles of rats fed a high-fat diet. Wistar rats were divided into nine groups. Four of them were fed a high-fat diet for the whole experiment, four groups were fed a high-fat diet before the supplementation period and then the control one with supplements, and one was fed a control diet without supplements. The whole experiment lasted 12 weeks. A significant reduction in blood triglycerides, total cholesterol and the LDL fraction was noted in supplemented groups compared to the controls, especially in groups supplemented with ethyl esters of linseed oil and linseed oil compared to fish oil groups. The results were also more beneficial in groups where, in addition to supplementation, there was also a diet change from a high-fat diet to a control diet during the supplementation period. We may conclude that supplementation with omega-3 fatty acids, combined with a healthy diet, may be a good way of preventing or alleviating dyslipidemia.
Collapse
Affiliation(s)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland;
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland;
| |
Collapse
|
11
|
Moore E, Patanwala I, Jafari A, Davies IG, Kirwan RP, Newson L, Mazidi M, Lane KE. A systematic review and meta-analysis of randomized controlled trials to evaluate plant-based omega-3 polyunsaturated fatty acids in nonalcoholic fatty liver disease patient biomarkers and parameters. Nutr Rev 2024; 82:143-165. [PMID: 37290426 PMCID: PMC10777680 DOI: 10.1093/nutrit/nuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is prevalent in 25-30% of British and European populations, representing a potential global public health crisis. Marine omega-3 (n-3) polyunsaturated fatty acids offer well-evidenced benefits to NAFLD biomarkers; however, the effect of plant-based n-3 has not been evaluated with a systematic review and meta-analysis. OBJECTIVE The review aimed to systematically evaluate the effect of plant-based n-3 supplementation on NAFLD surrogate biomarkers and parameters. DATA SOURCES Medline (EBSCO), PubMed, CINAHL (EBSCO), Cochrane Central Register of Controlled Trials, the International Clinical Trials Registry Platform, and Google Scholar databases were searched to identify randomized controlled trials published between January 1970 and March 2022 evaluating the impact of plant-based n-3 interventions on diagnosed NAFLD. The review followed the PRISMA checklist and is PROSPERO registered (CRD42021251980). DATA EXTRACTION A random-effects model and generic inverse variance methods synthesized quantitative data, followed by a leave-one-out method for sensitivity analysis. We identified 986 articles; after the application of selection criteria, six studies remained with 362 patients with NAFLD. RESULTS The meta-analysis showed that plant-based n-3 fatty acid supplementation significantly reduced alanine aminotransferase (ALT) (mean difference: 8.04 IU/L; 95% confidence interval: 14.70, 1.38; I2 = 48.61%) and plasma/serum triglycerides (44.51 mg/dL; 95% confidence interval: -76.93, -12.08; I2 = 69.93%), alongside body-composition markers in patients with NAFLD (P < 0.05). CONCLUSION Plant-based n-3 fatty acid supplementation improves ALT enzyme biomarkers, triglycerides, body mass index, waist circumference, and weight loss when combined with lifestyle interventions to increase physical activity and a calorie-controlled diet. Further research is needed to identify the most effective plant-based n-3 sources in larger numbers of patients with NAFLD over longer study durations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021251980.
Collapse
Affiliation(s)
- Ella Moore
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ian G Davies
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Richard P Kirwan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lisa Newson
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Katie E Lane
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
12
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Yin S, Xu H, Xia J, Lu Y, Xu D, Sun J, Wang Y, Liao W, Sun G. Effect of Alpha-Linolenic Acid Supplementation on Cardiovascular Disease Risk Profile in Individuals with Obesity or Overweight: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2023; 14:1644-1655. [PMID: 37778442 PMCID: PMC10721518 DOI: 10.1016/j.advnut.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Overweight and obesity are highly prevalent worldwide and are associated with cardiovascular disease (CVD) risk factors, including systematic inflammation, dyslipidemia, and hypertension. Alpha-linolenic acid (ALA) is a plant-based essential polyunsaturated fatty acid associated with reduced CVD risks. This systematic review and meta-analysis aimed to investigate the effects of supplementation with ALA compared with the placebo on CVD risk factors in people with obesity or overweight (International Prospective Register of Systematic Reviews Registration No. CRD42023429563). This review included studies with adults using oral supplementation or food or combined interventions containing vegetable sources of ALA. All studies were randomly assigned trials with parallel or crossover designs. The Cochrane Collaboration tool was used for assessing the risk of bias (Version 1). PubMed, Web of Science, Embase, and Cochrane library databases were searched from inception to April 2023. Nineteen eligible randomized controlled trials, including 1183 participants, were included in the meta-analysis. Compared with placebo, dietary ALA supplementation significantly reduced C-reactive protein concentration (standardized mean difference [SMD] = -0.38 mg/L; 95% confidence interval [CI]: -0.72, -0.04), tumor necrosis factor-α concentration (SMD = -0.45 pg/mL; 95% CI: -0.73, -0.17), triglyceride in serum (SMD = -4.41 mg/dL; 95% CI: -5.99, -2.82), and systolic blood pressure (SMD = -0.37 mm Hg; 95% CI: -0.66, -0.08); but led to a significant increase in low-density lipoprotein cholesterol concentrations (SMD = 1.32 mg/dL; 95% CI: 0.05, 2.59). ALA supplementation had no significant effect on interleukin-6, diastolic blood pressure, total cholesterol, or high-density lipoprotein cholesterol (all P ≥ 0.05). Subgroup analysis revealed that ALA supplementation at a dose of ≥3 g/d from flaxseed and flaxseed oil had a more prominent effect on improving CVD risk profiles, particularly where the intervention duration was ≥12 wk and where the baseline CVD profile was poor.
Collapse
Affiliation(s)
- Shiyu Yin
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hai Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Department of Food Processing and Safety, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Jiayue Xia
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yifei Lu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jihan Sun
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wang Liao
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China; China-DRIs Expert Committee on Macronutrients, Chinese Nutrition Society, Beijing, China
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China; China-DRIs Expert Committee on Macronutrients, Chinese Nutrition Society, Beijing, China.
