1
|
Zeng F, He S, Sun Y, Li X, Chen K, Wang H, Man S, Lu F. Abnormal enterohepatic circulation of bile acids caused by fructooligosaccharide supplementation along with a high-fat diet. Food Funct 2024. [PMID: 39450588 DOI: 10.1039/d4fo03353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fructooligosaccharide (FOS) is a widely used prebiotic and health food ingredient, but few reports have focused on its risk to specific populations. Recently, it has been shown that the intake of inulin, whose main component is FOS, can lead to cholestasis and induce hepatocellular carcinoma in mice fed a high-fat diet (HFD); however, the molecular mechanism behind this is not clear. This study found that FOS supplementation induced abnormal enterohepatic circulation of bile acids in HFD-fed mice, which showed a significant increase in bile acid levels in the blood and liver, especially the secondary bile acids with high cytotoxicity, such as deoxycholic acid. The abundance of Clostridium, Bacteroides, and other bacteria in the gut microbiota also increased significantly. The analysis of the signaling pathway involved in regulating the enterohepatic circulation of bile acids showed that the weakening of the feedback inhibition of FXR-FGF15 and FXR-SHP signalling pathways possibly induced the enhancement of CYP7A1 activity and bile acid reabsorption in the blood and liver and led to an increase in bile acid synthesis and accumulation in the liver, increasing the risk of cholestasis. This study showed the risk of health damage caused by FOS supplementation in HFD-fed mice, which is caused by gut microbiota dysfunction and abnormal enterohepatic circulation of bile acids. Therefore, the application of FOS should be standardized to avoid the health risks of unreasonable FOS use in specific populations.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Ying Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
2
|
Lee YH, Lee JH, Jeon SM, Park IK, Jang HB, Kim SA, Park SD, Shim JJ, Hong SS, Lee JH. The Effect of Organic Vegetable Mixed Juice on Blood Circulation and Intestine Flora: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diseases 2024; 12:223. [PMID: 39329892 PMCID: PMC11431145 DOI: 10.3390/diseases12090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epidemiological evidence suggests that fruit and vegetable intake significantly positively affects cardiovascular health. Since vegetable juice is more accessible than raw vegetables, it attracts attention as a health functional food for circulatory diseases. Therefore, this study measured blood lipids, antioxidants, blood circulation indicators, and changes in the microbiome to confirm the effect of organic vegetable mixed juice (OVJ) on improving blood circulation. This 4-week, randomized, double-blinded, placebo-controlled study involved adult men and women with borderline total cholesterol (TC) and low-density lipoprotein (LDL) levels. As a result, blood lipid profile indicators, such as TC, triglycerides, LDL cholesterol, and apolipoprotein B, decreased (p < 0.05) in the OVJ group compared with those in the placebo group. Additionally, the antioxidant biomarker superoxide dismutase increased (p < 0.05). In contrast, systolic and diastolic blood viscosities, as blood circulation-related biomarkers, decreased (p < 0.05) in the OVJ group compared with those in the placebo group. After the intervention, a fecal microbiome analysis confirmed differences due to changes in the intestinal microbiome composition between the OVJ and placebo groups. In conclusion, our research results confirmed that consuming OVJ improves blood circulation by affecting the blood lipid profile, antioxidant enzymes, and microbiome changes.
Collapse
Affiliation(s)
- Yun-Ha Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Jae-Ho Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-Min Jeon
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Il-Kyu Park
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Hyun-Bin Jang
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-A Kim
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Soo-Dong Park
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| | - Seong-Soo Hong
- Department of Gastroenterology, Vievis Namuh Hospital, 627, Nonhyeon-ro, Gangnam-gu, Seoul 06117, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, Hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.-H.L.); (J.-H.L.); (S.-M.J.); (I.-K.P.); (H.-B.J.); (S.-A.K.); (S.-D.P.); (J.-J.S.)
| |
Collapse
|
3
|
Ortiz-Solà J, Almeida D, López-Mas L, Kallas Z, Abadias M, Barros L, Martín-Gómez H, Aguiló-Aguayo I. Sensory optimization of gluten-free hazelnut omelette and sugar-modified chestnut pudding: A free choice profiling approach for enhanced traditional recipe formulations. J Food Sci 2024; 89:5302-5318. [PMID: 39086065 DOI: 10.1111/1750-3841.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The Mediterranean region is distinguished by its gastronomic diversity and a wide variety of indigenous nut crops. In line with changing global food consumers' preferences, a noteworthy aspect is the increasing demand to the use of local varieties in recipe formulation. The aim of the present study was to incorporate the Terra Fria chestnut (Portugal) and Negreta hazelnut from Reus (Spain) in traditional Mediterranean recipes. The sensory, technofunctional, nutritional, and shelf-life characterization were investigated in hazelnut omelette (gluten and gluten-free) and chestnut pudding (sugar and sugar-free) formulations. Results conducted by trained assessors using the free choice profiling (FCP) showed that hazelnut omelette samples were described as "creamy," "smooth," and "handmade." In addition, the texture obtained with the hazelnut omelette gluten-free version showed the softest textural profile analysis attributes, with lower values for hardness (2.43 ± 0.36 N), adhesiveness (-0.38 ± 0.00 g s) and gumminess (2.12 ± 0.14). Furthermore, the shelf-life studies revealed a more golden color (>14.43 of a* CIELAB coordinate) and a lower moisture content (25.36%-43.59%) in the hazelnut flour formulation, in addition to the enrichment in terms of protein (8.36 g/100 g), fiber, and healthy fats. In the case of chestnut pudding, it was observed that the study parameters did not differ significantly from its sweetened analogue with positive attributes in FCP ("toasted," "fluffy," and "sweet"), positioning it as a viable alternative to sugar in this application. Therefore, both hazelnut flour in hazelnut omelette and oligofructose in chestnut pudding proved to be promising ingredients in the formulation of gluten-free and sugar-free developed products, offering attractive organoleptic and textural characteristics.
Collapse
Affiliation(s)
- J Ortiz-Solà
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - D Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - L López-Mas
- Centre de Recerca en Economia i Desenvolupament Agroalimentaris (CREDA), UPC, IRTA, Parc Mediterrani de la Tecnologia, Barcelona, Spain
- Fundació Miquel Agustí (FMA), Carrer d'Esteve Terradas, Castelldefels, Spain
| | - Z Kallas
- Centre de Recerca en Economia i Desenvolupament Agroalimentaris (CREDA), UPC, IRTA, Parc Mediterrani de la Tecnologia, Barcelona, Spain
| | - M Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - L Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - H Martín-Gómez
- CETT Barcelona School of Tourism, Hospitality and Gastronomy, University of Barcelona, Barcelona, Spain
| | - I Aguiló-Aguayo
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Gu BD, Wang Y, Ding R. Impact of a multidisciplinary collaborative nutritional treatment model in patients who are critically ill with neurological disorders: A randomized controlled trial. Technol Health Care 2024; 32:1767-1780. [PMID: 38073348 DOI: 10.3233/thc-230791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Malnutrition is a widespread problem in critically ill patients with neurological disorders. OBJECTIVE The purpose of this study is to investigate the effect of a multidisciplinary collaborative nutritional treatment mode based on a standardized unit for nutritional support on the outcome metrics in patients with neurological disorders who are critically ill. METHODS We enrolled 84 participants who were hospitalized in the intensive care unit (ICU) of Yancheng No. 1 People's Hospital for neurological disorders between June 2018 and December 2021. The participants were randomly assigned to the control group and the test group. The control group received traditional nutritional support, while the test group was treated with a multidisciplinary collaborative nutritional treatment mode based on a standardized unit for nutritional support. We collected the general information, feeding tolerance (FT), nutritional risk score, and laboratory indicators before intervention, after intervention for one week, and after intervention for 2 weeks, and other data of the participants. RESULTS After the intervention, the test group scored significantly lower than the control group in the incidence of gastroparesis and diarrhea, as well as the NUTRIC score, with statistically significant differences (P< 0.001). The prealbumin levels in the test group increased progressively prior to intervention, after intervention for one week, and after intervention for two weeks. Compared to the control group, the test group had higher prealbumin levels prior to intervention, after intervention for one week, and after intervention for two weeks, with statistically significant differences (P< 0.001). CONCLUSION We developed a multidisciplinary collaborative nutritional treatment model based on a standard unit for nutritional support. This model can improve neural function, FT, and pertinent outcome indicators and is generally applicable.
