1
|
Bae H, Won SD, Kim J, Seo HJ, Han C. Relationship Between Brain-Derived Neurotrophic Factor and Cognitive Function in Methamphetamine-Dependent Patients. Psychiatry Investig 2025; 22:252-257. [PMID: 40143721 PMCID: PMC11962524 DOI: 10.30773/pi.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/30/2024] [Accepted: 12/11/2024] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVE Methamphetamine (METH) is a neurotoxic substance that can induce neurodegeneration in the human brain. Consequently chronic METH use can affect the cognitive functions in METH-dependent patients. In this study, we aimed to identify the relationship between cognitive function and brain-derived neurotrophic factor (BDNF), which reflects the status of neuroadaptive changes, by characterizing the effects on the cognitive function of METH-dependent patients. METHODS A total of 38 METH-dependent patients participated in this study. BDNF levels were measured using the enzyme-linked immunosorbent assay. We also examined the clinical features based on the measurements of the Consortium to Establish a Registry for Alzheimer's Disease-Korean version (CERAD-K). Finally, the relationships between various parts of CERAD-K and BDNF were compared with one another. RESULTS METH-dependent patients were able to conduct most parts of CERAD-K stably. Among the parts of CERAD-K, only trail-making test part B was correlated with BDNF. CONCLUSION The trail-making test is specific for evaluating executive function; therefore, BDNF may play an essential role in detecting neurocognitive functional decline in METH dependence.
Collapse
Affiliation(s)
- Hwallip Bae
- Department of Psychiatry, National Medical Center, Seoul, Republic of Korea
| | - Sung-Doo Won
- Department of Psychology, Daegu Catholic University, Daegu, Republic of Korea
| | - Jiyoun Kim
- Department of Addiction, Catholic University, Seoul, Republic of Korea
- Korea Addiction Culture Institute, Seoul, Republic of Korea
| | - Hye-Jin Seo
- Department of Psychiatry, Yongin Mental Hospital, Yongin, Republic of Korea
| | - Changwoo Han
- Department of Psychiatry, Myongji Hospital, Hanyang University, Goyang, Republic of Korea
| |
Collapse
|
2
|
Oladapo A, Kannan M, Deshetty UM, Singh S, Buch S, Periyasamy P. Methamphetamine-mediated astrocytic pyroptosis and neuroinflammation involves miR-152-NLRP6 inflammasome signaling axis. Redox Biol 2025; 80:103517. [PMID: 39879739 PMCID: PMC11810843 DOI: 10.1016/j.redox.2025.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes. Gene silencing of NLRP6 reduces methamphetamine-induced pyroptosis and proinflammatory cytokines release. We also identified miR-152 as a critical upstream regulator of NLRP6, which is downregulated in methamphetamine-exposed astrocytes. Overexpression of miR-152 decreases NLRP6 expression, mitigating methamphetamine-induced pyroptosis and inflammation. In vivo and ex vivo studies in methamphetamine-exposed mice confirmed these results and showed that methamphetamine induces anxiety-like, cognitive impairment, and depression-like behavior, further linking astrocyte-specific NLRP6 signaling to methamphetamine-induced neuroinflammation. This study highlights the potential of targeting the NLRP6 inflammasome in astrocytes as a therapeutic approach to alleviate methamphetamine-induced central nervous system pathology. Further research is warranted to explore clinical applications and identify therapeutic targets for methamphetamine-related neurological disorders.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
3
|
Khan R, Turner A, Berk M, Walder K, Rossell S, Guerin AA, Kim JH. Genes, Cognition, and Their Interplay in Methamphetamine Use Disorder. Biomolecules 2025; 15:306. [PMID: 40001609 PMCID: PMC11852989 DOI: 10.3390/biom15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine use disorder is a pressing global health issue, often accompanied by significant cognitive deficits that impair daily functioning and quality of life and complicate treatment. Emerging evidence highlights the potential role of genetic factors in methamphetamine use disorder, particularly in association with cognitive function. This review examines the key genetic and cognitive dimensions and their interplay in methamphetamine use disorder. There is converging evidence from several studies that genetic polymorphisms in BDNF, FAAH, SLC18A1, and SLC18A2 are associated with protection against or susceptibility to the disorder. In addition, people with methamphetamine use disorder consistently displayed impairments in cognitive flexibility and inhibitory control compared with people without the disorder. These cognitive domains were associated with reactivity to methamphetamine cues that were positively correlated with total years of methamphetamine use history. Emerging research also suggests that inhibitory control is negatively correlated with lower blood FAAH mRNA levels, while cognitive flexibility positively correlates with higher blood SLC18A2 mRNA levels, highlighting how genetic and cognitive dimensions interact in methamphetamine use disorder. We also include some future directions, emphasizing potential personalized therapeutic strategies that integrate genetic and cognitive insights. By drawing attention to the interplay between genes and cognition, we hope to advance our understanding of methamphetamine use disorder and inform the development of targeted interventions.
Collapse
Affiliation(s)
- Ramisha Khan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
- Orygen, Melbourne, VIC 3052, Australia
| | - Jee Hyun Kim
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| |
Collapse
|
4
|
Bardakçı MR, Yazici AB, Bardakçı Ş, Yazici E. The Effect of Modafinil Treatment on Cravings in Methamphetamine Use Disorder. J Psychoactive Drugs 2024:1-8. [PMID: 39722529 DOI: 10.1080/02791072.2024.2446468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
There is a need for treatments that can reduce cravings in methamphetamine use disorder (MUD), which is trending upwards worldwide. The aim of this study was to evaluate the effect of modafinil treatment on substance craving in patients with MUD. The study included 100 patients with MUD who were being treated in an inpatient detoxification center. Patients were divided into two groups as modafinil group (MG) (n = 51) and non-modafinil group (NMG) (n = 49) and compared with each other in terms of sociodemographic data, severity of addiction, change in craving scores on the 1st, 7th and 14th days. The change in craving scores during the first week was found to be significantly greater in the modafinil group (MG) compared to the non-modafinil group (NMG) (p < .001), indicating that modafinil effectively reduced methamphetamine cravings within the first week of treatment. When the changes in craving levels were compared between the groups in the first and second week, the difference between the groups was not statistically significant (p > .05). The mean substance craving scores at hospitalization were higher in MG than NMG (p < .001). Modafinil may be beneficial in the treatment of MUD, especially when used in the first weeks of treatment, especially in patients with higher cravings at baseline.
Collapse
Affiliation(s)
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Şeyma Bardakçı
- Department of Physiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
5
|
Ma JC, Che XH, Zhu XN, Ren AX, Hu Y, Yang CL, Xu ZT, Li YT, Wu CF, Yang JY. Single-dose methamphetamine administration impairs ORM retrieval in mice via excessive DA-mediated inhibition of PrL Glu activity. Acta Pharmacol Sin 2024; 45:2253-2266. [PMID: 38914676 PMCID: PMC11489666 DOI: 10.1038/s41401-024-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024]
Abstract
Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 μg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jian-Chi Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Hang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ao-Xin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cheng-Li Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhong-Tian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Ting Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Love S, Nicolls M, Rowland B, Davey J. The impact of methamphetamine use and dependence: A systematic review on the cognitive-behavioural implications for road safety. TRANSPORTATION RESEARCH PART F: TRAFFIC PSYCHOLOGY AND BEHAVIOUR 2024; 103:480-499. [DOI: 10.1016/j.trf.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Opitz A, Zimmermann J, Cole DM, Coray RC, Zachäi A, Baumgartner MR, Steuer AE, Pilhatsch M, Quednow BB, Beste C, Stock AK. Conflict monitoring and emotional processing in 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine users - A comparative neurophysiological study. Neuroimage Clin 2024; 41:103579. [PMID: 38447413 PMCID: PMC10924209 DOI: 10.1016/j.nicl.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
In stimulant use and addiction, conflict control processes are crucial for regulating substance use and sustaining abstinence, which can be particularly challenging in social-affective situations. Users of methamphetamine (METH, "Ice") and 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") both experience impulse control deficits, but display different social-affective and addictive profiles. We thus aimed to compare the effects of chronic use of the substituted amphetamines METH and MDMA on conflict control processes in different social-affective contexts (i.e., anger and happiness) and investigate their underlying neurophysiological mechanisms. For this purpose, chronic but recently abstinent users of METH (n = 38) and MDMA (n = 42), as well as amphetamine-naïve healthy controls (n = 83) performed an emotional face-word Stroop paradigm, while event-related potentials (ERPs) were recorded. Instead of substance-specific differences, both MDMA and METH users showed smaller behavioral effects of cognitive-emotional conflict processing (independently of emotional valence) and selective deficits in emotional processing of anger content. Both effects were underpinned by stronger P3 ERP modulations suggesting that users of substituted amphetamines employ altered stimulus-response mapping and decision-making. Given that these processes are modulated by noradrenaline and that both MDMA and METH use may be associated with noradrenergic dysfunctions, the noradrenaline system may underlie the observed substance-related similarities. Better understanding the functional relevance of this currently still under-researched neurotransmitter and its functional changes in chronic users of substituted amphetamines is thus an important avenue for future research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Translational Psychiatry Lab, University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Anna Zachäi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany; Department of Psychiatry and Psychotherapy, Elblandklinikum, Radebeul, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany.