| |
Collapse
|
14
|
Liu H, Wang F, Xia H, Pan D, Yang L, Wang S, Zhao F, Sun G. Comparison of the effects of 3 kinds of oils rich in omega-3 polyunsaturated fatty acids on glycolipid metabolism and lipoprotein subfractions. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:2221-2231. [DOI: 10.1016/j.fshw.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
|
15
|
Xiao G, Xu A, Jiang J, Chen Z, Li Y, Li S, Chen W, Zhang J, Jia C, Zeng Z, Bi X. Metabolomics analysis delineates the therapeutic effects of Yinlan Tiaozhi capsule on triton WR-1339 -induced hyperlipidemia in mice. Front Pharmacol 2023; 14:1252146. [PMID: 37964876 PMCID: PMC10642944 DOI: 10.3389/fphar.2023.1252146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism resulting from abnormal blood lipid metabolism and is one of the most frequent metabolic diseases that endanger people's health. Yinlan Tiaozhi capsule (YL) is a formulated TCM widely used to treat hyperlipidemia. The purpose of this study was to discover biomarkers utilizing untargeted metabolomics techniques, as well as to analyze the mechanisms underlying the changes in metabolic pathways linked to lipid-lowering, anti-inflammation, and regulation of angiogenesis in hyperlipidemia mice. To assess the efficacy of YL, serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels were measured. Biochemical examinations showed that YL significantly reduced the levels of TC, TG, LDL-c, Il6, Tnf-α, and Vegfa in hyperlipidemia mice (p < 0.01). YL also significantly increased the levels of HDL-c and Alb (p < 0.01). Twenty-seven potential serum biomarkers associated with hyperlipidemia were determined. These differential metabolites were related to the reduction of serum lipid levels in hyperlipidemia mice, probably through metabolic pathways such as linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and D-glutamine and D-glutamate metabolism. Further correlation analysis showed that the serum lipid reduction through YL was related to the metabolites (amino acid metabolites, phospholipids metabolites, and fatty acids metabolites). The present study reveals that YL has a profound effect on alleviating triton WR-1339-induced hyperlipidemia, inflammation, and angiogenesis and that the positive effects of YL were primarily associated with the correction of metabolic abnormalities and the maintenance of metabolite dynamic balance.
Collapse
Affiliation(s)
- Guanlin Xiao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Aili Xu
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Jieyi Jiang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Yangxue Li
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Sumei Li
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Weitao Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Jingnian Zhang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Canchao Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoli Bi
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Shitanaka T, Higa L, Bryson AE, Bertucci C, Vande Pol N, Lucker B, Khanal SK, Bonito G, Du ZY. Flocculation of oleaginous green algae with Mortierella alpina fungi. BIORESOURCE TECHNOLOGY 2023; 385:129391. [PMID: 37364649 DOI: 10.1016/j.biortech.2023.129391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Microalgae are promising sources of valuable bioproducts such as biofuels, food, and nutraceuticals. However, harvesting microalgae is challenging due to their small size and low biomass concentrations. To address this challenge, bio-flocculation of starchless mutants of Chlamydomonas reinhardtii (sta6/sta7) was investigated with Mortierella alpina, an oleaginous fungus with high concentrations of arachidonic acid (ARA). Triacylglycerides (TAG) reached 85 % of total lipids in sta6 and sta7 through a nitrogen regime. Scanning electron microscopy determined cell-wall attachment and extra polymeric substances (EPS) to be responsible for flocculation. An algal-fungal biomass ratio around 1:1 (three membranes) was optimal for bio-flocculation (80-85 % flocculation efficiency in 24 h). Nitrogen-deprived sta6/sta7 were flocculated with strains of M. alpina (NVP17b, NVP47, and NVP153) with aggregates exhibiting fatty acid profiles similar to C. reinhardtii, with ARA (3-10 % of total fatty acids). This study showcases M. alpina as a strong bio-flocculation candidate for microalgae and advances a mechanistic understanding of algal-fungal interaction.
Collapse
Affiliation(s)
- Ty Shitanaka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Lauren Higa
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Abigail E Bryson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Conor Bertucci
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Natalie Vande Pol
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Ben Lucker
- Trait Biosciences, Los Alamos, NM 87544, United States
| | - Samir Kumar Khanal
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
17
|
Jia M, Xu T, Xu YJ, Liu Y. Dietary fatty acids activate or deactivate brown and beige fat. Life Sci 2023; 330:121978. [PMID: 37516433 DOI: 10.1016/j.lfs.2023.121978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Brown adipose tissue (BAT) and beige fat have been documented to rapidly consume fatty acids (FAs) rather than deposit of lipid, and they have high capacity to dissipate energy via nonshivering thermogenesis, making BAT and beige fat potential organs to fight obesity and related chronic diseases. As the main substrate for thermogenesis and the basic constituent unit of triacylglycerol, FAs could modify BAT and remodel white adipose tissue (WAT) to beige fat. However, there are few comprehensive review covering the link between dietary FAs and thermogenic adipocyte..In this review, we described the metabolism of thermogenic adipose upon activation and comprehensively summarized publications on the dietary FAs that activate or deactivate BAT and beige fat. Specifically, eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA), α-linolenic acid (α-ALA), conjugated linoleic acid (CLA), oleic acid (OA), long-chain saturated fatty acid (LC-SFA) and medium-chain fatty acid (MCFA). in addition, the influences on BAT function, WAT remodeling, and lipid metabolism, as well as delineated the possible mechanisms are also reviewed. Characterizing thermogenic or obesogenic dietary FAs may offer novel insight into dietary oil and nutritional treatment.