Collapse
Affiliation(s)
- Bao-Di Gu
- Department of Critical Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Yun Wang
- Department of Neurology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Rong Ding
- Department of Nursing, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| |
Collapse
|
6
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
7
|
Sarkar T, Salauddin M, Roy S, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KRR. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Crit Rev Food Sci Nutr 2023; 63:11679-11733. [PMID: 35816152 DOI: 10.1080/10408398.2022.2095555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From the ancient period, Green leafy vegetables (GLV) are part of the daily diet and were believed to have several health beneficial properties. Later it has been proved that GLV has outstanding nutritional value and can be used for medicinal benefits. GLV is particularly rich in minerals like iron, calcium, and zinc. These are also rich in vitamins like beta carotene, vitamin E, K, B and vitamin C. In addition, some anti-nutritional elements in GLV can be reduced if it is grown properly and processed properly before consumption. Tropical countries have a wide variety of these green plants such as Red Spinach, Amaranth, Malabar Spinach, Taro Leaf, Fenugreek leaf, Bengal Gram Leaves, Radish Leaves, Mustard Leaves, and many more. This review focuses on listing this wide range of GLVs (in total 54 underutilized GLVs) and their compositions in a comparative manner. GLV also possesses medicinal activities due to its rich bioactive and nutritional potential. Different processing techniques may alter the nutritional and bioactive potential of the GLVs significantly. The GLVs have been considered a food fortification agent, though not explored widely. All of these findings suggest that increasing GLV consumption could provide nutritional requirements necessary for proper growth as well as adequate protection against diseases caused by malnutrition.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Sarita Roy
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Runu Chakraborty
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of technologies and management, The First Cossack University, Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Major N, Išić N, Kovačević TK, Anđelini M, Ban D, Prelac M, Palčić I, Goreta Ban S. Size Does Matter: The Influence of Bulb Size on the Phytochemical and Nutritional Profile of the Sweet Onion Landrace "Premanturska Kapula" ( Allium cepa L.). Antioxidants (Basel) 2023; 12:1596. [PMID: 37627591 PMCID: PMC10451252 DOI: 10.3390/antiox12081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The Mediterranean area is especially rich in old, both sweet and pungent, varieties of onion. The synthesis of phytochemicals takes place concurrently with the overall development and maturation of vegetables; however, it is unclear whether there is a correlation between onion bulb size and antioxidant compound content, antioxidant capacity, and nutritional parameters and what the origin of these variations is. The aim of this work was to investigate the biochemical and nutritional aspects of the sweet onion landrace "Premanturska kapula", as well as to investigate the influence of onion bulb size on onion phytochemical and nutritional profile. The sweet onion landrace "Premanturska kapula" has a high soluble sugar content, a high antioxidant capacity, and a high phenolic compound content. Quercetin-3,4'-diglucoside and quercetin-4'-glucoside were the major flavonols, while protocatehuic acid was the major phenolic acid detected. The choice of onion bulb size can impact the profile of the sugars present, with large bulb sizes favoring higher sucrose and fructooligosaccharides content compared to small bulb sizes which were more abundant in glucose. The total sugars or bulb dry matter were not affected by bulb size. Phenolic compounds were more abundant in smaller bulb sizes, thus indicating a link between bulb development and phenolic compound allocation within the plant. This link possibly derived from agronomic practices such as bare-root transplants, or even open pollination which causes a broader genetic variability. From a consumer perspective, it can be a choice between the small and medium bulb sizes on one hand, which are more abundant in polyphenolics and simple sugars, or on the other hand, the larger bulbs which are more abundant in fructooligosaccharides known to carry excellent health benefits.
Collapse
Affiliation(s)
- Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Nina Išić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
| | - Tvrtko Karlo Kovačević
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
| | - Magdalena Anđelini
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
| | - Dean Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Melissa Prelac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (N.I.); (T.K.K.); (M.A.); (D.B.); (M.P.); (I.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Kim HS, Li S, Zheng Y, Aldrich CG. Apparent total tract digestibility and palatability of extruded diets with graded levels of whole soybeans by dogs. Front Vet Sci 2023; 10:1137788. [PMID: 37275615 PMCID: PMC10233050 DOI: 10.3389/fvets.2023.1137788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Fat has high energy density and is considered one of the primary energy sources for dogs, however, increasing fat level in dry dog food has been challenging due to the lubrication and limitation of the coating system. The objective was to determine the effect of whole soybeans (WSB) on nutrient digestibility, stool quality, and palatability by dogs. The corn gluten meal, chicken fat, and brewers rice were replaced by WSB at 10, 20, and 30% (WSB10, WSB20, and WSB30, respectively) in the base diet (WSB0). Twelve beagles were randomly assigned. The digestibility trial was duplicated 4 × 4 Latin square design where dogs were allowed a 9-d adaptation followed by a 5-d total fecal collection for each period. Least-square means were analyzed with a single degree of freedom contrasts and significance at α = 0.05. Palatability was determined with a 2-bowl test by 20 beagles for 2 d with each WSB diet compared to the WSB0. First choice preference between two diets and total food consumption were recorded. Individual intake ratios (IR) were calculated (intake of each diet/total intake) for each dog. First choice (FC) was analyzed by a Chi-square probability, and the diet consumption was compared by a Wilcoxon signed rank test and a 2-way analysis of variance. Fecal moisture, output, and defecation frequency increased linearly (P < 0.05) as WSB increased. Apparent total tract digestibility of dry matter, organic matter, crude protein, fat, and gross energy decreased linearly (P < 0.05) as dogs fed the increased level of WSB. The fresh fecal pH in dogs decreased linearly (P < 0.05) as WSB content increased. The acetate, propionate, and the total short-chain fatty acid concentration increased linearly (P < 0.05) while the total branched-chain fatty acid concentration decreased linearly (P < 0.05) as WSB increased. Dogs had greater (P < 0.05) FC for WSB diets than WSB0, but there was no difference among treatments for diet consumption and IR. In conclusion, additional thermal processing before extrusion may improve nutrient digestibility of WSB. The stool quality and palatability were not affected, and fermentation in hindgut increased by WSB by dogs.
Collapse
Affiliation(s)
| | | | | | - Charles G. Aldrich
- Grain Science and Industry Department, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
Jin H, Park J, Li R, Ji GE, Johnston TV, Choe D, Park SH, Park MS, Ku S. A randomized, double-blind, controlled human study: The efficacy of exopolysaccharides in milk fermented by Weissella confusa VP30 (VP30-EPS) to ameliorate functional constipation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
11
|
Tharmabalan RT. Nutritional Profiles of Four Promising Wild Edible Plants Commonly Consumed by the Semai in Malaysia. Curr Dev Nutr 2023. [DOI: 10.1016/j.cdnut.2023.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
12
|
Al-Jubori Y, Ahmed NTB, Albusaidi R, Madden J, Das S, Sirasanagandla SR. The Efficacy of Gum Arabic in Managing Diseases: A Systematic Review of Evidence-Based Clinical Trials. Biomolecules 2023; 13:biom13010138. [PMID: 36671523 PMCID: PMC9855968 DOI: 10.3390/biom13010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Gum arabic (GA) is a natural product commonly used as a household remedy for treating various diseases in the Sub-Saharan Africa region. Despite its claimed benefits, there has been a lack of research on the findings of current clinical trials (CTs) that investigated its efficacy in the treatment of various medical diseases. The aim of this systematic review was to study CTs which focused on GA and its possible use in the management of various medical diseases. A search of the extant literature was performed in the PubMed, Scopus, and Cochrane databases to retrieve CTs focusing on evidence-based clinical indications. The databases were searched using the keywords ("Gum Arabic" OR "Acacia senegal" OR "Acacia seyal" OR "Gum Acacia" OR "Acacia Arabica") AND ("Clinical Trial" OR "Randomized Controlled Trial" OR "Randomized Clinical Trial"). While performing the systematic review, data were obtained on the following parameters: title, authors, date of publication, study design, study aim, sample size, type of intervention used, targeted medical diseases, and main findings. Twenty-nine papers were included in this systematic review. The results showed that ingestion of GA altered lipid profiles, renal profiles, plaque, gingival scores, biochemical parameters, blood pressure, inflammatory markers, and adiposity. GA exhibited anti-inflammatory, prebiotic, and antibacterial properties. GA has been successfully used to treat sickle cell anemia, rheumatoid arthritis, metabolic disorders, periodontitis, gastrointestinal conditions, and kidney diseases. Herein, we discuss GA with respect to the underlying mechanisms involved in each medical disease, thereby justifying GA's future role as a therapeutic agent.