| |
Collapse
|
8
|
Li H, Wang C, Huang X, Xu L, Cao Y, Luo J, Zhang G. Chan-Chuang and resistance exercise for drug rehabilitation: a randomized controlled trial among Chinese male methamphetamine users. Front Public Health 2023; 11:1180503. [PMID: 37965508 PMCID: PMC10642185 DOI: 10.3389/fpubh.2023.1180503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Objective To examine the health benefits of Chan-Chuang and resistance exercise. Methods We deployed an 8-week randomized controlled trial, in which 76 male methamphetamine users were allocated to control (n = 25), Chan-Chuang (n = 26), and residence exercise groups (n = 25). Our primary outcomes were drug craving, mental wellbeing, sleep quality, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). Our secondary outcomes were body mass index (BMI), vital capacity, grip strength, balance, and vertical jump. Results Chan-Chuang exercise resulted in reduced HR, DBP, and MAP, along with improvements in vital capacity, grip strength, and balance compared to the control group. Resistance exercise reduced SBP and MAP, and also improved vital capacity, grip strength, balance, and vertical jump. Conclusion These findings may support the role of Chan-Chuang and resistance exercise in maintaining the physical fitness of methamphetamine users at mandatory detention centers.
Collapse
Affiliation(s)
- Hansen Li
- Research Center for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, China
| | - Chao Wang
- Research Center for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, China
| | - Xuemei Huang
- Chongqing Xishanping Education and Correction Center, Chongqing, China
| | - Lubing Xu
- Chongqing Xishanping Education and Correction Center, Chongqing, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jiong Luo
- Research Center for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, China
| | - Guodong Zhang
- Research Center for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Lustig A, Brookes G. Corpus-Based Discourse Analysis of a Reddit Community of Users of Crystal Methamphetamine: Mixed Methods Study. JMIR INFODEMIOLOGY 2023; 3:e48189. [PMID: 37773617 PMCID: PMC10576227 DOI: 10.2196/48189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Methamphetamine is a highly addictive stimulant that affects the central nervous system. Crystal methamphetamine is a form of the drug resembling glass fragments or shiny bluish-white rocks that can be taken through smoking, swallowing, snorting, or injecting the powder once it has been dissolved in water or alcohol. OBJECTIVE The objective of this study is to examine how identities are socially (discursively) constructed by people who use methamphetamine within a subreddit for people who regularly use crystal meth. METHODS Using a mixed methods approach, we analyzed 1000 threads (318,422 words) from a subreddit for regular crystal meth users. The qualitative component of the analysis used concordancing and corpus-based discourse analysis to identify discursive themes informed by assemblage theory. The quantitative portion of the analysis used corpus linguistic techniques including keyword analysis to identify words occurring with statistically marked frequency in the corpus and collocation analysis to analyze their discursive context. RESULTS Our findings reveal that the subreddit contributors use a rich and varied lexicon to describe crystal meth and other substances, ranging from a neuroscientific register (eg, methamphetamine and dopamine) to informal vernacular (eg, meth, dope, and fent) and commercial appellations (eg, Adderall and Seroquel). They also use linguistic resources to construct symbolic boundaries between different types of methamphetamine users, differentiating between the esteemed category of "functional addicts" and relegating others to the stigmatized category of "tweakers." In addition, contributors contest the dominant view that methamphetamine use inevitably leads to psychosis, arguing instead for a more nuanced understanding that considers the interplay of factors such as sleep deprivation, poor nutrition, and neglected hygiene. CONCLUSIONS The subreddit contributors' discourse offers a "set and setting" perspective, which provides a fresh viewpoint on drug-induced psychosis and can guide future harm reduction strategies and research. In contrast to this view, many previous studies overlook the real-world complexities of methamphetamine use, perhaps due to the use of controlled experimental settings. Actual drug use, intoxication, and addiction are complex, multifaceted, and elusive phenomena that defy straightforward characterization.
Collapse
Affiliation(s)
- Andrew Lustig
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gavin Brookes
- Department of Linguistics and English Language, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
10
|
Miranda A, Perry W, Umlauf A, Young JW, Morgan EE, Minassian A. A Pilot Assessment of the Effects of HIV and Methamphetamine Dependence on Socially Dysregulated Behavior in the Human Behavioral Pattern Monitor. AIDS Behav 2023; 27:2617-2628. [PMID: 36738342 PMCID: PMC9898694 DOI: 10.1007/s10461-023-03987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Deficits in social cognition are seen in both people living with HIV (PWH) and people with a history of methamphetamine (METH) dependence. Dually affected individuals may experience additive negative effects on social cognition due to these conditions. We evaluated social cognition in 4 diagnostic groups (HIV-/METH-, HIV-/METH+, HIV+/METH-, HIV+/METH+). First, we used traditional social-emotional functioning assessments, the Difficulties in Emotion Regulation Scale and the Faux Pas Task, to determine any significant effects of METH dependence and HIV on social cognition. Next, we quantified social cognition using the Human Behavioral Pattern Monitor by evaluating social behavior represented by interaction with novel objects. METH dependence significantly affected social-emotional functions and HIV significantly affected on object interactions, however no significant additive effects were observed using these methods. The nuanced relationship between HIV and METH dependence suggests that other factors (i.e., adaptive life skills) likely mediate social cognition-related behaviors.
Collapse
Affiliation(s)
- Alannah Miranda
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - William Perry
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Anya Umlauf
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Center of Excellence on Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
11
|
First MB, Clarke DE, Yousif L, Eng AM, Gogtay N, Appelbaum PS. DSM-5-TR: Rationale, Process, and Overview of Changes. Psychiatr Serv 2023; 74:869-875. [PMID: 36510761 DOI: 10.1176/appi.ps.20220334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The DSM-5 text revision (DSM-5-TR) is the first published revision of the DSM-5 since its publication in 2013. Like the previous text revision (DSM-IV-TR), the main goal of the DSM-5-TR is to comprehensively update the descriptive text accompanying each DSM disorder on the basis of reviews of the literature over the past 10 years. In contrast to the DSM-IV-TR, in which updates were confined almost exclusively to the text, the DSM-5-TR includes many other changes and enhancements of interest to practicing clinicians, such as the addition of diagnostic categories (prolonged grief disorder, stimulant-induced mild neurocognitive disorder, unspecified mood disorder, and a category to indicate the absence of a diagnosis); the provision of ICD-10-CM symptom codes for reporting suicidal and nonsuicidal self-injurious behavior; modifications, mostly for clarity, of the diagnostic criteria for more than 70 disorders; and updates in terminology (e.g., replacing "neuroleptic medications" with "antipsychotic medications or other dopamine receptor blocking agents" throughout the text and replacing "desired gender" with "experienced gender" in the text for gender dysphoria). Finally, the entire text was reviewed by an Ethnoracial Equity and Inclusion Work Group to ensure appropriate attention to risk factors such as the experience of racism and discrimination, as well as the use of nonstigmatizing language.