Collapse
Affiliation(s)
- Min Jia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Yong-Jiang Xu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
18
|
Wang Q, Wang X. The Effect of Plant-Derived Low-Ratio Linoleic Acid/α-Linolenic Acid on Markers of Glucose Controls: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14383. [PMID: 37762686 PMCID: PMC10532139 DOI: 10.3390/ijms241814383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this meta-analysis was to examine the impact of a low-ratio linoleic acid/α-linolenic acid (LA/ALA) diet on the glycemic profile of adults. A comprehensive search was performed across four databases (Web of Science, Scopus, Embase, and PubMed) to evaluate the influence of the low-ratio LA/ALA. Relevant references were screened up until February 2023. Intervention effects were analyzed by calculating change values as weighted mean differences (WMD) and 95% confidence intervals (CI) using fixed-effects models. Additionally, subgroup analysis and meta-regression were employed to investigate potential sources of heterogeneity. Twenty-one randomized controlled trials (RCTs) were included, and the low-ratio LA/ALA diet had no significant effect on fasting blood sugar (FBS, WMD: 0.00 mmol/L, 95% CI: -0.06, 0.06, p = 0.989, I2 = 0.0%), insulin levels (WMD: 0.20 μIU/mL, 95% CI: -0.23, 0.63, p = 0.360, I2 = 3.2%), homeostatic model assessment insulin resistance (HOMA-IR, WMD: 0.09, 95% CI: -0.06, 0.23, p = 0.243, I2 = 0.0%), and hemoglobin A1c (HbA1c, WMD: -0.01%, 95% CI: -0.07, 0.06, p = 0.836, I2 = 0.0%). Based on subgroup analyses, it was observed that the impact of a low-ratio LA/ALA diet on elevated plasma insulin (WMD: 1.31 μIU/mL, 95% CI: 0.08, 2.54, p = 0.037, I2 = 32.0%) and HOMA-IR (WMD: 0.47, 95% CI: 0.10, 0.84, p = 0.012, I2 = 0.0%) levels exhibited greater prominence in North America compared to Asian and European countries. Publication bias was not detected for FBS, insulin, HOMA-IR, and HbA1c levels according to the Begg and Egger tests. Furthermore, the conducted sensitivity analyses indicated stability, as the effects of the low-ratio LA/ALA diet on various glycemic and related metrics remained unchanged even after removing individual studies. Overall, based on the available studies, it can be concluded that the low-ratio LA/ALA diet has limited impact on blood glucose-related biomarker levels.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
19
|
Vega-Galvez A, Gomez-Perez LS, Zepeda F, Vidal RL, Grunenwald F, Mejías N, Pasten A, Araya M, Ah-Hen KS. Assessment of Bio-Compounds Content, Antioxidant Activity, and Neuroprotective Effect of Red Cabbage ( Brassica oleracea var. Capitata rubra) Processed by Convective Drying at Different Temperatures. Antioxidants (Basel) 2023; 12:1789. [PMID: 37760092 PMCID: PMC10526076 DOI: 10.3390/antiox12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Francisca Zepeda
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
20
|
Bertoni C, Abodi M, D’Oria V, Milani GP, Agostoni C, Mazzocchi A. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. Int J Mol Sci 2023; 24:14319. [PMID: 37762621 PMCID: PMC10531611 DOI: 10.3390/ijms241814319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) represent the leading cause of global mortality with 1.7 million deaths a year. One of the alternative systems to drug therapy to minimize the risk of CVDs is represented by alpha-linolenic acid (ALA), an essential fatty acid of the omega-3 series, known for its cholesterol-lowering effect. The main purpose of this review is to analyze the effects of ALA and investigate the relevant omega-6/omega-3 ratio in order to maintain functionally beneficial effects. Concerning the lipid-lowering preventive effects, ALA may favorably affect the values of LDL-C and triglycerides in both adult and pediatric populations. Furthermore, ALA has shown protective effects against hypertension, contributing to balancing blood pressure through customary diet. According to the 2009 EFSA statement, dietary ALA may contribute to reducing the risk of CVDs, thanks to anti-hypertensive, anti-atherosclerotic and cardioprotective effects.
Collapse
Affiliation(s)
- Camilla Bertoni
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, 20122 Milan, Italy; (C.B.); (M.A.)
| | - Martina Abodi
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, 20122 Milan, Italy; (C.B.); (M.A.)
| | - Veronica D’Oria
- Pediatric Area, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.D.); (G.P.M.)
| | - Gregorio P. Milani
- Pediatric Area, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.D.); (G.P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.D.); (G.P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
21
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Plant-Derived Low-Ratio Linoleic Acid/Alpha-Linolenic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis. Foods 2023; 12:3005. [PMID: 37628004 PMCID: PMC10453764 DOI: 10.3390/foods12163005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This meta-analysis aimed to investigate the impact of low-ratio linoleic acid/alpha-linolenic acid (LA/ALA) supplementation on the blood lipid profiles in adults. We conducted a systematic search for relevant randomized controlled trials (RCTs) assessing the effects of low-ratio LA/ALA using databases including PubMed, Embase, Cochrane, and Web of Science, as well as screened related references up until February 2023. The intervention effects were analyzed adopting weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis indicated that low-ratio LA/ALA supplementation decreased total cholesterol (TC, WMD: -0.09 mmol/L, 95% CI: -0.17, -0.01, p = 0.031, I2 = 33.2%), low-density lipoprotein cholesterol (LDL-C, WMD: -0.08 mmol/L, 95% CI: -0.13, -0.02, p = 0.007, I2 = 0.0%), and triglycerides (TG, WMD: -0.05 mmol/L, 95% CI: -0.09, 0.00, p = 0.049, I2 = 0.0%) concentrations. There was no significant effect on high-density lipoprotein cholesterol concentration (HDL-C, WMD: -0.00 mmol/L, 95% CI: -0.02, 0.02, p = 0.895, I2 = 0.0%). Subgroup analysis showed that low-ratio LA/ALA supplementation significantly decreased plasma TC, LDL-C, and TG concentrations when the intervention period was less than 12 weeks. In the subgroup analysis, a noteworthy decrease in both TC and LDL-C levels was observed in individuals receiving low-ratio LA/ALA supplementation in the range of 1-5. These findings suggest that this specific range could potentially be effective in reducing lipid profiles. The findings of this study provide additional evidence supporting the potential role of low-ratio LA/ALA supplementation in reducing TC, LDL-C, and TG concentrations, although no significant impact on HDL-C was observed.
Collapse
Affiliation(s)
| | | | | | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Valner A, Müller R, Kull M, Põlluste K, Lember M, Kallikorm R. Does Dietary Polyunsaturated Fatty Acid Intake Associate With Bone Mineral Density and Limb Structural Changes in Early Rheumatoid Arthritis? Nutr Metab Insights 2023; 16:11786388231176169. [PMID: 37383545 PMCID: PMC10293524 DOI: 10.1177/11786388231176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 06/30/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an inflammatory disease that can result in bone erosion, lean mass lowering, and increase of fat mass without changes in body weight. The dietary consumption of polyunsaturated fatty acids (PUFAs) has been assessed in many studies due to their potential anti-inflammatory effect. Aim The aim of this research was to identify if dietary intake of PUFAs associates with bone mineral density (BMD) and limb structural changes in early rheumatoid arthritis (ERA) compared to a population-based control group. The study was conducted because previous results have been insufficient. Methods The study group consisted of 83 ERA patients and 321 control subjects. A dual-energy X-Ray absorptiometry (DXA) machine was used to measure hip, lumbar spine, and radius BMD, as well as arm and leg fat, lean, and bone mass. Dietary habits and inflammatory markers were assessed to evaluate the effects to BMD and limb structural changes. Results In ERA subjects, higher dietary consumption of PUFAs was associated with a decrease in arm fat mass (b -28.17, P = .02) and possibly with higher lumbar BMD (b 0.008, P = .058). Limb bone and lean mass changes were not associated with dietary intake of PUFAs. Conclusion Balanced nutrition is essential. Consuming PUFAs could be beneficial in ERA preventing structural changes to hands, but additional research is needed.