Collapse
Affiliation(s)
- Yamamh Al-Jubori
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - Rawan Albusaidi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - James Madden
- GKT School of Medicine, King’s College London, Great Maze Pond, London SE1 1UL, UK
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: ; Tel.: +968-24141176
| |
Collapse
|
13
|
Zeng S, Cao J, Chen Y, Li C, Wu G, Zhu K, Chen X, Xu F, Liu Q, Tan L. Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp improves intestinal barrier functions of high fat diet-induced obese rats. Front Nutr 2022; 9:1035619. [PMID: 36407513 PMCID: PMC9669604 DOI: 10.3389/fnut.2022.1035619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 09/19/2023] Open
Abstract
Polysaccharides show protective effects on intestinal barrier function due to their effectiveness in mitigating oxidative damage, inflammation and probiotic effects. Little has been known about the effects of polysaccharides from Artocarpus heterophyllus Lam. pulp (jackfruit, JFP-Ps) on intestinal barrier function. This study aimed to investigate the effects of JFP-Ps on intestinal barrier function in high fat diet-induced obese rats. H&E staining and biochemical analysis were performed to measure the pathological and inflammatory state of the intestine as well as oxidative damage. Expression of the genes and proteins associated with intestinal health and inflammation were analyzed by RT-qPCR and western blots. Results showed that JFP-Ps promoted bowel movements and modified intestinal physiochemical environment by lowering fecal pH and increasing fecal water content. JFP-Ps also alleviated oxidative damage of the colon, relieved intestinal colonic inflammation, and regulated blood glucose transport in the small intestine. In addition, JFP-Ps modified intestinal physiological status through repairing intestinal mucosal damage and increasing the thickness of the mucus layer. Furthermore, JFP-Ps downregulated the inflammatory genes (TNF-α, IL-6) and up-regulated the free fatty acid receptors (GPR41 and GPR43) and tight junction protein (occludin). These results revealed that JFP-Ps showed a protective effect on intestinal function through enhancing the biological, mucosal, immune and mechanical barrier functions of the intestine, and activating SCFAs-GPR41/GPR43 related signaling pathways. JFP-Ps may be used as a promising phytochemical to improve human intestinal health.
Collapse
Affiliation(s)
- Shunjiang Zeng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuzi Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Qibing Liu
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
14
|
Fan W, Wang S, Wang H, Wang A, Jiang F, Liu H, Zhao H, Xu D, Zhang Y. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae palaeo-polyploidization history and plant inulin production. Mol Ecol Resour 2022; 22:3124-3140. [PMID: 35751596 DOI: 10.1111/1755-0998.13675] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Inulin is an important reserve polysaccharide in Asteraceae plants, and is also widely used as a sweetener, a source of dietary fibre and prebiotic. Nevertheless, a lack of genomic resources for inulin-producing plants has hindered extensive studies on inulin metabolism and regulation. Here, we present chromosome-level reference genomes for four inulin-producing plants: chicory (Cichorium intybus), endive (Cichorium endivia), great burdock (Arctium lappa) and yacon (Smallanthus sonchifolius), with assembled genome sizes of 1.28, 0.89, 1.73 and 2.72 Gb, respectively. We found that the chicory, endive and great burdock genomes were shaped by whole genome triplication (WGT-1), and the yacon genome was shaped by WGT-1 and two subsequent whole genome duplications (WGD-2 and WGD-3). A yacon unique whole genome duplication (WGD-3) occurred 5.6-5.8 million years ago. Our results also showed the genome size difference between chicory and endive is largely due to LTR retrotransposons, and rejected a previous hypothesis that chicory is an ancestor of endive. Furthermore, we identified fructan-active-enzyme and transcription-factor genes, and found there is one copy in chicory, endive and great burdock but two copies in yacon for most of these genes, except for the 1-FEH II gene which is significantly expanded in chicory. Interestingly, inulin synthesis genes 1-SST and 1-FFT are located close to each other, as are the degradation genes 1-FEH I and 1-FEH II. Finally, we predicted protein structures for 1-FFT genes to explore the mechanism determining inulin chain length.
Collapse
Affiliation(s)
- Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hanbo Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Moreno AA, Parker VJ, Winston JA, Rudinsky AJ. Dietary fiber aids in the management of canine and feline gastrointestinal disease. J Am Vet Med Assoc 2022; 260:S33-S45. [DOI: 10.2460/javma.22.08.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Dietary fiber describes a diverse assortment of nondigestible carbohydrates that play a vital role in the health of animals and maintenance of gastrointestinal tract homeostasis. The main roles dietary fiber play in the gastrointestinal tract include physically altering the digesta, modulating appetite and satiety, regulating digestion, and acting as a microbial energy source through fermentation. These functions can have widespread systemic effects. Fiber is a vital component of nearly all commercial canine and feline diets. Key features of fiber types, such as fermentability, solubility, and viscosity, have been shown to have clinical implications as well as health benefits in dogs and cats. Practitioners should know how to evaluate a diet for fiber content and the current knowledge on fiber supplementation as it relates to common enteropathies including acute diarrhea, chronic diarrhea, constipation, and hairball management. Understanding the fundamentals of dietary fiber allows the practicing clinician to use fiber optimally as a management modality.
Collapse
Affiliation(s)
- Adam A. Moreno
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Valerie J. Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Adam J. Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
16
|
Khalid W, Arshad MS, Jabeen A, Muhammad Anjum F, Qaisrani TB, Suleria HAR. Fiber-enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci Nutr 2022; 10:3203-3218. [PMID: 36249968 PMCID: PMC9548355 DOI: 10.1002/fsn3.2920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Plant-based foods are natural sources including vegetables, fruits, cereals and legumes. These foods consist of various types of nutrients in which carbohydrate is the basic component. However, some plant-based diets contain carbohydrates in the form of fiber. The fiber is usually a nondigestible polysaccharide that is not digested in the human body. It is present in the form of soluble or insoluble in different part of foods like peel, bran, pulp and grain. Pectin, beta-glucan, mucilage, psyllium, resistant starch and inulin are soluble fiber, and cellulose, hemicellulose and lignin are insoluble fiber attained from plant foods. The major function enhances immunity by creating gastrointestinal barrier, mucus production, immune cell activity and IgA level. Previous evidences showed that peoples with strong immunity have fewer chances of viral disease. A recent viral disease named COVID-19 spread in the world and millions of peoples died due to this viral disease. Coronavirus mostly attacks humans that suffer with weak immune system. It is due chronic diseases like diabetes and CVD (cardiovascular disease). The current review shows that fiber-containing plant-based foods boost immunity and aid human against COVID-19. The therapeutic role of fiber in the human body is to control the risk of hypertension and diabetes because a high-fiber diet has the ability to lower cholesterol, blood pressure and blood sugar. Fibers aid in GIT (gastrointestinal tract) and prevent constipation because it absorbs water and adds bulk to stool.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Jabeen
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faqir Muhammad Anjum
- University of the GambiaBanjulThe Gambia
- IFANCA Halal Apex (Pvt.) LimitedFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | | |
Collapse
|
17
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
18
|
Huang CH, Lin CH, Huang HH, Tsai GJ. Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites 2022; 12:metabo12080695. [PMID: 35893262 PMCID: PMC9332839 DOI: 10.3390/metabo12080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In 2020, approximately 9.3 billion tons of crustaceans were consumed, and 45–48% of shrimp shell (SS) by-products were discarded as waste. In this study, the SS of Litopenaeus vannamei was fermented by Lactobacillus plantarum LV33204, Stenotrophomonas maltophilia LV2122 (strong proteolytic activity), and Aeromonas dhakensis LV1111 (chitin-degrading activity), and the optimal fermentation conditions of liquid-fermented SS was established. Contents of total peptide, astaxanthin, and total phenolic content of the fermented SS were significantly higher than that of unfermented SS. In the presence of fermented SS, glucose uptake and insulin resistance of TNF-α-stimulated FL83B hepatocytes were markedly improved. Furthermore, daily oral supplement of fermented SS to streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats for 7 weeks significantly reduced plasma glucose and insulin resistance. Meanwhile, ingestion of fermented SS might enhance hepatic catabolism of glucose by increasing hexokinase and glucose-6-phosphate dehydrogenase activity and decreasing glucose-6-phosphatase activity. In addition, the fermented SS downregulated plasma total cholesterol (TG), triglycerides (TCs), low-density lipoprotein cholesterol (LDL-C), liver TG, and TC and lipid peroxidation levels in diabetic rats. In conclusion, a biorefinery process for waste SS was established through mixed strain fermentation. The in vitro and in vivo data reveal that the fermented SS is a promising functional food for the management of diabetic hyperglycemia and hyperlipidemia.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Chih-Heng Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Hsiao-Han Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Guo-Jane Tsai
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Morita A, Hara T, Joh T. Decomposition and effect as prebiotics of inulin in Jerusalem artichoke tubers during storage. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Akira Morita
- Graduate School of Science and Technology, Niigata University
| | | | - Toshio Joh
- Faculty of Agriculture, Niigata University
| |
Collapse
|
20
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Changes in the Profile of Fecal Microbiota and Metabolites as Well as Serum Metabolites and Proteome After Dietary Inulin Supplementation in Dairy Cows With Subclinical Mastitis. Front Microbiol 2022; 13:809139. [PMID: 35479637 PMCID: PMC9037088 DOI: 10.3389/fmicb.2022.809139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of mastitis is linked to dysbiostic gastrointestinal microbiota. Inulin is a dietary prebiotic that improves the profile of intestinal flora. Our previous study showed that inulin supplementation could improve the ruminal microbes of subclinical mastitis (SCM) cows. The current study attempted to further investigate the response of hindgut (fecal) microbiome and metabolites, serum metabolism, and protein expression to inulin in the in SCM cows. Different levels of inulin (0, 100, 200, 300, and 400 g/day per cow) were supplemented in SCM cows. Compared with control group, Bacteroides and Bifidobacteria were increased, and Paeniclostridium, Ruminococcaceae, Coprococcus, and Clostridia were decreased in the feces of inulin groups, and accompanied with elevated propionate and butyrate concentrations, while secondary bile acid (SBA) metabolites were increased and proinflammatory lipid oxidation products were dropped in both feces and serum. In serum, inulin intake suppressed the levels of triglyceride (TG) and low-density lipoprotein (LDL). Serum proteome analysis found that CD44 antigen, phosphatidylinositol-glycan-specific phospholipase D, apolipoprotein A-II, and superoxide dismutase [Cu-Zn] were upregulated, while cathelicidin-1, haptoglobin, serpin A3, inter-alpha-trypsin inhibitor heavy chain H4 were downregulated in inulin groups. These findings suggested further evidence for inulin supplementation in amelioration of inflammatory symptoms in SCM cows, which might provide alternative treatment for mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit Rev Food Sci Nutr 2022; 63:8752-8767. [PMID: 35471164 DOI: 10.1080/10408398.2022.2061909] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a mostly preventable diet-related disease and currently a major challenge for human populations worldwide. Obesity is a major risk factor for diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) and certain cancers. Dietary fiber is a complex mixture of non-digestible molecules, mostly polysaccharides. Multiple epidemiological studies have demonstrated statistically significant reductions in risks of obesity, T2DM, CVD, colorectal cancer, and pre-menopausal breast cancer with higher dietary fiber intakes. Various direct and indirect mechanisms have been proposed including altered digestion and absorption, stimulation of gut hormones including glucagon-like-peptide-1 (GLP-1) and peptide YY (PYY), reduced appetite, and altered metabolism of bile and cholesterol. These may act via pathways involving G-protein-coupled receptors (GPRs), histone deacetylase (HDAC), and aromatase enzymes. Ultimately, fiber intake contributes to improving glucose levels and insulin sensitivity, lowering risk of T2DM, CVD and certain cancers. Therefore, diets rich in dietary fiber should be encouraged to prevent obesity and associated chronic disease.