Collapse
Affiliation(s)
- Michael B First
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| | - Diana E Clarke
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| | - Lamyaa Yousif
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| | - Ann M Eng
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| | - Nitin Gogtay
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| | - Paul S Appelbaum
- Division of Behavioral Health and Policy Research (First) and Center for Law, Ethics and Psychiatry (Appelbaum), Department of Psychiatry, Columbia University Irving Medical Center, New York City; Division of Research (Clarke, Yousif, Gogtay) and American Psychiatric Association Publishing (Eng), American Psychiatric Association, Washington, D.C.; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Clarke); New York State Psychiatric Institute, New York City (Appelbaum)
| |
Collapse
|
12
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
13
|
Corrone M, Ratnayake R, de Oliveira N, Jaehne EJ, van den Buuse M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: interaction with brain-derived neurotrophic factor Val66Met genotype. Behav Pharmacol 2023; 34:20-36. [PMID: 36373697 DOI: 10.1097/fbp.0000000000000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic methamphetamine (Meth) abuse may induce psychosis similar to that observed in schizophrenia. Brain-derived neurotrophic factor (BDNF) has been implicated in the development of psychosis. We have previously shown long-term protein expression changes in mice treated chronically with Meth depending on BDNF Val66Met genotype. The aim of this study was to investigate if these protein expression changes were associated with differential changes in a range of behavioural paradigms for cognition, anxiety, social and other behaviours. Male and female Val/Val, Val/Met and Met/Met mice were treated with an escalating Meth dose protocol from 6 to 9 weeks of age, with controls receiving saline injections. Several overlapping cohorts were tested in the Y-maze for short-term spatial memory, novel-object recognition test, context and cued fear conditioning, sociability and social preference, elevated plus maze for anxiety-like behaviour and prepulse inhibition (PPI) of acoustic startle. Finally, the animals were assessed for spontaneous exploratory locomotor activity and acute Meth-induced locomotor hyperactivity. Acute Meth caused significantly greater locomotor hyperactivity in mice previously treated with the drug than in saline-pretreated controls. Meth-pretreated female mice showed a mild increase in spontaneous locomotor activity. There were no Meth-induced deficits in any of the other behavioural tests. Val/Met mice showed higher overall social investigation time and lower PPI compared with the Val/Val genotype independent of pretreatment. These results show limited long-term effects of chronic Meth on a range of cognitive, affective and social behaviours despite marked drug-induced locomotor sensitization in mice. There was no interaction with BDNF Val66Met genotype.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Mahjoob M, Heydarian S. Long-term effects of methamphetamine abuse on visual evoked potentials. Ophthalmic Physiol Opt 2022; 42:1187-1192. [PMID: 36097683 DOI: 10.1111/opo.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To compare visual evoked potential (VEP) components in normal individuals and those with long-term methamphetamine and crystal methamphetamine use. METHODS In this study, monocular pattern-reversal VEPs were recorded in 40 methamphetamine and crystal methamphetamine users and 38 normal individuals. Visual stimuli were high-contrast (99%) checkerboard patterns at 15 and 60 min of arc with a reversal rate of 1.53 reversals per second. RESULTS A significant difference was seen between the two groups for the P100 peak time for the 60 min of arc checks (p = 0.002, d = 0.75, 4.61% higher peak time in the addicted group) and the 15 min of arc checks (p = 0.004, d = 0.73, 4.78% higher peak time in the addicted group). However, other VEP components were not significantly different between the two groups. CONCLUSIONS The higher P100 peak time at both 15 and 60 min of arc in methamphetamine-dependent users reveals that VEPs are highly sensitive for the diagnosis of retinal and visual pathway lesions.
Collapse
Affiliation(s)
- Monireh Mahjoob
- Department of Optometry, Rehabilitation Faculty, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Samira Heydarian
- Department of Rehabilitation Sciences, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Sankaran D, Lakshminrusimha S, Manja V. Methamphetamine: burden, mechanism and impact on pregnancy, the fetus, and newborn. J Perinatol 2022; 42:293-299. [PMID: 34785765 DOI: 10.1038/s41372-021-01271-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023]
Abstract
While the opioid epidemic has garnered worldwide attention, increasing methamphetamine use has drawn less scrutiny. Methamphetamine is a highly addictive psychostimulant affecting people from all backgrounds and regions. It is a potent vasoconstrictor, is associated with arrhythmias and dilated cardiomyopathy. Cardiovascular disease-related mortality is a leading cause of death in methamphetamine users. Women of childbearing age increasingly use methamphetamine and continue during pregnancy. In the short term, prenatal methamphetamine use is associated with fetal growth restriction and low birth weight in the newborn. Animal studies show reduction in uterine and umbilical blood flow following maternal methamphetamine administration. Based on currently available evidence, prenatal methamphetamine exposure has transient effects on gross motor development, no effect on language and cognition, and modest effects on behavior and executive functioning with poor inhibitory control, which may be attributable to early adversity. Further research is needed to evaluate long-term effects of prenatal methamphetamine exposure.
Collapse
Affiliation(s)
- Deepika Sankaran
- Department of Pediatrics, Adventist Health Rideout Hospital, Marysville, CA, USA. .,Division of Neonatology, Department of Pediatrics, University of California, Davis, CA, USA.
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California, Davis, CA, USA
| | - Veena Manja
- Division of Cardiology, Veterans Affairs Medical Center, Mather, USA.,Department of Surgery, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Huckans M, Boyd S, Moncrief G, Hantke N, Winters B, Shirley K, Sano E, McCready H, Dennis L, Kohno M, Hoffman W, Loftis JM. Cognition during active methamphetamine use versus remission. J Clin Exp Neuropsychol 2021; 43:599-610. [PMID: 34612792 DOI: 10.1080/13803395.2021.1976734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate whether cognitive performance in adults with active methamphetamine use (MA-ACT) differs from cognitive performance in adults in remission from MA use disorder (MA-REM) and adults without a history of substance use disorder (CTLs). METHOD MA-ACT (n = 36), MA-REM (n = 48), and CTLs (n = 62) completed the Neuropsychological Assessment Battery (NAB). RESULTS The MA-ACT group did not perform significantly worse than CTLs on any NAB Index. The MA-REM group performed significantly (p < 0.050) worse than CTLs on the NAB Memory Index. The MA-ACT group performed significantly better than CTLs and the MA-REM group on the Executive Functions Index. CONCLUSIONS Some cognitive deficits are apparent during remission from MA use, but not during active use; this may result in clinical challenges for adults attempting to maintain recovery and continue with treatment.
Collapse
Affiliation(s)
- Marilyn Huckans
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| | - Stephen Boyd
- Department of Anesthesia and Perioperative Medicine, Oregon Health & Science University, Portland, Or, USA
| | - Grant Moncrief
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Pacific University, School of Graduate Psychology, Hillsboro, OR, USA.,Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nathan Hantke
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Bethany Winters
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| | - Kate Shirley
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Emily Sano
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Laura Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - William Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| |
Collapse
|
17
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
18
|
Melatonin protects against methamphetamine-induced Alzheimer's disease-like pathological changes in rat hippocampus. Neurochem Int 2021; 148:105121. [PMID: 34224806 DOI: 10.1016/j.neuint.2021.105121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
Methamphetamine (METH) is a psychostimulant drug of abuse. METH use is associated with cognitive impairments and neurochemical abnormalities comparable to pathological changes observed in Alzheimer's disease (AD). These observations have stimulated the idea that METH abusers might be prone to develop AD-like signs and symptoms. Melatonin, the pineal hormone, is considered as a potential therapeutic intervention against AD. We thus conducted the present study to explore potential protective roles of melatonin against METH-induced deficits in learning and memory as well as in the appearance of AD-like pathological changes in METH-treated male Wistar rats. We found that melatonin ameliorated METH-induced cognitive impairments in those rats. Melatonin prevented METH-induced decrease in dopamine transporter (DAT) expression in rat hippocampus. Melatonin reversed METH-induced activation of β-arrestin2, reduction of phosphorylation of protein kinase B (Akt) and METH-induced excessive activity of glycogen synthase kinase-3β (GSK3β). Importantly, melatonin inhibited METH-induced changes in the expression of β-site APP cleaving enzyme (BACE1), disintegrin and metalloproteinase 10 (ADAM10), and presenilin 1 (PS1), as well as the reduction of amyloid beta (Aβ)42 production. Immunofluorescence double-labeling demonstrated that melatonin not only prevented the METH-induced loss of DAT but also prevented METH-induced Aβ42 overexpression in the dentate gyrus, CA1, and CA3. Furthermore, melatonin also suppressed METH-induced increase in phosphorylated tau. Significantly, melatonin attenuated METH-induced increase in N-methyl-D-aspartate receptor subtype 2 B (NR2B) protein expression and restored METH-induced reduction of Ca2+/calmodulin-dependent protein kinase II (CaMKII). This suggested that melatonin attenuated the toxic effect of METH on the hippocampus involving the amyloidogenic pathway. Taken together, our data suggest that METH abuse may be a predisposing risk factor for AD and that melatonin could serve as a potential therapeutic agent to prevent METH-induced AD like pathology.