Collapse
Affiliation(s)
- Annika Valner
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Raili Müller
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mart Kull
- Viljandi County Hospital, Viljandi County, Estonia
| | - Kaja Põlluste
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Margus Lember
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Riina Kallikorm
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
23
|
Han H, Li J, Tian L, Pei L, Zheng M. Through regulation of the SIRT1 pathway plant sterol ester of α-linolenic acid inhibits pyroptosis thereby attenuating the development of NASH in mice. J Nutr Biochem 2023:109408. [PMID: 37336331 DOI: 10.1016/j.jnutbio.2023.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Increasing evidence demonstrated that pyroptosis and subsequent inflammation played an important role in the pathological process of non-alcoholic steatohepatitis (NASH). Plant sterol ester of α-linolenic acid (PS-ALA) was beneficial for non-alcoholic fatty liver disease, but the underlying mechanisms are still not fully understood. This study aims to investigate whether PS-ALA can protect against proptosis via regulating SIRT1. Thirty male C57BL/6J mice were fed a normal diet, a high-fat and high-cholesterol diet (HFCD), or a HFCD supplemented with either 1.3%ALA, 2%PS, or 3.3% PS-ALA for 24 weeks. Hepatocytes were treated with oleic acid and cholesterol (OA/Cho) with or without PS-ALA. We found that PS-ALA ameliorated NASH in HFCD-fed mice. In addition, PS-ALA decreased the expression of NLRP3 and ASC and reduced the co-localization of NLRP3 and cleave-Caspase-1. Also, PS-ALA protected against pyroptosis as evidenced by decreased co-localization of GSDMD and propidium iodide (PI) positive cells. Mechanistically, we revealed that the inhibitory action of PS-ALA on the pyroptosis was mediated by SIRT1. This was demonstrated by the fact that silencing SIRT1 with small interfering RNA or inhibition of SIRT1 with its inhibitor abolished the inhibition effect of PS-ALA on the expression of NLRP3 and GSDMD cleavage. Collectively, the data from the present study reveals a novel mechanism that PS-ALA inhibits pyroptosis and it triggered inflammation via stimulating SIRT1, which provides new insights into the beneficial effect of PS-ALA on NASH.
Collapse
Affiliation(s)
- Hao Han
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA..
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Lei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Liyuan Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Taiyuan, Shanxi 030001, PR CHINA
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA..
| |
Collapse
|
24
|
von Gerichten J, West AL, Irvine NA, Miles EA, Calder PC, Lillycrop KA, Burdge GC, Fielding BA. Oxylipin secretion by human CD3 + T lymphocytes in vitro is modified by the exogenous essential fatty acid ratio and life stage. Front Immunol 2023; 14:1206733. [PMID: 37388745 PMCID: PMC10300345 DOI: 10.3389/fimmu.2023.1206733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Immune function changes across the life stages; for example, senior adults exhibit a tendency towards a weaker cell-mediated immune response and a stronger inflammatory response than younger adults. This might be partly mediated by changes in oxylipin synthesis across the life course. Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that modulate immune function and inflammation. A number of PUFAs are precursors to oxylipins, including the essential fatty acids (EFAs) linoleic acid (LA) and α-linolenic acid (ALA). LA and ALA are also substrates for synthesis of longer chain PUFAs. Studies with stable isotopes have shown that the relative amounts of LA and ALA can influence their partitioning by T lymphocytes between conversion to longer chain PUFAs and to oxylipins. It is not known whether the relative availability of EFA substrates influences the overall pattern of oxylipin secretion by human T cells or if this changes across the life stages. To address this, the oxylipin profile was determined in supernatants from resting and mitogen activated human CD3+ T cell cultures incubated in medium containing an EFA ratio of either 5:1 or 8:1 (LA : ALA). Furthermore, oxylipin profiles in supernatants of T cells from three life stages, namely fetal (derived from umbilical cord blood), adults and seniors, treated with the 5:1 EFA ratio were determined. The extracellular oxylipin profiles were affected more by the EFA ratio than mitogen stimulation such that n-3 PUFA-derived oxylipin concentrations were higher with the 5:1 EFA ratio than the 8:1 ratio, possibly due to PUFA precursor competition for lipoxygenases. 47 oxylipin species were measured in all cell culture supernatants. Extracellular oxylipin concentrations were generally higher for fetal T cells than for T cells from adult and senior donors, although the composition of oxylipins was similar across the life stages. The contribution of oxylipins towards an immunological phenotype might be due to the capacity of T cells to synthesize oxylipins rather than the nature of the oxylipins produced.
Collapse
Affiliation(s)
- Johanna von Gerichten
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
25
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Linoleic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis of 40 Randomized Controlled Trials. Foods 2023; 12:foods12112129. [PMID: 37297374 DOI: 10.3390/foods12112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Th aim of this meta-analysis was to elucidate whether dietary linoleic acid (LA) supplementation affected blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), compared with other fatty acids. Embase, PubMed, Web of Science and the Cochrane Library databases, updated to December 2022, were searched. The present study employed weighted mean difference (WMD) and a 95% confidence interval (CI) to examine the efficacy of the intervention. Out of the 3700 studies identified, a total of 40 randomized controlled trials (RCTs), comprising 2175 participants, met the eligibility criteria. Compared with the control group, the dietary intake of LA significantly decreased the concentrations of LDL-C (WMD: -3.26 mg/dL, 95% CI: -5.78, -0.74, I2 = 68.8%, p = 0.01), and HDL-C (WMD: -0.64 mg/dL, 95% CI: -1.23, -0.06, I2 = 30.3%, p = 0.03). There was no significant change in the TG and TC concentrations. Subgroup analysis showed that the LA intake was significantly reduced in blood lipid profiles compared with saturated fatty acids. The effect of LA on lipids was not found to be dependent on the timing of supplementation. LA supplementation in an excess of 20 g/d could be an effective dose for lowering lipid profiles. The research results provide further evidence that LA intake may play a role in reducing LDL-C and HDL-C, but not TG and TC.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Cambiaggi L, Chakravarty A, Noureddine N, Hersberger M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076110. [PMID: 37047085 PMCID: PMC10093787 DOI: 10.3390/ijms24076110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
α-linolenic acid (ALA) is an essential C-18 n-3 polyunsaturated fatty acid (PUFA), which can be elongated to longer n-3 PUFAs, such as eicosapentaenoic acid (EPA). These long-chain n-3 PUFAs have anti-inflammatory and pro-resolution effects either directly or through their oxylipin metabolites. However, there is evidence that the conversion of ALA to the long-chain PUFAs is limited. On the other hand, there is evidence in humans that supplementation of ALA in the diet is associated with an improved lipid profile, a reduction in the inflammatory biomarker C-reactive protein (CRP) and a reduction in cardiovascular diseases (CVDs) and all-cause mortality. Studies investigating the cellular mechanism for these beneficial effects showed that ALA is metabolized to oxylipins through the Lipoxygenase (LOX), the Cyclooxygenase (COX) and the Cytochrome P450 (CYP450) pathways, leading to hydroperoxy-, epoxy-, mono- and dihydroxylated oxylipins. In several mouse and cell models, it has been shown that ALA and some of its oxylipins, including 9- and 13-hydroxy-octadecatrienoic acids (9-HOTrE and 13-HOTrE), have immunomodulating effects. Taken together, the current literature suggests a beneficial role for diets rich in ALA in human CVDs, however, it is not always clear whether the described effects are attributable to ALA, its oxylipins or other substances present in the supplemented diets.