Collapse
Affiliation(s)
- Isabella Skye Waddell
- School of Food Science and Nutrition, Woodhouse Lane, University of Leeds, Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, Woodhouse Lane, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Roselli M, Maruszak A, Grimaldi R, Harthoorn L, Finamore A. Galactooligosaccharide Treatment Alleviates DSS-Induced Colonic Inflammation in Caco-2 Cell Model. Front Nutr 2022; 9:862974. [PMID: 35495925 PMCID: PMC9047546 DOI: 10.3389/fnut.2022.862974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The biological activities of dietary bioactive polysaccharides have been largely explored. Studies on the immunomodulating effects of oligosaccharides and polysaccharides have shown that they are able to modulate innate immunity. Prebiotics are a class of poorly digested carbohydrates that are mainly produced from dietary fibers, which are carbohydrate polymers with ten or more monomeric units as defined by the Codex Alimentarius Commission in 2009. Considering the capacity of prebiotics in reducing gut inflammation, the aim of this study was to investigate the anti-inflammatory activity of galactooligosaccharide (Bimuno® GOS) in an in vitro model of ulcerative colitis (UC)-like inflamed intestinal cells. Differentiated Caco-2 cells were exposed to 2 % dextran-sulfate-sodium salt (DSS) to induce inflammation, and then with different concentrations of Bimuno GOS (1–1,000 μg/ml). Cell monolayer permeability, tight- and adherent junction protein distribution, pro-inflammatory cytokine secretion, and NF-kB cascade were assessed. Bimuno GOS at different concentrations, while not affecting cell monolayer permeability, was shown to counteract UC-like intestinal inflammatory responses and damages induced by DSS. Indeed, Bimuno GOS was able to counteract the detrimental effects of DSS on cell permeability, determined by transepithelial electrical resistance, phenol red apparent permeability, and tight- and adherent junction protein distribution. Furthermore, Bimuno GOS inhibited the DSS-induced NF-kB nuclear translocation and pro-inflammatory cytokine secretion. Further analyses showed that Bimuno GOS was able to revert the expression levels of most of the proteins involved in the NF-kB cascade to control levels. Thus, the prebiotic Bimuno GOS can be a safe and effective way to modulate the gut inflammatory state through NF-kB pathway modulation, and could possibly further improve efficacy in inducing remission of UC.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
| | | | | | | | - Alberto Finamore
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
- *Correspondence: Alberto Finamore
| |
Collapse
|
23
|
Vailati-Riboni M, Rund L, Caetano-Silva ME, Hutchinson NT, Wang SS, Soto-Díaz K, Woods JA, Steelman AJ, Johnson RW. Dietary Fiber as a Counterbalance to Age-Related Microglial Cell Dysfunction. Front Nutr 2022; 9:835824. [PMID: 35360677 PMCID: PMC8964049 DOI: 10.3389/fnut.2022.835824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
With increasing age, microglia shift toward a pro-inflammatory phenotype that may predispose individuals to neurodegenerative disease. Because fiber fermentation in the colon produces bioactive short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) that signal through the gut-brain axis, increasing dietary fiber may prevent or reverse age-related dysregulation of microglia. Adult (3–4 months old) and aged (23–24 months old) male and female mice were given ad libitum access to a modified AIN-93M diet with 1% cellulose or the same diet with 2.5 or 5.0% inulin for 8 weeks. Several adult and aged male mice fed 0 or 5% inulin were randomly selected for whole brain single-cell RNA sequencing (scRNA-seq) and differential gene expression analysis to classify brain microglia according to gene expression profile; and identify additional genetic markers of aging as possible targets for dietary interventions. Microglia were isolated from remaining mice and expression of selected aging-, inflammatory-, and sensome-related genes was assessed by Fluidigm as was the ex vivo secretion of tumor necrosis factor-alpha (TNF-α). SCFAs were measured in samples collected from the cecum. Microglia from adult and aged mice segregated into distinct phenotypes according to their gene expression profile. In aged mice, a considerably greater proportion of the population of microglia was identified being “activated” and a considerably smaller proportion was identified being “quiescent.” These findings using whole brain scRNA-seq were largely corroborated using highly purified microglia and Fluidigm analysis to assess a selected panel of genes. Aged mice compared to adults had lower levels of SCFA’s in cecum. Dietary inulin increased SCFAs in cecum and mostly restored microglial cell gene expression and TNF-α secretion to that seen in adults. Sex differences were observed with females having lower levels of SCFAs in cecum and increased neuroinflammation. Overall, these data support the use of fiber supplementation as a strategy to counterbalance the age-related microglial dysregulation.
Collapse
Affiliation(s)
- Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maria Elisa Caetano-Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Noah T. Hutchinson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Selena S. Wang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Katiria Soto-Díaz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey A. Woods
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J. Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Rodney W. Johnson,
| |
Collapse
|
24
|
Klangpetch W, Pattarapisitporn A, Phongthai S, Utama-Ang N, Laokuldilok T, Tangjaidee P, Wirjantoro TI, Jaichakan P. Microwave-assisted enzymatic hydrolysis to produce xylooligosaccharides from rice husk alkali-soluble arabinoxylan. Sci Rep 2022; 12:11. [PMID: 34996923 PMCID: PMC8741828 DOI: 10.1038/s41598-021-03360-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The prebiotic properties of xylooligosaccharides (XOS) and arabino-xylooligosaccharides (AXOS) produced from rice husk (RH) using microwave treatment combined with enzymatic hydrolysis were evaluated. The RH was subjected to microwave pretreatment at 140, 160 and 180 °C for 5, 10 and 15 min to obtain crude arabinoxylan (AX). Increasing microwave pretreatment time increased sugar content. Crude AX was extracted with 2% (w/v) sodium hydroxide at 25 °C for 24 h and used as a substrate for XOS production by commercial xylanases. Results showed that oligosaccharides produced by Pentopan Mono BG and Ultraflo Max provided xylobiose and xylotriose as the main products. AXOS was also present in the oligosaccharides that promoted growth of Lactobacillus spp. and resisted degradation by over 70% after exposure to simulated human digestion.