Collapse
|
19
|
Ahmed A, Ruiz MJ, Cohen Kadosh K, Patton R, Resurrección DM. Khat and neurobehavioral functions: A systematic review. PLoS One 2021; 16:e0252900. [PMID: 34111184 PMCID: PMC8192015 DOI: 10.1371/journal.pone.0252900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022] Open
Abstract
Background Khat is a plant that is used for its amphetamine-like stimulant properties. However, although khat is very popular in Eastern Africa, Arabian Peninsula, and the Middle East, there is still a lack of studies researching the possible neurobehavioral impairment derived from khat use. Methods A systematic review was conducted to identify studies that assessed the effects of khat use on neurobehavioral functions. MedLine, Scopus, Cochrane, Web of Science and Open Grey literature were searched for relevant publications from inception to December 2020. Search terms included (a) khat and (b) several cognitive domains. References from relevant publications and grey literature were also reviewed to identify additional citations for inclusion. Results A total of 142 articles were reviewed, 14 of which met the inclusion criteria (nine human and five rodent studies). Available human studies suggest that long term khat use is associated with significant deficits in several cognitive domains, including learning, motor speed/coordination, set-shifting/response inhibition functions, cognitive flexibility, short term/working memory, and conflict resolution. In addition, rodent studies indicated daily administration of khat extract resulted in dose-related impairments in behavior such as motor hyperactivity and decreased cognition, mainly learning and memory. Conclusions The findings presented in this review indicates that long-term khat use may be contributing to an impairment of neurobehavioral functions. However, gaps in literature were detected that future studies could potentially address to better understand the health consequences of khat use.
Collapse
Affiliation(s)
- Ayan Ahmed
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| | - Manuel J. Ruiz
- Department of Psychology, University of Extremadura, Badajoz, Badajoz, Spain
| | - Kathrin Cohen Kadosh
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, United Kingdom
| | - Robert Patton
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, United Kingdom
| | | |
Collapse
|
20
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
21
|
Xu X, Fan R, Ruan Y, Xu M, He J, Cao M, Li X, Zhou W, Liu Y. Inhibition of PLCβ1 signaling pathway regulates methamphetamine self-administration and neurotoxicity in rats. Food Chem Toxicol 2021; 149:111970. [PMID: 33421459 DOI: 10.1016/j.fct.2021.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Studies have shown that the central renin-angiotensin system is involved in neurological disorders. Our previous studies have demonstrated that angiotensin II receptor type 1 (AT1R) in the brain could be a potential target against methamphetamine (METH) use disorder. The present study was designed to investigate the underlying mechanisms of the inhibitory effect of AT1R on various behavioural effects of METH. We first examined the effect of AT1R antagonist, candesartan cilexetil (CAN), on behavioural and neurotoxic effects of METH. Furthermore, we studied the role of phospholipase C beta 1 (PLCβ1) blockade behavioural and neurotoxic effects of METH. The results showed that CAN significantly attenuated METH-induced behavioral disorders and neurotoxicity associated with increased oxidative stress. AT1R and PLCβ1 were significantly upregulated in vivo and in vitro. Inhibition of PLCβ1 effectively alleviated METH-induced neurotoxicity and METH self-administration (SA) by central blockade of the PLCβ1 involved signalling pathway. PLCβ1 blockade significantly decreased the reinforcing and motivation effects of METH. PLCβ1 involved signalling pathway, as well as a more specific role of PLCβ1, involved the inhibitory effects of CAN on METH-induced behavioural dysfunction and neurotoxicity. Collectively, our findings reveal a novel role of PLCβ1 in METH-induced neurotoxicity and METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- The affiliated Hospital of Medical School, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| | - Runyue Fan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Yanqian Ruan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengjie Xu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Jiajie He
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengye Cao
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Xingxing Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China; Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China; Ningbo Addiction Research and Treatment Center, 21 Xibei Road, Zhejiang, 315040, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| |
Collapse
|
22
|
Clasen MM, Riley AL, Davidson TL. Hippocampal-Dependent Inhibitory Learning and Memory Processes in the Control of Eating and Drug Taking. Curr Pharm Des 2020; 26:2334-2352. [PMID: 32026771 DOI: 10.2174/1381612826666200206091447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
As manifestations of excessive and uncontrolled intake, obesity and drug addiction have generated much research aimed at identifying common neuroadaptations that could underlie both disorders. Much work has focused on changes in brain reward and motivational circuitry that can overexcite eating and drug-taking behaviors. We suggest that the regulation of both behaviors depends on balancing excitation produced by stimuli associated with food and drug rewards with the behavioral inhibition produced by physiological "satiety" and other stimuli that signal when those rewards are unavailable. Our main hypothesis is that dysregulated eating and drug use are consequences of diet- and drug-induced degradations in this inhibitory power. We first outline a learning and memory mechanism that could underlie the inhibition of both food and drug-intake, and we describe data that identifies the hippocampus as a brain substrate for this mechanism. We then present evidence that obesitypromoting western diets (WD) impair the operation of this process and generate pathophysiologies that disrupt hippocampal functioning. Next, we present parallel evidence that drugs of abuse also impair this same learning and memory process and generate similar hippocampal pathophysiologies. We also describe recent findings that prior WD intake elevates drug self-administration, and the implications of using drugs (i.e., glucagon-like peptide- 1 agonists) that enhance hippocampal functioning to treat both obesity and addiction are also considered. We conclude with a description of how both WD and drugs of abuse could initiate a "vicious-cycle" of hippocampal pathophysiology and impaired hippocampal-dependent behavioral inhibition.
Collapse
Affiliation(s)
- Matthew M Clasen
- Department of Psychology, Program in Neuroscience, Williams College, Williamstown, MA 01267, United States
| | - Anthony L Riley
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| | - Terry L Davidson
- Department of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| |
Collapse
|
23
|
Inflammation but not programmed cell death is activated in methamphetamine-dependent patients: Relevance to the brain function. Int J Psychophysiol 2020; 157:42-50. [PMID: 32976886 DOI: 10.1016/j.ijpsycho.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/31/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
Animal studies have shown that methamphetamine (MA) induces neurodegeneration through programmed cell death, however, the effects of MA on human brain and the extent of induced neural degeneration is not well understood. Given that the dose and duration of MA administration differ in animals and humans, we evaluated MA effects on active users considering brain damage mechanisms. Nineteen active MA-dependent patients and 18 healthy controls performed the color-word Stroop task, during fMRI and their blood samples were collected. Human enzyme-linked immunosorbent assays (ELISA) and quantitative PCR were applied to measure circulating proteins and miRNAs involved in various programmed cell death pathways (apoptosis, necroptosis, and autophagy), brain damage and neuroinflammation. Results showed the performance deficit in color-word Stroop task in MA abusers as well as higher activations of the right inferior and middle temporal gyri detected by fMRI. Structural MRI revealed increased white matter volume in MA-dependent patients in the superior and medial frontal gyri, and left/right middle temporal gyrus. Molecular analyses detected no significant differences in the plasma levels of the studied proteins and miRNAs of MA-dependent patients and controls except the higher levels of MBP, S100B, and TNFα in MA abusers. Results showed that MA induced physiological and structural changes accompanied by inflammation and release of damage-associated molecules in MA-dependent patients.