Collapse
Affiliation(s)
- Lucia Cambiaggi
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Akash Chakravarty
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
27
|
Ma B, Wang D, Mei X, Lei C, Li C, Wang H. Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Microbiol Spectr 2023; 11:e0479522. [PMID: 36840593 PMCID: PMC10100749 DOI: 10.1128/spectrum.04795-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Enrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host.
Collapse
Affiliation(s)
- Boheng Ma
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - De Wang
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, People’s Republic of China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Cui Li
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
28
|
Comparative study on quality characteristics of Bischofia polycarpa seed oil by different solvents: Lipid composition, phytochemicals, and antioxidant activity. Food Chem X 2023; 17:100588. [PMID: 36845519 PMCID: PMC9944548 DOI: 10.1016/j.fochx.2023.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Bischofia polycarpa seed oil is rich in nutrition and positively affects on human health. We analyzed and compared the chemical compositions, antioxidant activities, and quality characteristics of Bischofia polycarpa seed oils using different solvents and cold-pressing. Hx: Iso (n-hexane/isopropanol, 3:2 v/v) had the highest lipid yield (35.13 %), while Folch (chloroform/methanol, 2:1 v/v) had the highest linolenic acid (50.79 %), LnLnLn (43.42 %), and LnLnL (23.43 %). Tocopherols (2108.99 mg/kg) were extracted most efficiently with Folch, whereas phytosterols (3852.97 mg/kg) and squalene (55.21 mg/kg) were extracted most efficiently with petroleum ether. Although the lower phytosterol was obtained using isopropanol, the polyphenol content (271.34 mg GAE/kg) was significantly higher than other solvents, showing the best antioxidant ability. Additionally, polyphenols were observed to be the most significant factor predicting antioxidant activity from the correlation analysis. The above information can provide a useful reference for manufacturers to obtain satisfactory Bischofia polycarpa seed oil.
Collapse
|
29
|
Effects of camelina oil supplementation on lipid profile and glycemic control: a systematic review and dose‒response meta-analysis of randomized clinical trials. Lipids Health Dis 2022; 21:132. [PMID: 36476379 PMCID: PMC9727906 DOI: 10.1186/s12944-022-01745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This systematic review and dose-response meta-analysis of published randomized controlled trials (RCTs) was conducted to determine the effectiveness of camelina oil supplementation (COS) on lipid profiles and glycemic indices. METHODS Relevant RCTs were selected by searching the ISI Web of Science, PubMed, and Scopus databases up to July 1, 2022. RTCs with an intervention duration of less than 2 weeks, without a placebo group, and those that used COS in combination with another supplement were excluded. Weighted mean differences and 95% confidence intervals were pooled by applying a random-effects model, while validated methods examined sensitivity analyses, heterogeneity, and publication bias. RESULTS Seven eligible RCTs, including 428 individuals, were selected. The pooled analysis revealed that COS significantly improved total cholesterol in studies lasting more than 8 weeks and utilizing dosages lower than 30 g/d compared to the placebo group. The results of fractional polynomial modeling indicated that there were nonlinear dose-response relations between the dose of COS and absolute mean differences in low-density cholesterol, high-density cholesterol, and total cholesterol, but not triglycerides. It appears that the greatest effect of COS oil occurs at the dosage of 20 g/day. CONCLUSION The present meta-analysis indicates that COS may reduce cardiovascular disease risk by improving lipid profile markers. Based on the results of this study, COS at dosages lower than 30 g/d may be a beneficial nonpharmacological strategy for lipid control. Further RCTs with longer COS durations are warranted to expand on these results.
Collapse
|
30
|
Elouafy Y, El Yadini A, El Moudden H, Harhar H, Alshahrani MM, Awadh AAA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Influence of the Extraction Method on the Quality and Chemical Composition of Walnut ( Juglans regia L.) Oil. Molecules 2022; 27:7681. [PMID: 36431782 PMCID: PMC9694896 DOI: 10.3390/molecules27227681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hamza El Moudden
- Higher School of Technology of El Kelaa Des Sraghna, Cadi Ayyad University, El Kelaa Des Sraghna BP 104, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
31
|
Rodrigues MJ, Custódio L, Mecha D, Zengin G, Cziáky Z, Sotkó G, Pereira CG. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2910. [PMID: 36365362 PMCID: PMC9657221 DOI: 10.3390/plants11212910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3−394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55−71 mg KAE/g DW), showed anti-inflammatory properties (30−60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7−4.2, BChE 4.3−6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0−1.1, α-amylase 0.8−1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Débora Mecha
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Gyula Sotkó
- Sotiva Seed Ltd., 4440 Tiszavasvári, Hungary
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
32
|
Sala-Vila A, Fleming J, Kris-Etherton P, Ros E. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Adv Nutr 2022; 13:1584-1602. [PMID: 35170723 PMCID: PMC9526859 DOI: 10.1093/advances/nmac016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/31/2021] [Accepted: 02/11/2022] [Indexed: 01/28/2023] Open
Abstract
Given the evidence of the health benefits of plant-based diets and long-chain n-3 (ω-3) fatty acids, there is keen interest in better understanding the role of α-linolenic acid (ALA), a plant-derived n-3 fatty acid, on cardiometabolic diseases and cognition. There is increasing evidence for ALA largely based on its major food sources (i.e., walnuts and flaxseed); however, this lags behind our understanding of long-chain n-3 fatty acids. Meta-analyses of observational studies have shown that increasing dietary ALA is associated with a 10% lower risk of total cardiovascular disease and a 20% reduced risk of fatal coronary heart disease. Three randomized controlled trials (RCTs) [AlphaOmega trial, Prevención con Dieta Mediterránea (PREDIMED) trial, and Lyon Diet Heart Study] all showed benefits of diets high in ALA on cardiovascular-related outcomes, but the AlphaOmega trial, designed to specifically evaluate ALA effects, only showed a trend for benefit. RCTs have shown that dietary ALA reduced total cholesterol, LDL cholesterol, triglycerides, and blood pressure, and epidemiologic studies and some trials also have shown an anti-inflammatory effect of ALA, which collectively account for, in part, the cardiovascular benefits of ALA. A meta-analysis reported a trend toward diabetes risk reduction with both dietary and biomarker ALA. For metabolic syndrome and obesity, the evidence for ALA benefits is inconclusive. The role of ALA in cognition is in the early stages but shows promising evidence of counteracting cognitive impairment. Much has been learned about the health benefits of ALA and with additional research we will be better positioned to make strong evidence-based dietary recommendations for the reduction of many chronic diseases.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jennifer Fleming
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Penny Kris-Etherton
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
33
|
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
34
|
Liang J, Chen W, Zong K, Xu R, Liu Y, Yu N, Xie S, Zhou A. Study on the interventional effects of Polygonatum cyrtonema polysaccharides on high-fat-diet-induced obese model mice through serum and liver metabolomics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
35
|
Ge S, Liao C, Su D, Mula T, Gegen Z, Li Z, Tu Y. Wuwei Qingzhuo San Ameliorates Hyperlipidemia in Mice Fed With HFD by Regulating Metabolomics and Intestinal Flora Composition. Front Pharmacol 2022; 13:842671. [PMID: 35833033 PMCID: PMC9272022 DOI: 10.3389/fphar.2022.842671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia is one of the most common metabolic disorders that threaten people's health. Wuwei Qingzhuo San (WQS) is a traditional Mongolian medicine prescription, which is widely used in Mongolia for the treatment of hyperlipidemia. Our previous studies found that it has hypolipidemic and hepatoprotective effects on hyperlipidemic hamsters. However, the underlying lipid-lowering mechanisms of WQS and its relationship with intestinal flora are not yet clear. In this study, 16 S rRNA gene sequencing and metabolomics were performed to investigate the action mechanism of WQS on hyperlipidemic mice induced by a high-fat diet (HFD). As a result, metabolic pathway enrichment analysis revealed that the intervention of WQS had obviously modulated the metabolism of α-linolenic acid and linoleic acid and the biosynthesis of bile acids. 16 S rRNA sequencing showed that WQS had altered the composition of the intestinal microbiota in hyperlipidemic mice fed with HFD and, especially, adjusted the relative abundance ratio of Firmicutes/Bacteroides. These findings provide new evidence that WQS can improve HFD-induced hyperlipidemia by regulating metabolic disorders and intestinal flora imbalance.