Collapse
Affiliation(s)
- Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | | | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Niramon Utama-Ang
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tri Indrarini Wirjantoro
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pannapapol Jaichakan
- Department of Agro-Industry, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
25
|
Lu X, Li N, Zhao R, Zhao M, Cui X, Xu Y, Qiao X. In vitro Prebiotic Properties of Garlic Polysaccharides and Its Oligosaccharide Mixtures Obtained by Acid Hydrolysis. Front Nutr 2021; 8:798450. [PMID: 34957191 PMCID: PMC8695971 DOI: 10.3389/fnut.2021.798450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Fructans and oligofructose are usually used as prebiotics without any limitation in functional food or food ingredients. The degree of polymerization (DP) of polysaccharides affects the utilization of probiotics. Garlic is rich in fructans. The objective of this study was to extract and purify polysaccharides from garlic, analyze its composition, hydrolyze them using HCl, and then evaluate the prebiotic potential of the garlic neutral polysaccharides (GPs) before and after hydrolysis. GPs were 6.57 × 103 Da with a composition of fructose and glucose at a ratio of 4:1. After acid hydrolysis, low molecular weight fraction in garlic oligofructose (GOs) may be eliminated through ultrafiltration. The content of oligosaccharides with an average DP < 10 increased from 15 to 75%. GPs and GOS had a stronger resistance to acid conditions in human stomach than fructooligosaccharide, and GOs showed better prebiotic properties on the growth of lactobacilli than GPs. This study evaluates the prebiotic potential of the garlic frutctans and oligosaccharides mixtures obtained by acid hydrolysis, which may be used as an ingredient in functional food and nutraceutical products.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Renjie Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xuanxuan Cui
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yukun Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
26
|
LIMA ECDS, MANHÃES LRT, SANTOS ERD, FEIJÓ MBDS, SABAA-SRUR AUDO. Optimization of the inulin aqueous extraction process from the açaí (Euterpe oleracea, Mart.) seed. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.24920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Lamothe LM, Cantu-Jungles TM, Chen T, Green S, Naqib A, Srichuwong S, Hamaker BR. Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food Funct 2021; 12:10658-10666. [PMID: 34590641 DOI: 10.1039/d1fo02146j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insoluble dietary fibers are typically known to be poorly fermented in the large intestine. However, their value may be high as evidence shows that important butyrogenic bacteria preferentially utilize insoluble substrates to support their energy needs. The objective of this study was to increase fermentability of an insoluble bran fiber (pearl millet) while keeping it mostly insoluble to promote bacteria in the community that rely on fermentable insoluble dietary fibers. Following pretests with different processing methods, a combination of microwave and enzymatic treatments were applied to isolated pearl millet fiber to increase its accessibility of gut bacteria. In vitro human fecal fermentation was conducted and analyses were made for short chain fatty acids and microbiota changes. Combined microwave and enzymatic processing increased the amount of insoluble fiber fermented in vitro from 36 to 59% of total dietary fiber, with a minor increase in soluble fiber (8%). Microwave/enzymatic processing doubled butyrate production and almost tripled acetate production at 6 h fermentation compared to the native millet fiber. 16S rRNA gene sequencing showed that the processing promoted a significant increase in Firmicutes/Bacteroidetes ratio compared to the native fiber with relative abundance increases in Blautia and Copprococcus genera and a decrease in Bacteroidetes. Overall, these data show that processing techniques can be used to increase the value of insoluble fiber, presumably by increasing accessibility of the fiber to degrading bacteria, and to support Firmicutes that preferentially compete on insoluble fibers.
Collapse
Affiliation(s)
- Lisa M Lamothe
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47906, USA. .,Nestlé Research Center, Department of Food Science and Technology, PO Box 44, Vers-chez-les-blanc, Lausanne 26, 1000 Switzerland
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47906, USA.
| | - Tingting Chen
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47906, USA. .,Nanchang University, Food Science, Jangxi, China
| | - Stefan Green
- cDNA Services Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ankur Naqib
- cDNA Services Facility, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sathaporn Srichuwong
- Nestlé Research Center, Department of Food Science and Technology, PO Box 44, Vers-chez-les-blanc, Lausanne 26, 1000 Switzerland.,ICL Food Specialties, Ladenburg, Germany
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47906, USA.
| |
Collapse
|
28
|
Kang CM, Chiang BL, Wang LC. Maternal Nutritional Status and Development of Atopic Dermatitis in Their Offspring. Clin Rev Allergy Immunol 2021; 61:128-155. [PMID: 32157654 DOI: 10.1007/s12016-020-08780-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is the leading chronic skin inflammatory disease and the initial manifestation of atopic march. Available evidence supports the notion that primary prevention early in life leads to a decreased incidence of AD, thus possibly decreasing the subsequent occurrence of atopic march. Nutritional status is essential to a proper functioning immune system and is valued for its important role in AD. Essential nutrients, which include carbohydrates, proteins, lipids, vitamins, and minerals, are transferred from the mother to the fetus through the placenta during gestation. Various nutrients, such as polyunsaturated fatty acids (PUFAs) and vitamin D, were studied in relation to maternal status and offspring allergy. However, no strong evidence indicates that a single nutrient or food in mothers' diet significantly affects the risk of childhood AD. In the light of current evidence, mothers should not either increase nor avoid consuming these nutrients to prevent or ameliorate allergic diseases in their offspring. Each essential nutrient has an important role in fetal development, and current government recommendations suggest specific intake amounts for pregnant women. This review discusses evidence on how various nutrients, including lipids (monounsaturated fatty acids, PUFAs, saturated fatty acids, and short-chain fatty acids), carbohydrates (oligosaccharides and polysaccharides), proteins, vitamins (A, B, C, D, and E), and trace minerals (magnesium, iron, zinc, copper, selenium, and strontium) in maternal status are associated with the development of AD and their possible mechanisms.
Collapse
Affiliation(s)
- Chun-Min Kang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China.
| |
Collapse
|
29
|
Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R. Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Sci Rep 2021; 11:16007. [PMID: 34362962 PMCID: PMC8346543 DOI: 10.1038/s41598-021-95356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus delbrueckii JCM 1002T grows on highly polymerized inulin-type fructans as its sole carbon source. When it was grown on inulin, a > 10 kb long gene cluster inuABCDEF (Ldb1381-1386) encoding a plausible ABC transporter was suggested to be induced, since a transcriptome analysis revealed that the fourth gene inuD (Ldb1384) was up-regulated most prominently. Although Bacillus subtilis 168 is originally unable to utilize inulin, it became to grow on inulin upon heterologous expression of inuABCDEF. When freshly cultured cells of the recombinant B. subtilis were then densely suspended in buffer containing inulin polymers and incubated, inulin gradually disappeared from the buffer and accumulated in the cells without being degraded, whereas levan-type fructans did not disappear. The results imply that inuABCDEF might encode a novel ABC transporter in L. delbrueckii to "monopolize" inulin polymers selectively, thereby, providing a possible advantage in competition with other concomitant inulin-utilizing bacteria.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan ,grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Ro Osawa
- grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
30
|
Bai J, Li Y, Li T, Zhang W, Fan M, Zhang K, Qian H, Zhang H, Qi X, Wang L. Comparison of Different Soluble Dietary Fibers during the In Vitro Fermentation Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7446-7457. [PMID: 33951908 DOI: 10.1021/acs.jafc.1c00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble dietary fibers being fermented by gut microbiota constitute a pivotal prerequisite for soluble dietary fibers exhibiting physiological functions. However, the relationship between fiber type and gut microbiota metabolism remains unclear. The purpose of this study was to investigate and compare the effect of fiber types on short-chain fatty acid (SCFA) biosynthesis in a simulated colon. Results showed that different soluble dietary fibers caused distinct metabolic profiles both in SCFAs and organic acids. Further analysis revealed that the SCFA biosynthesis pathway was related to the chain structure of fiber polysaccharides. Moreover, the microbial community structure showed substantial difference among experimental groups. Parabacteroides was substantially elevated in the resistant starch group, while Lactobacillus was the predominant genus in other groups. Correlation analysis further revealed that SCFA biosynthesis was correlated with microbial taxa at different taxonomic levels. Totally, the present study provided an insight into targeted intervention of gut microorganisms for dictating SCFA and organic acid production.
Collapse
Affiliation(s)
- Junying Bai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Wenhui Zhang
- Institute of Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa 850000, China
| | - Mingcong Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Amadieu C, Leclercq S, Coste V, Thijssen V, Neyrinck AM, Bindels LB, Cani PD, Piessevaux H, Stärkel P, de Timary P, Delzenne NM. Dietary fiber deficiency as a component of malnutrition associated with psychological alterations in alcohol use disorder. Clin Nutr 2021; 40:2673-2682. [PMID: 33933733 DOI: 10.1016/j.clnu.2021.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Chronic alcohol consumption can cause malnutrition that may contribute to alcohol-induced organ injury and psychological disorders. We evaluated the link between nutrient intake, especially dietary fibers (DF) and different parameters reflecting mental health and well being, namely anxiety, depression, alcohol craving, sociability, fatigue and intestinal comfort in alcohol use disorder (AUD) patients. METHODS Cross-sectional data from 50 AUD patients, hospitalized for a 3-week detoxification program were used. Three 24-h recalls allowed to calculate dietary habits and nutrient intakes, that was also assessed in healthy subjects (HS). Diet quality was measured using the NOVA score. Psychological factors and intestinal discomfort were evaluated using validated self-administered questionnaires. RESULTS Energy intake (excluding alcoholic beverage), total fat, monounsaturated and polyunsaturated fatty acids, protein and DF intakes were lower in AUD subjects compared to HS. Ninety percent of patients had a DF intake below the recommendation. AUD patients consumed more than twice as much ultra-processed food than HS. Fructan intake was negatively associated with anxiety (p = 0.04) adjusted for main confounders. Total DF, insoluble, soluble DF and galacto-oligosaccharide intakes were associated with higher sociability score. Soluble DF intake was associated with better satisfaction of bowel function (p = 0.02) and a lower intestinal discomfort (p = 0.04). CONCLUSIONS This study reveals that insufficient DF intake is part of AUD-related malnutrition syndrome, and is associated with higher anxiety, lower sociability score and intestinal discomfort. Our results suggest that an adequate intake of DF might be beneficial for recovery from AUD. TRIAL REGISTRATION NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.