Collapse
|
24
|
Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats. Behav Pharmacol 2020; 31:385-396. [DOI: 10.1097/fbp.0000000000000544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Wang H, Sun Y, Lan F, Liu Y. Altered brain network topology related to working memory in internet addiction. J Behav Addict 2020; 9:325-338. [PMID: 32644933 PMCID: PMC8939409 DOI: 10.1556/2006.2020.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS The working memory (WM) ability of internet addicts and the topology underlying the WM processing in internet addiction (IA) are poorly understood. In this study, we employed a graph theoretical framework to characterize the topological properties of the IA brain network in the source cortical space during WM task. METHODS A sample of 24 subjects with IA and 23 matched healthy controls (HCs) performed visual 2-back task. Exact Low Resolution Electromagnetic Tomography was adopted to project the pre-processed EEG signals into source space. Subsequently, Lagged phase synchronization was calculated between all pairs of Brodmann areas, the graph theoretical approaches were then employed to estimate the brain topological properties of all participants during the WM task. RESULTS We found better WM behavioral performance in IA subjects compared with the HCs. Moreover, compared to the HC group, more integrated and hierarchical brain network was revealed in the IA subjects in alpha band. And altered regional centrality was mainly resided in frontal and limbic lobes. In addition, significant relationships between the IA severity and the significant altered graph indices were found. CONCLUSIONS In conclusion, these findings provide evidence to support the notion that altered topological configuration may underline changed WM function observed in IA.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Yan Sun
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Corresponding author’s e-mail:
| | - Fan Lan
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| | - Yan Liu
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| |
Collapse
|
26
|
Fitzpatrick RE, Rubenis AJ, Lubman DI, Verdejo-Garcia A. Cognitive deficits in methamphetamine addiction: Independent contributions of dependence and intelligence. Drug Alcohol Depend 2020; 209:107891. [PMID: 32061948 DOI: 10.1016/j.drugalcdep.2020.107891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Methamphetamine's effects on brain function have been associated with cognitive deficits, which have a negative impact on clinical outcomes. However, it remains unclear if cognitive deficits relate to methamphetamine dependence (potentially amenable to abstinence and retraining) or background characteristics, mental health and other drug use. We tested the association between methamphetamine dependence and cognitive performance, while factoring in the impact of background characteristics, depressive symptoms and tobacco, alcohol and cannabis use. METHOD The sample comprised 108 treatment-seeking participants who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV TR) criteria for methamphetamine dependence and 50 socio-demographically matched controls. We administered a comprehensive neuropsychological test battery (delay discounting, decision making, disinhibition, episodic and working memory) and examined cognitive deficits in methamphetamine users after taking into account socio-demographic characteristics, tobacco, alcohol and cannabis use, and depressive symptoms. RESULTS Hierarchical multiple regression analyses showed that methamphetamine dependence was associated with poorer performance in decision-making and disinhibition over and above other predictors, while IQ better explained performance in episodic and working memory. Although duration of methamphetamine use was linked to disinhibition, other patterns of methamphetamine use (including dose and frequency) were not consistently related to performance. CONCLUSIONS Methamphetamine dependence impacts inhibitory control and decision-making, whereas lower IQ associates with memory/working memory deficits among methamphetamine users. Findings suggest the need to target disinhibition and impulsive decision-making as part of methamphetamine dependence treatment, while buffering the impact of IQ on memory systems.
Collapse
Affiliation(s)
- Rebecca E Fitzpatrick
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia
| | - Adam J Rubenis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia; Turning Point, Eastern Health Australia
| | - Dan I Lubman
- Turning Point, Eastern Health Australia; Eastern Health Clinical School, Monash University, Fitzroy, Victoria, 3065, Australia
| | - Antonio Verdejo-Garcia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, 3800, Australia; Turning Point, Eastern Health Australia.
| |
Collapse
|
27
|
Sharma N, Shin EJ, Kim NH, Cho EH, Nguyen BT, Jeong JH, Jang CG, Nah SY, Kim HC. Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders. Curr Neuropharmacol 2020; 17:990-1002. [PMID: 30819085 PMCID: PMC7052827 DOI: 10.2174/1570159x17666190228114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon 16419, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
28
|
Guerin AA, Bonomo Y, Lawrence AJ, Baune BT, Nestler EJ, Rossell SL, Kim JH. Cognition and Related Neural Findings on Methamphetamine Use Disorder: Insights and Treatment Implications From Schizophrenia Research. Front Psychiatry 2019; 10:880. [PMID: 31920743 PMCID: PMC6928591 DOI: 10.3389/fpsyt.2019.00880] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of methamphetamine (meth) use disorder, research on meth is disproportionately scarce compared to research on other illicit drugs. Existing evidence highlights cognitive deficits as an impediment against daily function and treatment of chronic meth use. Similar deficits are also observed in schizophrenia, and this review therefore draws on schizophrenia research by examining similarities and differences between the two disorders on cognition and related neural findings. While meth use disorder and schizophrenia are two distinct disorders, they are highly co-morbid and share impairments in similar cognitive domains and altered brain structure/function. This narrative review specifically identifies overlapping features such as deficits in learning and memory, social cognition, working memory and inhibitory/impulse control. We report that while working memory deficits are a core feature of schizophrenia, such deficits are inconsistently observed following chronic meth use. Similar structural and functional abnormalities are also observed in cortical and limbic regions between the two disorders, except for cingulate activity where differences are observed. There is growing evidence that targeting cognitive symptoms may improve functional outcome in schizophrenia, with evidence of normalized abnormal brain activity in regions associated with cognition. Considering the overlap between meth use disorder and schizophrenia, targeting cognitive symptoms in people with meth use disorder may also improve treatment outcome and daily function.
Collapse
Affiliation(s)
- Alexandre A. Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yvonne Bonomo
- Department of Addiction Medicine, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Women’s Alcohol and Drug Service, Royal Women’s Hospital, Melbourne, VIC, Australia
| | - Andrew John Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | | - Eric J. Nestler
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan L. Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
30
|
Lappin JM, Sara GE. Psychostimulant use and the brain. Addiction 2019; 114:2065-2077. [PMID: 31321819 DOI: 10.1111/add.14708] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/01/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Psychostimulant users are typically young adults. We have conducted a narrative review of neuropsychiatric harms associated with the psychostimulants methamphetamine/amphetamine, cocaine and 3,4-methylenedioxymethamphetamine (MDMA), focusing on epidemiological factors, common clinical presentations, underlying causal mechanisms and treatment options. The major neuropsychiatric harms of psychostimulant use are stroke, neurocognitive impairment, Parkinson's disease, seizures and psychotic illness. These arise through a combination of acute monoamine release, longer-term neurotransmitter effects and indirect effects. These effects are moderated by factors in the individual and in the pattern of substance use. Neuropsychiatric harms associated with psychostimulant use can thus lead to severe long-term impairment.
Collapse
Affiliation(s)
- Julia M Lappin
- National Drug and Alcohol Research Centre (NDARC), University of New South Wales, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Grant E Sara
- InforMH, NSW Ministry of Health, North Ryde, NSW, Australia.,Northern Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
32
|
Tehrani AM, Boroujeni ME, Aliaghaei A, Feizi MAH, Safaralizadeh R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci Lett 2019; 712:134478. [DOI: 10.1016/j.neulet.2019.134478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/18/2019] [Accepted: 09/02/2019] [Indexed: 01/22/2023]
|
33
|
Berihu BA, Asfeha GG, Welderufael AL, Debeb YG, Zelelow YB, Beyene HA. Toxic effect of khat ( Catha edulis) on memory: Systematic review and meta-analysis. J Neurosci Rural Pract 2019; 8:30-37. [PMID: 28149078 PMCID: PMC5225718 DOI: 10.4103/0976-3147.193524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND People use khat (Catha edulis) for its pleasant stimulant effect of physical activity, consciousness, motor, and mental functions. Although there are reports assessing the effect of khat on memory, there was no study based on formal systematic review and meta-analysis. OBJECTIVE We have therefore conducted this meta-analysis to determine the level of evidence for the effect of khat (C. edulis Forsk) on memory discrepancy. METHODS MEDLINE, Cochrane Library, PubMed, Academic Search Complete, SPORTDiscus, ScienceDirect, Scopus, Web of Science, and Google Scholar were searched to retrieve the papers for this review. Keywords utilized across database search were khat, cat, chat, long-term memory, short-term memory, memory deficit, randomized control trial, and cross-sectional survey. The search was limited to studies in humans and rodents; published in English language. RESULT Finding of various studies included in our meta-analysis showed that the effect of acute, and subchronic exposure to khat showed that short-term memory appears to be affected depending on the duration of exposure. However, does not have any effect on long-term memory. CONCLUSION Although a number of studies regarding the current topic are limited, the evidenced showed that khat (C. edulis) induced memory discrepancy.