Collapse
Affiliation(s)
- Shasha Ge
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Cuiping Liao
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Duna Su
- Chi Feng an Ding Hospital, Chifeng, China
| | - Tunuo Mula
- College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhula Gegen
- College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhiyong Li
- Institute of Chinese Materia medica, China Academy of Chinese medical sciences, Beijing, China
| | - Ya Tu
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
36
|
Van Hue N, Cuong TD, Quy PT, Bui TQ, Hai NTT, Triet NT, Thanh DD, Nhi NTT, Thai NM, Van Chen T, Nhung NTA. Antimicrobial Properties of
Distichochlamys citrea
M.F. Newman Rhizome
n
‐Hexane Extract against
Streptococcus pyogenes
: Experimental Evidences and Computational Screening. ChemistrySelect 2022. [DOI: 10.1002/slct.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nguyen Van Hue
- Faculty of Engineering and Food Technology University of Agriculture and Forestry Hue University Hue City 530000 Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA) Phenikaa University, Yen Nghia, Ha Dong District Hanoi 12116 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology Tay Nguyen University Buon Ma Thuot 630000 Vietnam
| | - Thanh Q. Bui
- Department of Chemistry University of Sciences Hue University Hue City 530000 Vietnam
| | - Nguyen Thi Thanh Hai
- Department of Chemistry University of Sciences Hue University Hue City 530000 Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine University of Medicine and Pharmacy Ho Chi Minh City 700000 Vietnam
| | - Doan Duy Thanh
- Navetco National Veterinary Joint Stock Company Ho Chi Minh City 700000 Vietnam
| | - Nguyen Thanh To Nhi
- Faculty of Pharmacy Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Nguyen Minh Thai
- Faculty of Pharmacy University of Medicine and Pharmacy Ho Chi Minh City 700000 Vietnam
| | - Tran Van Chen
- Faculty of Pharmacy University of Medicine and Pharmacy Ho Chi Minh City 700000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry University of Sciences Hue University Hue City 530000 Vietnam
| |
Collapse
|
37
|
Chlorophyll Inhibits the Digestion of Soybean Oil in Simulated Human Gastrointestinal System. Nutrients 2022; 14:nu14091749. [PMID: 35565719 PMCID: PMC9101154 DOI: 10.3390/nu14091749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, much available processed and highly palatable food such as cream products and fried and convenient food, which usually showed a high energy density, had caused an increase in the intake of dietary lipids, further leading to significant growth in the prevalence of obesity. Chlorophyll, widespread in fruits and vegetables, was proven to have beneficial effects on alleviating obesity. This study investigated the effects of chlorophyll on the digestive characteristics of lipids under in vitro simulated adult and infant gastrointestinal systems. Chlorophyll decreased the release rate of free fatty acid (FFA) during in vitro adult and infant intestinal digestion by 69.2% and 60.0%, respectively. Meanwhile, after gastrointestinal digestion, chlorophyll changed the FFA composition of soybean oil emulsion and increased the particle size of oil droplets. Interestingly, with the addition of chlorophyll, the activity of pancreatic lipase was inhibited during digestion, which may be related to pheophytin (a derivative of chlorophyll after gastric digestion). Therefore, the results obtained from isothermal titration calorimetry and molecular docking further elucidated that pheophytin could bind to pancreatic lipase with a strong affinity of (4.38 ± 0.76) × 107 M-1 (Ka), while the binding site was amino acid residue Trp253. The investigation not only explained why chlorophyll inhibited digestive enzyme activity to reduce lipids digestion but also provided exciting opportunities for developing novel chlorophyll-based healthy products for dietary application in preventing obesity.
Collapse
|
38
|
Abstract
The excess biomass of drifting algae and their casting to the Baltic Sea coast imposes a significant environmental burden. The analysis of beach-cast algae showed that the dominant species are macroalgae Ulva sp., Furcellaria lumbricalis, Cladophora sp., and Polysiphonia fucoides. The biomass of Furcellaria and Polysiphonia algae, containing 25.6% and 19.98% sugars, respectively, has the greatest resource potential in terms of obtaining carbohydrates. Fucose, glucose, and galactose were found to be the most common carbohydrates. The lipid content did not exceed 4.3% (2.3–4.3%), while the fatty acid composition was represented by saturated fatty acids (palmitic, stearic, methyloleic, behenic, etc.). The highest content of crude protein was found in samples of macroalgae of the genus Polysiphonia and amounted to 28.2%. A study of the elemental composition of drifting algae revealed that they have a high carbon content (31.3–37.5%) and a low hydrogen (4.96–5.82%), and sulfur (1.75–3.00%) content. Red algal biomass has the most resource potential in terms of biofuel generation, as it has a high number of lipids and proteins that can produce melanoidins during hydrothermal liquefaction, enhancing the fuel yield. The study noted the feasibility of using the biomass of the studied algae taxa to produce polysaccharides and biofuels. The analyses of antioxidant properties, fat content, and fat composition do not provide convincing evidence of the viability of using the aforementioned macroalgae for their production.