Collapse
Affiliation(s)
- Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Valentin Coste
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Victoria Thijssen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Brussels, Belgium
| | - Hubert Piessevaux
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université catholique de Louvain, UCLouvain, Belgium; Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université catholique de Louvain, UCLouvain, Belgium; Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Department of Adult Psychiatry, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium.
| |
Collapse
|
32
|
Park SY, Kim HY. Fried pork loin batter quality with the addition of various dietary fibers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:137-148. [PMID: 33987591 PMCID: PMC7882852 DOI: 10.5187/jast.2021.e15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 11/07/2020] [Indexed: 11/20/2022]
Abstract
The effect of the addition of dietary fiber extracted from wheat, bamboo, and oat
on the quality of fried pork loin batter was investigated. Quality evaluation
included proximate composition, pH, color, viscosity, coating and frying yield,
electronic nose, and sensory evaluation. Regarding proximate composition of
fried batter and fried pork loin, the water content of the dietary fiber
treatments was significantly higher than that of the control (p
< 0.05), whereas fat content was significantly lower than that of the
control (p < 0.05). The lightness of non-fried batter
with dietary fiber treatments was significantly higher than that of the control
(p < 0.05), whereas the yellowness was significantly
lower than that of the control (p < 0.05). The
lightness, redness, and yellowness of fried pork loin with dietary fiber
treatment were significantly lower than those of the control (p
< 0.05). The viscosity and coating and frying yield of dietary fiber
treatments were significantly higher than those of the control
(p < 0.05). The volatile compounds of dietary fiber
treatments were decreased “tallowy” flavor and increased
“buttery” and “milky” flavor. The principal
components of bamboo and oat fiber treatments were clearly distinguishable from
those of the control; however, similar principal components as those of the
control were obtained with wheat fiber treatment. Regarding sensory evaluation,
the color, texture, and overall acceptability of wheat and oat fiber treatments
were significantly higher than those of the control (p <
0.05), and the flavor of the wheat fiber treatment was significantly higher than
that of the control (p < 0.05). These results show that
wheat and oat fibers are suitable for fried pork loin batter and improve its
quality.
Collapse
Affiliation(s)
- Sin-Young Park
- Department of Animal Resources Science, Kongju National University, Chungnam 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Chungnam 32439, Korea
| |
Collapse
|
33
|
Çoban Dİ, Babiker EE, Al Juhaimi F, Uslu N, Özcan MM, Ghafoor K, Mohamed Ahmed IA, Almusallam IA. Fatty acid composition, mineral contents, and glycemic index values of chips produced with different cooking methods and lupine (
Lupinus albus
L.) flour formulations. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Duygu İpek Çoban
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| | - ElFadil E. Babiker
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Fahad Al Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| | - Kashif Ghafoor
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Isam A. Mohamed Ahmed
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| | - Ibrahim A. Almusallam
- Department of Food Engineering, Faculty of Agriculture Selcuk University Konya Turkey
| |
Collapse
|
34
|
Wienberg F, Hövels M, Kosciow K, Deppenmeier U. High-resolution method for isocratic HPLC analysis of inulin-type fructooligosaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1172:122505. [PMID: 33895646 DOI: 10.1016/j.jchromb.2020.122505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
In recent decades, strategies to improve human health by modulating the gut microbiota have developed rapidly. One of the most prominent is the use of prebiotics, which can lead to a higher abundance of health-promoting microorganisms in the gut. Currently, oligosaccharides dominate the prebiotic sector due to their ability to promote the growth and activity of probiotic bacteria selectively. Extensive efforts are made to develop effective production strategies for the synthesis of prebiotic oligosaccharides, including the use of microbial enzymes. Within the genus Lactobacillus, several inulosucrases have been identified, which are suitable for the synthesis of prebiotic inulin-type fructooligosaccharides (inulin-FOS). In this study, a truncated version of the inulosucrase from Lactobacillus gasseri DSM 20604 was used for the efficient synthesis of inulin-FOS. Product titers of 146.2 ± 7.4 g inulin-FOSL-1 were achieved by the catalytic activity of the purified recombinant protein InuGB-V3. A time and resource-saving HPLC method for rapid analysis of inulin-FOS in isocratic mode was developed and optimized, allowing baseline separated analysis of inulin-FOS up to a degree of polymerization (DP) of five in less than six minutes. Long-chain inulin-FOS with a DP of 17 can be analyzed in under 45 min. The developed method offers the advantages of isocratic HPLC analysis, such as low flow rates, high sensitivity, and the use of a simple, inexpensive chromatographic setup. Furthermore, it provides high-resolution separation of long-chain inulin-FOS, which can usually only be achieved with gradient systems.
Collapse
Affiliation(s)
- Franziska Wienberg
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Konrad Kosciow
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany
| | - Uwe Deppenmeier
- Institute for Microbiology and Biotechnology, University of Bonn, 53115, Germany.
| |
Collapse
|
35
|
Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult Sci 2020; 99:5827-5837. [PMID: 33142500 PMCID: PMC7647821 DOI: 10.1016/j.psj.2020.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effects of dietary corn-resistant starch on lipid metabolism of broilers and its potential relationship with cecal microbiota modulation. A total of three hundred twenty 1-day-old male broilers were randomly assigned into 5 dietary treatments: 1 normal corn–soybean (NC) diet, 1 corn–soybean–based diet supplementation with 20% corn starch (CS), and 3 corn–soybean–based diets supplementation with 4, 8, and 12% corn resistant starch (RS) (identified as 4%RS, 8%RS, and 12%RS, respectively). Each group had 8 replicates with 8 broilers per replicate. The experiment lasted 21 d. The results showed that the abdominal fat percentage were lower in birds from 8%RS and 12%RS groups (0.75 and 0.58%, respectively) than those from NC and CS groups (1.20 and 1.28%, respectively; P < 0.05). The birds from 8%RS and 12%RS groups exhibited lower concentrations of blood triglyceride and nonestesterified fatty acid than those in the NC and CS groups (P < 0.05). Moreover, birds fed diets supplementation with 12% RS decreased the relative mRNA expressions of peroxisome proliferator-activated receptor gamma, ATP citrate-lyase, fatty acid synthase, and acetyl-CoA carboxylase in liver, and glycerol-3-phosphate acyltransferase in abdominal adipose tissue (P < 0.05). Microbiota analysis revealed that birds fed diets supplementation with 8 and 12% RS decreased the abundance of cecal Firmicutes by 23.08 and 20.47% and increased the proportion of Bacteroidetes by 24.33 and 21.92%, respectively, compared with the NC group (P < 0.05). In addition, correlation analysis revealed that many Firmicutes members had highly positive relationship with blood lipid levels and fat storage capacity, which might contribute to the lower abdominal fat phenotype. Overall, broilers receiving diets containing a higher concentration of RS harbor less Firmicutes, which decreased liver fatty acid synthesis and suppress abdominal fat deposition of birds during the starter phase. These findings provide a profound understanding about the relationship between gut microbial composition and lipid metabolism in broilers.
Collapse
|
36
|
Osmodehydrofreezing: An Integrated Process for Food Preservation during Frozen Storage. Foods 2020; 9:foods9081042. [PMID: 32748856 PMCID: PMC7466345 DOI: 10.3390/foods9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Osmodehydrofreezing (ODF), a combined preservation process where osmotic dehydration is applied prior to freezing, achieves several advantages, especially in plant tissues, sensitive to freezing. OD pre-treatment can lead to the selective impregnation of solutes with special characteristics that reduce the freezing time and improve the quality and stability of frozen foods. ODF research has extensively focused on the effect of the osmotic process conditions (e.g., temperature, duration/composition/concentration of the hypertonic solution) on the properties of the osmodehydrofrozen tissue. A number of complimentary treatments (e.g., vacuum/pulsed vacuum, pulsed electric fields, high pressure, ultrasound) that accelerate mass transfer phenomena have been also investigated. Less research has been reported with regards the benefits of ODF during the subsequent storage of products, in comparison with their conventionally frozen counterparts. It is important to critically review, via a holistic approach, all parameters involved during the first (osmotic dehydration), second (freezing process), and third stage (storage at subfreezing temperatures) when assessing the advantages of the ODF integrated process. Mathematical modeling of the improved food quality and stability of ODF products during storage in the cold chain, as a function of the main process variables, is presented as a quantitative tool for optimal ODF process design.