Collapse
Affiliation(s)
- Birhane Alem Berihu
- Department of Anatomy and Histology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gebrekidan Gebregzabher Asfeha
- Department of Biochemistry and Molecular Biology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Abadi Leul Welderufael
- Department of Pediatrics and Gynecology, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yared Godefa Debeb
- Department of Physiology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yibrah Berhe Zelelow
- Department of Pediatrics and Gynecology, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hafte Assefa Beyene
- Department of Anatomy and Histology, Institute of Bio-Medical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
34
|
Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:2243-2258. [PMID: 30919007 PMCID: PMC6626678 DOI: 10.1007/s00213-019-05221-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
RATIONALE Methamphetamine (MA) is an abused psychostimulant that causes cognitive deficits after chronic use. Neostriatal dopamine receptors play a role in MA monoamine neurotoxicity. Blocking dopamine receptors prior to MA exposure in adult rats attenuates monoamine reductions and reactive gliosis. OBJECTIVES We tested whether blocking dopamine receptors protects against cognitive deficits. METHODS First, we determined the effects of MA alone versus MA in combination with the dopamine receptor D1 antagonist SCH-23390 or the dopamine receptor D2 antagonist sulpiride on cFos expression and monoamines at the age when rats in the cognitive experiment were to begin testing and monoamines in rats after cognitive testing. RESULTS SCH-23390 infused into the neostriatum prior to systemic administration of MA attenuated MA-induced cFos activation while sulpiride induced cFos activation. Two weeks after MA, rats had dopamine and serotonin reductions that were attenuated by each antagonist. Other rats treated the same way, were tested for egocentric learning and memory in the Cincinnati water maze, for navigational strategy in a star water maze, and spatial learning and memory in a Morris water maze. Pre-treatment with SCH-23390 or sulpiride attenuated the effects of MA on egocentric and spatial learning and memory. MA-treated rats showed a shift from an egocentric to a disorganized strategy in the star maze that was less disorganized in groups receiving MA and an antagonist. Post-behavior monoamine reductions remained but were attenuated by the antagonists but not identically to what was seen in rats not behaviorally tested. CONCLUSIONS The results show for the first time that dopamine receptors are mediators of MA-induced cognitive deficits.
Collapse
|
35
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Thyroid hormone treatment alleviates the impairments of neurogenesis, mitochondrial biogenesis and memory performance induced by methamphetamine. Neurotoxicology 2019; 74:7-18. [PMID: 31075280 DOI: 10.1016/j.neuro.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine (MA), a neurotoxic psychostimulant, leads to long-lasting cognitive dysfunctions in humans and animal models. Thyroid hormones (THs) have several physiological actions and are crucial for normal behavioral, intellectual and neurological development. Considering the importance of THs in the cognitive processes, the present study was designed to evaluate the therapeutic effects of THs on cognitive and neurological impairments induced by MA. Escalating doses of MA (1-10 mg/kg, IP) were injected twice daily for 10 consecutive days in rats and cognitive functions were evaluated using behavioral tests. The expression of factors involved in neurogenesis (NES and DCX), mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), neuroinflammation (GFAP, Iba-1, and COX-2) as well as Reelin and NT-3 (synaptic plasticity and neurotrophic factor, respectively) was measured in the hippocampus of MA-treated animals. The effects of three different doses of T4 (20, 40 or 80 μg/kg; intraperitoneally) or T3 (20, 40 or 80 μg/rat; 2.5 μl/nostril; intranasal) treatment, once a day for one week after MA cessation, were assessed in MA-treated rats. After the last behavioral test, serum T4 and T3 levels were measured using radioimmunoassay. The results revealed that repeated escalating regimen of MA impaired cognitive functions concomitant with neurogenesis and synaptic plasticity impairments, mitochondrial dysfunction, and neuroinflammation. T4 or T3 treatment partially decreased the alterations induced by MA. These findings suggest that THs can be considered as potential candidates for the reduction of MA abuse related neurocognitive disturbances.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Seyedhosseini Tamijani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Khalifeh S, Khodamoradi M, Hajali V, Ghazvini H, Eliasy L, Kheradmand A, Farnia V, Akhtari J, Shahveisi K, Ghalehnoei H. Naloxone Ameliorates Spatial Memory Deficits and Hyperthermia Induced by a Neurotoxic Methamphetamine Regimen in Male Rats. Galen Med J 2019; 8:e1182. [PMID: 34466469 PMCID: PMC8343598 DOI: 10.31661/gmj.v0i0.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Methamphetamine (METH) as a synthetic psychostimulant is being increasingly recognized as a worldwide problem, which may induce memory impairment. On the other hand, it is well established that naloxone, an opiate antagonist, has some beneficial effects on learning and memory. The present research aimed at evaluating naloxone effects on spatial learning and memory impairment triggered by a neurotoxic regimen of METH in male rats. MATERIALS AND METHODS The animals received the subcutaneous (sc) regimen of METH (4×6 mg/kg at 2-h intervals), intraperitoneal (ip) naloxone (4×1 mg/kg at 2-h intervals), or normal saline at four events. The Nal-METH group of rats received four naloxone injections (1 mg/ kg, ip) 30 min before each METH injection (6 mg/kg, sc) at 2-h intervals. Seven days later, they were evaluated for spatial learning and memory in the Morris Water Maze (MWM) task. RESULTS METH regimen induced hyperthermia, as well as a poor performance, in the acquisition and retention phases of the task, indicating spatial learning and memory impairment compared to the controls. Naloxone administration (1 mg/kg, ip) before each METH injection led to significant attenuations of both hyperthermia and METH adverse effects on the rat performance in the MWM task. CONCLUSION The results revealed that pretreatment with the opiate antagonist naloxone could prevent METH adverse effects on body temperature and memory performance. It seems that the opioidergic system and hyperthermia may, at least partially, be involved in METH effects on spatial memory.
Collapse
Affiliation(s)
- Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amiralmomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Hajali
- Quchan Higher Health Education Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lelia Eliasy
- Department of Anatomical Sciences, Golestan University of Medical Sciences, Golestan, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, school of pharmacy, International campus, Iran University of medical sciences, Tehran, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Akhtari
- Immunogenetic Research Center, Mazandaran University of medical science, Sari, Iran
| | - Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ghalehnoei
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
37
|
Debalkie Animut M, Sorrie MB, Birhanu YW, Teshale MY. High prevalence of neurocognitive disorders observed among adult people living with HIV/AIDS in Southern Ethiopia: A cross-sectional study. PLoS One 2019; 14:e0204636. [PMID: 30883557 PMCID: PMC6422272 DOI: 10.1371/journal.pone.0204636] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Comprehensive care given to people living with HIV/AIDS is improving over time; however, their concurrent cognitive illness is still ignored, under screened and treated particularly in developing countries. And this problem is also striking in Ethiopia. Therefore, the objective of this study was to assess HIV-associated neurocognitive disorders and associated factors among adult people living with HIV/AIDS. METHODS An institution based cross sectional study was conducted from April to May, 2017 at Gamo Gofa zone public Hospitals. International HIV Dementia Scale was used to screen HIV associated neurocognitive disorders. Logistic regression analysis was used to assess predictors of neurocognitive disorders. RESULT A total of 684 study participants were included in this study with a response rate of 98%. Among them, 56% were females while 44% were males. The mean (±SD) age of the participants was 38.8±8.8years. The screening prevalence of HIV-associated neurocognitive disorder was 67.1% (95% CI; 63.6, 70.5). Body mass index 16 kg/m2 (AOR 4.389 (1.603-12.016)), being married (AOR 0.377 (0.213-0.666), unemployment status (AOR 3.181 (1.752-5.777) and being in WHO clinical stage T3 category/advancing stages of the disease (AOR 3.558 (1.406-9.006) were the key predictors of HIV-associated neurocognitive disorders among people living with HIV/AIDS. CONCLUSION In this study the screening prevalence of HIV-associated neurocognitive disorder is higher than the earlier reports in Ethiopia and Africa. This indicates that early screening strategies and policies for cognitive health in people living with HIV/AIDS should be given a top priority.