Collapse
|
39
|
Zheng S, Zou S, Feng T, Sun S, Guo X, He M, Wang C, Chen H, Wang Q. Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2022; 348:126746. [PMID: 35065224 DOI: 10.1016/j.biortech.2022.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Chlamydomonas reinhardtii grows fast and is rich in polyunsaturated fatty acids. To explore whether the alpha-linolenic acid (ALA) content can be further enhanced, the cultures were incubated under different culture temperatures, light intensities and inoculum densities. Results showed that temperature exhibited more great impact on ALA synthesis of C. reinhardtii than light intensity and inoculum size. The changes of light intensity and inoculum size displayed non-significant effects on ALA content. The optimal ALA proportion in cells was obtained under the condition of 10 °C, 50 μE/m2/s and 5% inoculum density, which reached ∼ 39%.The augmented initial inoculum density could markedly improve the biomass of C. reinhardtii under 10 °C. The maximum ALA productivity (16.42 mg/L/d) was gained under 10 °C coupled with 25% inoculum size, where higher intracellular sugar and protein yield were observed. These results suggest C. reinhardtii would be an alternative feedstock for the industrial production of ALA.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tian Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangxu Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
40
|
Liu H, Li X, Zhu Y, Huang Y, Zhang Q, Lin S, Fang C, Li L, Lv Y, Mei W, Peng X, Yin J, Liu L. Effect of Plant-Derived n-3 Polyunsaturated Fatty Acids on Blood Lipids and Gut Microbiota: A Double-Blind Randomized Controlled Trial. Front Nutr 2022; 9:830960. [PMID: 35223959 PMCID: PMC8873928 DOI: 10.3389/fnut.2022.830960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Background Several cardioprotective mechanisms attributed to n-3 polyunsaturated fatty acids (PUFAs) have been widely documented. Significant interest has recently focused on the role of human gut microbiota in metabolic disorders. However, the role of plant-derived n-3 PUFAs on blood lipid profiles is controversial and the effect on gut microbiota is still unclear. Objectives We aimed to perform a double-blind randomized controlled trial to test the effect of plant-derived n-3 PUFAs on the blood lipids and gut microbiota of patients with marginal hyperlipidemia. Methods According to the inclusion and exclusion criteria, 75 participants with marginal hyperlipidemia were randomly assigned to the intervention group (supplied with n-3 PUFA-enriched plant oil) or control group (supplied with corn oil), respectively, for a 3-month treatment. Participants and assessors were blinded to the allocation. The primary outcomes of the trial were the changes in serum lipid levels. Secondary outcomes were changes in gut microbiota and metabolites. For the primary outcomes, we conducted both an intent-to-treat (ITT) analysis and a per protocol (PP) analysis. For the secondary outcomes, we only conducted the PP analysis among the participants who provided fecal sample. Results Fifty-one participants completed the trial. Relative to the control group, the n-3 PUFA supplementation resulted in significant reduction in total cholesterol (TC) levels (−0.43 mmol/L, 95% CI−0.84 to−0.01 mmol/L, P < 0.05). The n-3 PUFA supplementation was also associated with significantly increased relative abundance of Bacteroidetes in phylum level (P < 0.01; false discovery rate (FDR) corrected p = 0.11), and decreased the ratio between Firmicutes and Bacteroidetes (P < 0.05; FDR corrected p = 0.16). At genus level, the intervention of plant derived n-3 PUFAs resulted in a significant decrease in relative abundance of Phascolarctobacterium (P < 0.01; FDR corrected p = 0.18) and Veillonella (P < 0.01; FDR corrected p = 0.18) after the intervention. Conclusions Our results demonstrated that plant-derived n-3 PUFAs beneficially affected the serum levels of TC and decreased the ratio between Firmicutes and Bacteroidetes during the 12-week intervention period, which might confer advantageous consequences for lipid metabolism and intestinal health.
Collapse
Affiliation(s)
- Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiawei Yin
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liegang Liu
| |
Collapse
|
41
|
Wu J, Qiu M, Sun L, Wen J, Liang DL, Zheng S, Huang Y. α-Linolenic Acid and Risk of Heart Failure: A Meta-Analysis. Front Cardiovasc Med 2022; 8:788452. [PMID: 35059448 PMCID: PMC8764440 DOI: 10.3389/fcvm.2021.788452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: The α-linolenic acid is a plant origin n-3 fatty acid that may reduce the risk of cardiovascular disease. However, the effect of α-linolenic acid (ALA) on the risk of heart failure (HF) remains unclear. In this meta-analysis, we aimed to determine the role of ALA in the risk of incident HF. Methods: Electronic databases were searched for studies up to August 10, 2021. Studies were included for meta-analysis if the adjusted risk of HF in different dietary intake or circulating levels of ALA was reported. We used the random-effects model to calculate the estimated hazard ratios (HRs) and 95% CI for higher ALA. Results: A total of 6 studies (7 cohorts) comprising 135,270 participants were included for meta-analysis. After a median follow-up duration of 10 years, 5,905 cases of HF were recorded. No significant heterogeneity was observed among all the included studies. Random-effects model analyses showed that there was no significant association between ALA and the risk of incident HF, either assessed as quintiles (highest quintile vs. lowest quintile: HR = 0.95, 95% CI = 0.86–1.06) or per 1 SD increment (HR = 0.99, 95% CI = 0.95–1.01). Furthermore, we did not observe any association between ALA and the risk of HF in subgroup analyses performed according to age, sex, follow-up duration, and measuring method of ALA. Conclusions: We found no association between ALA and the risk of incident HF, suggesting that ALA might not be effective in the prevention of HF.
Collapse
Affiliation(s)
- Jiandi Wu
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Min Qiu
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lichang Sun
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jiangxiong Wen
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Dong-Liang Liang
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
42
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
43
|
Keim JP, Rodriguez JR, Balocchi OA, Pulido RG, Sepúlveda-Varas P, Pacheco D, Berthiaume R, Vargas-Bello-Pérez E. Effect of dietary inclusion of winter brassica crops on milk production, feeding behavior, rumen fermentation, and plasma fatty acid profile in dairy cows. J Dairy Sci 2021; 104:10699-10713. [PMID: 34253367 DOI: 10.3168/jds.2021-20215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
This study determined feeding behavior, dry matter (DM) intake (DMI), rumen fermentation, and milk production responses of lactating dairy cows fed with kale (Brassica oleracea) or swede (Brassica napus ssp. napobrassica). Twelve multiparous lactating dairy cows (560 ± 22 kg of body weight, 30 ± 4 kg of milk/d, and 60 ± 11 d in milk at the beginning of the experiment; mean ± standard deviation) were randomly allocated to 3 dietary treatments in a replicated 3 × 3 Latin square design. The control diet comprised 10 kg of grass silage DM/d, 4 kg of ryegrass herbage DM/d, and 8.8 kg of concentrate DM/d. Then, 25% of herbage, silage, and concentrate (DM basis) was replaced with either kale or swede. Cows offered kale had decreased total DMI compared with cows fed the control and swede diets, whereas inclusion of swede increased eating time. Milk production, composition, and energy-corrected milk:DMI ratio were not affected. Cows fed with kale had a greater rumen acetate:propionate ratio, whereas swede inclusion increased the relative percentage of butyrate. Estimated microbial N was not affected by dietary treatments, but N excretion was reduced with inclusion of kale, improving N utilization. Cows fed kale tended to have increased nonesterified fatty acids and showed presence of Heinz-Ehrlich bodies, whereas hepatic enzymes such as aspartate aminotransferase, γ-glutamyl transferase, and glutamate dehydrogenase were not affected by dietary treatments. In plasma, compared with the control, swede and kale reduced total saturated fatty acids and increased total polyunsaturated fatty acids and total n-3 fatty acids. Overall, feeding cows with winter brassicas had no negative effect on production responses. However, mechanisms to maintain milk production were different. Inclusion of swede increased the time spent eating and maintained DMI with a greater relative rumen percentage of butyrate and propionate, whereas kale reduced DMI but increased triacylglycerides mobilization, which can negatively affect reproductive performance. Thus, the inclusion of swede may be more suitable for feeding early-lactating dairy cows during winter.