Collapse
|
37
|
Hu Y, Chen D, Yu B, Yan H, Zheng P, Mao X, Yu J, He J, Huang Z, Luo Y, Luo J, Zhang X, Luo L. Effects of dietary fibres on gut microbial metabolites and liver lipid metabolism in growing pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:1484-1493. [DOI: 10.1111/jpn.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Daiwen Chen
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jun He
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xianghui Zhang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Luhong Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| |
Collapse
|
38
|
Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. REVIEWS IN AQUACULTURE 2020; 12:1903-1927. [DOI: 10.1111/raq.12416] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 10/16/2023]
Abstract
AbstractFish gut microbiome confers various effects to the host fish; this includes overall size, metabolism, feeding behaviour and immune response in the fish. The emergence of antimicrobial‐resistant (AMR) bacteria and hard to cure fish diseases warrant the possible utilization of gut microbes that exhibits a positive effect on the fish and thus lead to the usage of these microbes as probiotics. The widespread and systematic use of antibiotics has led to severe biological and ecological problems, especially the development of antibiotic resistance that affects the gut microbiota of aquatic organisms. Probiotics are proposed as an effective and environmentally friendly alternative to antibiotics, known as beneficial microbes. At the same time, prebiotics are considered beneficial to the host's health and growth by decreasing the prevalence of intestinal pathogens and/or changing the development of bacterial metabolites related to health. Uprise of sequencing technology and the development of intricate bioinformatics tools has provided a way to study these gut microbes through metagenomic analysis. From various metagenomic studies, ample of information was obtained; such information includes the effect of the gut microbiome on the physiology of fish, gut microbe composition of different fish, factors affecting the gut microbial composition of the fish and the immunological effect of gut microbes in fish; such this information related to the fish gut microbiome, their function and their importance in aquaculture is discussed in this review.
Collapse
Affiliation(s)
| | - Praveen Kumar
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Parimannan Sivachandran
- Faculty of Applied Sciences Centre of Excellence for Omics-Driven Computational Biodiscovery (CO MBio) AIMST University Bedong Malaysia
- Faculty of Science School of Life and Environmental Sciences Engineering and Built Environment Deakin University, Waurn Ponds Campus Geelong Australia
| | - Kasi Marimuthu
- Department of Biotechnology AIMST University Semeling Kedah Darul Aman Malaysia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) Universiti Putra Malaysia Serdang Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
- Laboratory of Marine Biotechnology Institute of Bioscience Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Bilal Ahmad Paray
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
39
|
Su H, Liu J, Wu G, Long Z, Fan J, Xu Z, Liu J, Yu Z, Cao M, Liao N, Peng J, Yu W, Li W, Wu H, Wang X. Homeostasis of gut microbiota protects against polychlorinated biphenyl 126-induced metabolic dysfunction in liver of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137597. [PMID: 32143051 DOI: 10.1016/j.scitotenv.2020.137597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure is closely associated with the prevalence of metabolic diseases, including fatty liver and dyslipidemia. Emerging literature suggests that disturbance of gut microbiota is related to PCB126-induced metabolic disorders. However, the causal role of dysbiosis in PCB126-induced fatty liver is still unknown. To clarify the role of the gut microbiome in the detoxification of PCB126 in intestine or PCB126-induced toxicity in liver, mice were administrated with drinking water containing antibiotics (ampicillin, vancomycin, neomycin, and metronidazole) or Inulin. We showed that PCB126 resulted in significant hepatic lipid accumulation, inflammation, and fibrosis. PCB126, Antibiotics, and Inulin significantly affected the structure and shifted community membership of gut microbiome. 7 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways at level 2 and 39 KEGG pathways at level 3 were significantly affected. Antibiotics alleviated PCB126-induced fibrosis in the liver but increased inflammation. Inulin treatment ameliorated both inflammation and fibrosis in the liver of PCB126-treated mice. Neither Antibiotics nor Inulin had significant effect on PCB126-induced hepatic steatosis. The more specific intervention of gut microbiota is needed to alleviate PCB126-induced fatty liver. These data demonstrate that homeostasis of gut microbiota is critical for the defense against PCB126 toxicity and dysbiosis plays a fundamental role in the development of inflammation and fibrosis in liver of PCB126-treated mice.
Collapse
Affiliation(s)
- Hongfei Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Guangyuan Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Junshu Fan
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongrui Xu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jiawei Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zhongtian Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Nai Liao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China.
| |
Collapse
|
40
|
Nyyssölä A, Ellilä S, Nordlund E, Poutanen K. Reduction of FODMAP content by bioprocessing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Guo B, Li D, Zhou B, Jiang Y, Bai H, Zhang Y, Xu Q, Yongzhang, Chen G. Research Note: Effect of diet with different proportions of ryegrass on breast meat quality of broiler geese. Poult Sci 2020; 99:2500-2507. [PMID: 32359586 PMCID: PMC7597400 DOI: 10.1016/j.psj.2019.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to determine the effects of diet with different proportions of ryegrass on breast meat quality of geese. In total, 240 healthy male Yangzhou geese (28-day-old) with similar body weight were divided randomly into 4 diet groups (control group: fed commercial diets; treatment groups I, II, and III: fed ryegrass and commercial diet in the ratios of 1.5:1, 2:1, and 3:1, respectively), the birds being fed from the age of 29 to 70 D. The results shows that the body weights of 70-day-old geese of treatment groups II and III were lower than those in the control group, whereas those of geese of treatment group I were similar to those of the control group. The contents of flavor amino acid and total (essential) amino acids in treatment groups I and II were higher than those in treatment group III (P < 0.05). In addition, grass supplementation reduced saturated fatty acid content and increased that of omega-3 (n-3) polyunsaturated fatty acids, relative to the control group (P < 0.05). Finally, among the 6 minerals analyzed in breast muscle, differences existed in Zn, Se, and Cu contents among the geese fed with different proportions of ryegrass. Zn content of geese from treatment groups II and III was significantly higher than that of those of the control group; Cu content was lower with grass intake and was significantly higher in the control group than in treatment group III; Se content was significantly higher in the control group than in both groups II and III (all at P < 0.05). The results from this study indicated that geese fed with low proportions of ryegrass (1.5:1 or 2:1) showed good growth performance and increased total (essential) amino acid, flavor amino acid, n-3 polyunsaturated fatty acid, and Zn content in meat, which had a certain guiding value for the production of high-quality goose meat under intensive feeding conditions.
Collapse
Affiliation(s)
- Baodi Guo
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Dianhui Li
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Beibei Zhou
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yong Jiang
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Hao Bai
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yang Zhang
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qi Xu
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yongzhang
- Waterfowl Institute of Yangzhou, Songqiao 225651, P.R. China
| | - Guohong Chen
- Laboratory of Animal Geneti cs and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R. China.
| |
Collapse
|
42
|
Pereira AM, Guedes M, Matos E, Pinto E, Almeida AA, Segundo MA, Correia A, Vilanova M, Fonseca AJM, Cabrita ARJ. Effect of Zinc Source and Exogenous Enzymes Supplementation on Zinc Status in Dogs Fed High Phytate Diets. Animals (Basel) 2020; 10:ani10030400. [PMID: 32121315 PMCID: PMC7142709 DOI: 10.3390/ani10030400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Zinc is an essential element, a cofactor of many enzymes, and performs catalytic, structural and regulatory functions. Once in the gastrointestinal tract, zinc can interact with food constituents. Phytic acid, the major phosphorus storage in plants, limits zinc availability from animal feeds due to the formation of insoluble complexes with phytates. This study tested the effect of supplemental zinc source (zinc sulfate and a chelate zinc proteinate) and the addition of exogenous enzymes from a solid-state fermentation product of Aspergillus niger to a high phytate diet. The study was designed according to three Latin Squares 4 × 4 with a 2 × 2 factorial arrangement of treatments, with four periods, four diets, and 12 young adult Beagles. Periods lasted 5 weeks each. Diets were supplemented with 75 mg/kg of zinc sulfate (IZ) or zinc proteinate (OZ), and without or with 200 mg/kg of exogenous enzymes (IZ+, OZ+). Results showed that zinc proteinate increased the bioavailability of phosphorus, yet the zinc biomarkers remained unaffected by the zinc source, with the exception of lymphocyte subsets that benefit from zinc proteinate. The use of exogenous enzymes did not affect zinc availability nor nutrient and energy digestibility.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Margarida Guedes
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Elisabete Matos
- SORGAL, Sociedade de Óleos e Rações S.A., Estrada Nacional 109 Lugar da Pardala, 3880-728 S. João Ovar, Portugal;
| | - Edgar Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Agostinho A. Almeida
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (E.P.); (A.A.A.); (M.A.S.)
| | - Alexandra Correia
- i3S/IBMC—Instituto de Investigação e Inovação em Saúde/Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; (A.C.); (M.V.)
| | - Manuel Vilanova
- i3S/IBMC—Instituto de Investigação e Inovação em Saúde/Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; (A.C.); (M.V.)