Collapse
Affiliation(s)
- Megbaru Debalkie Animut
- Arbaminch University College of Medicine and Health Sciences Department of Nursing, Arbaminch, Ethiopia
| | - Muluken Bekele Sorrie
- Arbaminch University College of Medicine and Health Sciences Department of Public Health, Arbaminch, Ethiopia
| | - Yinager Workineh Birhanu
- Bahir Dar University Colleges of Medicine and Health Sciences School of Nursing, Bahir Dar Ethiopia
| | - Manaye Yihune Teshale
- Arbaminch University College of Medicine and Health Sciences Department of Public Health, Arbaminch, Ethiopia
| |
Collapse
|
38
|
Ramezany Yasuj S, Nourhashemi M, Keshavarzi S, Motaghinejad M, Motevalian M. Possible Role of Cyclic AMP Response Element Binding/Brain-Derived Neurotrophic Factor Signaling Pathway in Mediating the Pharmacological Effects of Duloxetine against Methamphetamine Use-Induced Cognitive Impairment and Withdrawal-Induced Anxiety and Depression in Rats. Adv Biomed Res 2019; 8:11. [PMID: 30993081 PMCID: PMC6425746 DOI: 10.4103/abr.abr_34_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Duloxetine is used for treating depression and anxiety. The current study evaluated the effects of duloxetine against methamphetamine withdrawal-induced anxiety, depression, and motor disturbances and methamphetamine use-induced cognitive impairments. MATERIALS AND METHODS Ninety-six adult male rats were used for two independent experiments. Each experiment consisted of Groups 1 and 2 which received normal saline (0.2 ml/rat) and methamphetamine (10 mg/kg) respectively, Groups 3, 4, and 5 received both methamphetamine and duloxetine at doses of 5, 10, and 15 mg/kg, respectively. Groups 6, 7, and 8 received 5, 10, and 15 mg/kg of duloxetine, respectively. All administrations were performed for 21 days. In experiment 1, elevated plus maze (EPM), open-field test (OFT), forced swim test (FST), and tail suspension test (TST) were used to examine anxiety and depression in animals during withdrawal period. In experiment 2, Morris water maze (MWM) test was used to assess the effect of methamphetamine use followed by duloxetine treatment, on learning and memory. In the experiments, the expression of cyclic AMP response element binding (CREB) and brain-derived neurotrophic factor (BDNF) proteins were evaluated using enzyme-linked immunosorbent assay. RESULTS In the first experiment, duloxetine at all doses attenuated methamphetamine withdrawal induced-depression, anxiety, and motor disturbances in FST, OFT, EPM, and TST. In the second experiment, duloxetine at all doses attenuated methamphetamine use-induced cognitive impairment in MWM. In both experiments, duloxetine activated cAMP, CREB, and BDNF proteins' expression in methamphetamine-treated rats. CONCLUSIONS Duloxetine can protect the brain against methamphetamine withdrawal-induced mood and motor disturbances and can also inhibit methamphetamine-induced cognitive impairment, possibly via cAMP/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Sanaz Ramezany Yasuj
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Nourhashemi
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saghar Keshavarzi
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- From the Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 2019; 124:162-170. [PMID: 30654115 DOI: 10.1016/j.neuint.2019.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release. Consistently, it has been shown that PKC is involved in MA (or AMPH)-induced memory impairment and mania-like behaviors as well as MA drug dependence. Direct or indirect regulation of factors related to neuronal plasticity seemed to be critical for these actions of PKC. In addition, PKC-mediated mitochondrial dysfunction, oxidative stress or impaired antioxidant defense system has been suggested to play a role in psychiatric and cognitive disturbance induced by MA (or AMPH). In MA-induced dopaminergic toxicity, particularly PKCδ has been shown to trigger oxidative stress, mitochondrial dysfunction, pro-apoptotic changes, and neuroinflammation. Importantly, PKCδ may be a key mediator in the positive feedback loop composed of these detrimental events to potentiate MA-induced dopaminergic toxicity. This review outlines the role of PKC and its individual isozymes in MA-induced neuropsychotoxicity. Better understanding on the molecular mechanism of PKCs might provide a great insight for the development of potential therapeutic or preventive candidates for MA (or AMPH)-associated neuropsychotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University Venture Business Laboratory, Kanazawa, Ishikawa 920-1192, Japan
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
40
|
Sabrini S, Wang GY, Lin JC, Ian JK, Curley LE. Methamphetamine use and cognitive function: A systematic review of neuroimaging research. Drug Alcohol Depend 2019; 194:75-87. [PMID: 30414539 DOI: 10.1016/j.drugalcdep.2018.08.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/26/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long-term use of MA has been associated with cognitive dysfunction in several domains. Neuroimaging studies have also reported structural, metabolic, and functional changes in MA users. However, no systematic review has been conducted on those studies in MA users that combined neuroimaging and cognitive tasks. METHODS This article systematically reviews correlation between brain imaging measures and cognitive performance in subjects with current and previous history of MA use. Findings are categorized based on cognitive domain. RESULTS MA users performed more poorly than controls in all cognitive domains (psychomotor, working memory, attention, cognitive control, and decision- making) and a positive correlation has been repeatedly observed between performance and brain measures (regional volume/density, blood flow, glucose metabolism, FA value, NAA level, and activation) in MA users. Performance in cognitive control was consistently reported to show relationship with brain measures in the PFC and ACC, while decision- making consistently showed correlation with brain measures in the PFC, ACC, and striatum. CONCLUSIONS There is solid evidence for brain- behavior relationship in cognitive functioning in MA users, particularly in cognitive control and decision-making. More research with correlation analysis between brain-behavior and MA use parameters is strongly encouraged.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Grace Y Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, North Campus, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand.
| | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - J K Ian
- School of Psychology, Faculty of Science, The University of Auckland, Science Centre, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Louise E Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
41
|
Taheri P, Keshavarzi S, Ebadi M, Motaghinejad M, Motevalian M. Neuroprotective Effects of Forced Exercise and Bupropion on Chronic Methamphetamine-induced Cognitive Impairment via Modulation of cAMP Response Element-binding Protein/Brain-derived Neurotrophic Factor Signaling Pathway, Oxidative Stress, and Inflammatory Biomarkers in Rats. Adv Biomed Res 2018; 7:151. [PMID: 30662880 PMCID: PMC6319043 DOI: 10.4103/abr.abr_11_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Forced exercise can act as non-pharmacologic neuroprotective agent. In current study, we tried the involved molecular mechanisms of protective effects of forced exercise against methamphetamine induced neurodegeneration. Materials and Methods Forty adult male rats were divided to Group 1 and 2 which received normal saline and methamphetamine (10 mg/kg) respectively for 30 days. Groups 3, 4 and 5 were treated with methamphetamine for first 15 days and then were treated by forced exercise, bupropion (20 mg/kg/day) or combination of them for the following 15 days. Between 26th and 30th days, Morris Water Maze (MWM) was used to evaluate the cognition. On day 31, hippocampus was isolated from each rat and oxidative, antioxidant and inflammatory factors also the level of total and phosphorylated forms of cAMP response element-binding protein (CREB) and brain derived neurotrophic factor (BDNF) proteins were also evaluated. Results Chronic abuse of methamphetamine could decreases cognition and increase malondialdehyde (MDA), Tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β), while caused decreases in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities all these changes was significant (P < 0.001) in compared to control group while treatment with bupropion, forced exercise and bupropion in combination with forced exercise could prevent all these malicious effects of methamphetamine (P < 0.001). Bupropion, forced exercise and bupropion in combination with forced exercise could activate CREB (both forms) and activates BDNF proteins' expression with P < 0.001 in methamphetamine treated rats. Conclusions P-CREB/BDNF signaling pathways might have critical role in forced exercise protective effects against methamphetamine induced neurodegeneration.