Collapse
Affiliation(s)
- Juan P Keim
- Institute of Animal Production, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile.
| | - José R Rodriguez
- Graduate School, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Oscar A Balocchi
- Institute of Animal Production, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Rubén G Pulido
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Pilar Sepúlveda-Varas
- Veterinary Teaching Hospital, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - David Pacheco
- Animal Science Group, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Robert Berthiaume
- Consultant expert in forage systems, 390 Moulton Hill, Sherbrooke, QC J1M 0A8, Canada
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gr⊘nnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
44
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
45
|
Darvish Damavandi R, Shidfar F, Najafi M, Janani L, Masoodi M, Akbari-Fakhrabadi M, Dehnad A. Effect of Portulaca Oleracea (purslane) extract on liver enzymes, lipid profile, and glycemic status in nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. Phytother Res 2021; 35:3145-3156. [PMID: 33880813 DOI: 10.1002/ptr.6972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Purslane (Portulaca oleracea L.) is the richest green leafy vegetable source of omega-3, especially alpha linolenic acid (ALA). Experimental studies have shown beneficial effects of purslane extract on liver enzymes. The aim of the present study was to examine the effect of purslane hydroalcohoic extract in patients with non-alcoholic fatty liver disease (NAFLD). In a randomized double-blinded clinical trial, 74 patients were randomly assigned to receive either 300 mg purslane extract or placebo capsules for 12 weeks. Compared with baseline, alanine aminotransferase (ALT) (-9 [-17, 0.50] mg/dl; p = .007), aspartate aminotransferase (AST) (-4 [-10, -0.50] mg/dl; p = .001), gamma glutamyltransferase (GGT) (-6.21 ± 9.85 mg/dL; p < .001), fasting blood glucose (FBG) (-8 [-11, -1.50] mg/dl; p < .001) insulin resistance (-0.95 ± 2.23; p = .020), triglyceride (-20 [-67.50, 3.50] mg/dl; p = .010), and low-density lipoprotein cholesterol (LDL-C) (-5 [-12, -1] mg/dl; p < .001) decreased significantly in the purslane group. At the end of study, no significant changes were observed in liver steatosis grade, insulin, liver enzymes, total bilirubin, lipid profile, and blood pressure between the two groups. The findings of our study show that purslane extract at the dose of 300 mg/day for 12 weeks has no significant effects on liver enzymes, lipid profile, and glycemic indices in patients with NAFLD.
Collapse
Affiliation(s)
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari-Fakhrabadi
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Afsaneh Dehnad
- School of Health Management and Information Sciences, Department of Medical Education, Center for Educational Research in Medical Sciences (CERMS), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Vargas-Bello-Pérez E, Geldsetzer-Mendoza C, Ibáñez RA, Rodríguez JR, Alvarado-Gillis C, Keim JP. Chemical Composition, Fatty Acid Profile and Sensory Characteristics of Chanco-Style Cheese from Early Lactation Dairy Cows Fed Winter Brassica Crops. Animals (Basel) 2021; 11:ani11010107. [PMID: 33430319 PMCID: PMC7825774 DOI: 10.3390/ani11010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Brassica crops such as kales and swedes can be supplied to cow diets during winter. Little is known about the effects of feeding those forage brassicas to lactating cows on cheese nutritional characteristics. Thus, the objective of this study was to determine the effect of including kale or swedes in the diet of pasture-fed lactating dairy cows on chemical composition, fatty acid (FA) profile and sensory characteristics of Chanco-style cheese. Kale or swedes can be used in the diet of pasture-fed lactating dairy cows without negative effects on milk production, milk composition and cheese composition. However, with regard to cheese FA profiles, those elaborated from milks from kale and swedes increased total contents of saturated fatty acids. Abstract Brassica crops such as kale and swede can be supplied to cow diets during winter, however little is known about the effects of feeding those forage brassicas to lactating cows on cheese nutritional characteristics of milk and cheese. This study evaluated the effect of including kale or swede in pasture-fed lactating dairy cow diets on chemical composition, fatty acid (FA) profile, and sensory characteristics of Chanco-style cheese. Twelve early-lactation cows were used in a replicated (n = 4) 3 × 3 square Latin square design. The control diet consisted of (DM basis) 10.0 kg of grass silage, 4.0 kg of fresh grass pasture, 1.5 kg soybean meal, 1.0 kg of canola meal, and 4.0 kg of cereal-based concentrate. The other treatments replaced 25% of the diet with swede or kale. Milk yield, milkfat, and milk protein were similar between treatments as were cheese moisture, fat, and protein. Swede and kale increased total saturated cheese FA while thrombogenic index was greater in swede, but color homogeneity and salty flavor were greater while ripe cheese aroma less than for kale. Kale or swede can be used in the diet of pasture-fed lactating dairy cows without negative effects on milk production, milk composition, or cheese composition. However, kale and swede increased total cheese saturated FA.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
- Correspondence: (E.V.-B.-P.); (J.P.K.)
| | - Carolina Geldsetzer-Mendoza
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
| | - Rodrigo A. Ibáñez
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - José Ramón Rodríguez
- Escuela de Graduados, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
| | - Christian Alvarado-Gillis
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Producción Animal, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
| | - Juan P. Keim
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Producción Animal, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
- Correspondence: (E.V.-B.-P.); (J.P.K.)
| |
Collapse
|
47
|
Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators Inflamm 2021; 2021:8879227. [PMID: 33488295 PMCID: PMC7801035 DOI: 10.1155/2021/8879227] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs (docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA)) exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3 PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described. Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs–microbiome–immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3 supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers identify innovative diagnostic methods.
Collapse
|