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - António J. M. Fonseca
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
| | - Ana Rita J. Cabrita
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (A.M.P.); (M.G.); (A.J.M.F.)
- Correspondence: ; Tel.: +351-220-428-000
| |
Collapse
|
43
|
Dawood MAO, Abo-Al-Ela HG, Hasan MT. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. FISH & SHELLFISH IMMUNOLOGY 2020; 97:268-282. [PMID: 31863903 DOI: 10.1016/j.fsi.2019.12.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/25/2023]
Abstract
Aquaculture and fisheries have provided protein sources for human consumption for a long time, but diseases have induced declines in product benefits and raised concerns, resulting in great losses to these industries in many countries. The overuse of antibiotics for the treatment of diseases has increased the chemical concentrations in culture systems and weakened the natural immunity of aquatic organisms. Concerns regarding the detrimental effects of antibiotics on the environment and human health due to residual antibiotic-related issues encourage the development of reliable, environmental and health safety methods, such as vaccines, probiotics, prebiotics, synbiotics and phytobiotics, for protection against disease and for reducing and possibly eliminating disease occurrence. Immunity has been effectively enhanced by pro-, pre-, and synbiotics, which confer strong protection and reduce the risks associated with stressors and disease outbreaks in culture systems. These agents confer several benefits, including enhancing both host growth and immune responses against pathogens, while sustaining health and environmental stability, and their use is thus widely accepted. Alterations in gene expression in individual cells could serve as an indicator of the immunity and growth rate of aquatic animals after pro-, pre- and synbiotic feeding. This review addresses the potential use of pro, pre- and synbiotics as immunostimulants for improved aquaculture management and environmental health and chronicles the recent insights regarding the application of pro-, pre- and synbiotics with special emphasis on their immunomodulatory and antioxidative responses based on gene expression changes. Furthermore, the current review describes the research gaps and other issues that merit further investigation.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Haitham G Abo-Al-Ela
- Animal Health Research Institute, Agriculture Research Center, Shibin Al-Kom, El-Minufiya, Egypt
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
44
|
Park SY, Oh TS, Kim GW, Kim HY. Quality properties of various dietary fibers as isolated soy protein (ISP) replacements in pork emulsion systems. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:94-102. [PMID: 32082603 PMCID: PMC7008126 DOI: 10.5187/jast.2020.62.1.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022]
Abstract
This study aimed to investigate the possibility of replacing the isolated soy protein (ISP) as a binding agent for wheat, oat, and bamboo shoot dietary fibers. Dietary fibers and ISP were added to manufacturing process of pork emulsion, respectively, for investigate quality properties. Moisture contents of pork emulsion added wheat fiber-treated group was significantly higher than ISP-treated group (p < 0.05), and protein contents of dietary fiber-treated group were significantly lower than ISP-treated group (p < 0.05). Raw pork emulsion CIE a* value of oat, bamboo shoot fiber-treated group were significantly lower than ISP-treated group (p < 0.05). After cooking pork emulsion CIE L* value of dietary fiber-treated group were significantly higher than ISP-treated group (p < 0.05). Raw pork emulsion water holding capacity (WHC) of wheat, oat fiber-treated group were significantly higher than ISP-treated group (p < 0.05), and cooked pork emulsion WHC of wheat, bamboo shoot fiber-treated group were higher than ISP-treated group (p < 0.05). Cooking loss of ISP-treated group was significantly higher than dietary fiber-treated group (p < 0.05), and viscosity of ISP-treated group was lower than dietary fiber-treated group. Hardness of ISP-treated group was significantly lower than dietary fiber-treated group (p < 0.05); however, cohesiveness of ISP-treated group was significantly higher than dietary fiber-treated group (p < 0.05). In conclusion, dietary fiber added as binding agent to manufacturing process of pork emulsion was suitable to replacing ISP.
Collapse
Affiliation(s)
- Sin-Young Park
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Tae-Seok Oh
- Department of Plant Resources, Kongju National University, Yesan 32439, Korea
| | - Gye-Woong Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
45
|
Transcriptomic and metabolomic responses in the livers of pigs to diets containing different non-starchy polysaccharides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Macedo LL, Vimercati WC, Araújo CDS. Fruto-oligossacarídeos: aspectos nutricionais, tecnológicos e sensoriais. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.08019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo Este trabalho objetivou apresentar os fundamentos sobre fruto-oligossacarídeos (FOS), seus métodos de obtenção, estabilidade em alimentos processados e aspectos nutricionais. Os FOS são carboidratos naturais presentes em diversas espécies de plantas, compostos por 2 a 10 monômeros de sacarídeos. Além da obtenção natural, que ocorre através da extração em fontes vegetais, esses carboidratos podem ser obtidos pela hidrólise enzimática da inulina, realizada pelas inulinases, ou ainda sintetizados a partir de resíduos de sacarose. Os FOS são estáveis perante a maioria dos processos realizados nos alimentos, sofrendo maiores degradações em processos térmicos envolvendo alta temperatura e/ou pH extremo. Tal característica favorece a industrialização de produtos ricos em FOS e a adição desses compostos como ingredientes. Esse grupo de carboidratos tem ganhado cada vez mais destaque nos últimos anos perante a capacidade de exercerem diversas funções benéficas ao organismo, pois são considerados como prebióticos e fibras solúveis. A ingestão de FOS está associada à redução do risco de câncer de cólon, diabetes, obesidade, doenças cardiovasculares e ao aumento da absorção de alguns minerais. Além disso, são caracterizados pela boa aceitação sensorial, solubilidade e capacidade de retenção de água. Entretanto, o consumo deve ser moderado, pois, em grandes porções, pode causar alguns desconfortos ao indivíduo, tais como flatulência.
Collapse
|
47
|
|
48
|
Félix AP, Menezes Souza CM, Bastos TS, Kaelle GCB, Oliveira SG, Maiorka A. Digestibility of raw soybeans in extruded diets for dogs determined by different methods. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1698324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Alex Maiorka
- Department of Animal Science, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
49
|
Pires LDS, Todisco KM, Janzantti NS, Mauro MA. Black garlic: Effects of the processing on the kinetics of browning and moisture transfer and on antioxidant properties. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liliane de Souza Pires
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) UNESP – São Paulo State University São José do Rio Preto Brazil
| | - Katieli Martins Todisco
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) UNESP – São Paulo State University São José do Rio Preto Brazil
| | - Natália Soares Janzantti
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) UNESP – São Paulo State University São José do Rio Preto Brazil
| | - Maria Aparecida Mauro
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) UNESP – São Paulo State University São José do Rio Preto Brazil
| |
Collapse
|
50
|
Pretorius RA, Bodinier M, Prescott SL, Palmer DJ. Maternal Fiber Dietary Intakes during Pregnancy and Infant Allergic Disease. Nutrients 2019; 11:nu11081767. [PMID: 31374861 PMCID: PMC6722741 DOI: 10.3390/nu11081767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal diet during pregnancy plays a likely role in infant immune development through both direct nutrient specific immunomodulatory effects and by modulating the composition and metabolic activity of the maternal gut microbiome. Dietary fibers, as major substrates for microbial fermentation, are of interest in this context. This is the first study to examine maternal intakes of different fiber sub-types and subsequent infant allergic disease. In an observational study of 639 mother–infant pairs (all infants had a family history of allergic disease) we examined maternal intakes of total fiber, soluble fiber, insoluble fiber, resistant starch, and prebiotic fiber, by a semi-quantitative food frequency questionnaire at 36–40 weeks’ gestation. Infants attended an allergy clinical assessment at 12 months of age, including skin prick testing to common allergens. Higher maternal dietary intakes of resistant starch were associated with reduced doctor diagnosed infant wheeze, adjusted odds ratio (aOR) 0.68 (95% CI 0.49, 0.95, p = 0.02). However, in contrast, higher maternal intakes of resistant starch were associated with higher risk of parent reported eczema aOR 1.27 (95% CI 1.09, 1.49, p < 0.01) and doctor diagnosed eczema aOR 1.19 (95% CI 1.01, 1.41, p = 0.04). In conclusion, maternal resistant starch consumption was differentially associated with infant phenotypes, with reduced risk of infant wheeze, but increased risk of eczema.
Collapse
Affiliation(s)
- Rachelle A Pretorius
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Marie Bodinier
- INRA Pays de la Loire, UR 1268 Biopolymers Interactions Assemblies, rue de la géraudière, BP 71627, Cedex 3, 44316 Nantes, France
| | - Susan L Prescott
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands 6009, Western Australia, Australia
| | - Debra J Palmer
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands 6009, Western Australia, Australia.
| |
Collapse
|