Collapse
Affiliation(s)
- Parastoo Taheri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saghar Keshavarzi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Ebadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
The Effect of Matrix Model on Depression, Anxiety, and Quality of Life in Methamphetamine Users and Their Caregivers. ADDICTIVE DISORDERS & THEIR TREATMENT 2018. [DOI: 10.1097/adt.0000000000000136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Zhang K, Zhang Q, Jiang H, Du J, Zhou C, Yu S, Hashimoto K, Zhao M. Impact of aerobic exercise on cognitive impairment and oxidative stress markers in methamphetamine-dependent patients. Psychiatry Res 2018; 266:328-333. [PMID: 29588062 DOI: 10.1016/j.psychres.2018.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 01/18/2023]
Abstract
This study aimed to investigate whether 12-week moderate-intensity aerobic exercise has beneficial effects on oxidative stress markers in blood and on cognitive functions in patients who have methamphetamine dependence. Serum levels of oxidative stress markers, including total anti-oxidation capability, super oxide dismutase (SOD), catalase (CAT), and methane dicarboxylic aldehyde (MDA), were measured at baseline (all participants) and the 12-week follow-up (methamphetamine-dependent patients). Serum levels of CAT and MDA in methamphetamine-dependent patients (n = 68) were higher than those in healthy controls (n = 35) at baseline. Furthermore, the international shopping list (ISL) task scores of methamphetamine-dependent patients were significantly lower than those of the controls, indicating verbal memory deficits in methamphetamine-dependent patients. Although there were no significant interactions for all cognitive function scores, aerobic exercise improved the processing speed in methamphetamine-dependent patients. Of interest, aerobic exercise significantly attenuated a spontaneous increase in serum MDA levels in methamphetamine-dependent patients after 12-weeks of abstinence. In conclusion, this study showed that methamphetamine-dependent patients with verbal learning and memory deficits have higher serum levels of MDA, and that a 12-week aerobic exercise program may have beneficial effects on the processing speed as well as blood lipid peroxidation in methamphetamine-dependent patients.
Collapse
Affiliation(s)
- Kai Zhang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Qiaoyang Zhang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Changzhou No. 2 People's hospital, Nanjing Medical University, Changzhou, China
| | - Haifeng Jiang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglin Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shunying Yu
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Min Zhao
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
44
|
Lappin JM, Darke S, Farrell M. Methamphetamine use and future risk for Parkinson's disease: Evidence and clinical implications. Drug Alcohol Depend 2018; 187:134-140. [PMID: 29665491 DOI: 10.1016/j.drugalcdep.2018.02.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Methamphetamine use has been posited to be a risk factor for the development of Parkinson's disease (PD) and parkinsonism. The clinical implications of a potential association between methamphetamine use and PD are considered. METHODS A review of methamphetamine and PD and parkinsonism was conducted, including evidence from animal models, clinical and population studies. RESULTS There is biological plausibility to a link between methamphetamine use and PD. Though clinical and epidemiological evidence in this area is scant, a number of studies suggest that methamphetamine is associated with a moderately increased risk of PD and parkinsonism, and may also lead to premature onset of PD. The long lag time between exposure to methamphetamine and onset of PD, the potential for recovery from neurotoxic effects, and tobacco smoking each may attenuate the association. Individual and drug use characteristics that may modulate a user's risk remain poorly understood. CONCLUSIONS The use of methamphetamine may be an initiating event in the development of PD and parkinsonism, in addition to other risk factors that a given individual may hold. Clinicians should be vigilant to signs of prodromal and emerging PD among methamphetamine users. In individuals with premature onset illness, information on current or prior exposure to methamphetamine should be sought.
Collapse
Affiliation(s)
- Julia M Lappin
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Shane Darke
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Michael Farrell
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| |
Collapse
|
45
|
Persson P, Rossin-Slater M. Family Ruptures, Stress, and the Mental Health of the Next Generation. THE AMERICAN ECONOMIC REVIEW 2018; 108:1214-1252. [PMID: 30091569 DOI: 10.1257/aer.20141406] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper studies how in utero exposure to maternal stress from family ruptures affects later mental health. We find that prenatal exposure to the death of a maternal relative increases take-up of ADHD medications during childhood and anti-anxiety and depression medications in adulthood. Further, family ruptures during pregnancy depress birth outcomes and raise the risk of perinatal complications necessitating hospitalization. Our results suggest large welfare gains from preventing fetal stress from family ruptures and possibly from economically induced stressors such as unemployment. They further suggest that greater stress exposure among the poor may partially explain the intergenerational persistence of poverty.
Collapse
Affiliation(s)
- Petra Persson
- Stanford University, 579 Serra Mall, Stanford, CA 94305
| | - Maya Rossin-Slater
- Stanford University School of Medicine, Redwood Building T101C, 259 Campus Drive, Stanford, CA 94305
| |
Collapse
|
46
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Jang CG, Cho EH, Nah SY, Kim NH, Nabeshima T, Kim HC. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem Int 2018; 116:63-76. [PMID: 29572053 DOI: 10.1016/j.neuint.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
We demonstrated that activation of protein kinase Cδ (PKCδ) and inactivation of the glutathione peroxidase-1 (GPx-1)-dependent systems are critical for methamphetamine (MA)-induced recognition memory impairment. We also demonstrated that exposure to far-infrared rays (FIR) causes induction of the glutathione (GSH)-dependent system, including induction of the GPx-1 gene. Here, we investigated whether exposure to FIR rays affects MA-induced recognition memory impairment and whether it modulates PKC, cholinergic receptors, and the GSH-dependent system. Because the PKC activator bryostatin-1 mainly induces PKCα, PKCε, and PKCδ, we assessed expression of these proteins after MA treatment. MA treatment selectively increased PKCδ expression and its phosphorylation. Exposure to FIR rays significantly attenuated MA-induced increases in PKCδ phosphorylation. Importantly, bryostatin-1 potentiated MA-induced phosphorylation of PKCδ. MA treatment significantly decreased M1, M3, and M4 muscarinic acetylcholine receptors (mAChRs) and β2 nicotinic acetylcholine receptor expression. Of these, the decrease was most pronounced in M1 mAChR. Exposure to FIR significantly attenuated MA-induced decreases in the M1 mAChR and phospho-ERK1/2, while it facilitated Nrf2-dependent GSH induction. Dicyclomine, an M1 mAChR antagonist, and l-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, counteracted against the protective potentials mediated by FIR. More importantly, the memory-enhancing potential of FIR rays was significantly counteracted by bryostatin-1, dicyclomine, and BSO. Our results suggest that exposure to FIR rays attenuates MA-induced impairment in recognition memory via up-regulation of M1 mAChR, Nrf2-dependent GSH induction, and ERK1/2 phosphorylation by inhibiting PKCδ phosphorylation by bryostatin-1.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, KonKuk University, Seoul 05029, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Aino University, Ibaragi, 567-0012, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
47
|
A Single High Dose of Methamphetamine Reduces Monoamines and Impairs Egocentric and Allocentric Learning and Memory in Adult Male Rats. Neurotox Res 2018; 33:671-680. [PMID: 29427284 DOI: 10.1007/s12640-018-9871-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Methamphetamine (MA) alters dopamine markers and cognitive function in heavy users. In rodents, there are MA dosing regimens that induce concordant effects using repeated administration at spaced intervals. These regimens are effective but complicate experiments designed to disentangle the effects of the drug on different brain regions in relation to their cognitive effects because of treatment spacing. In an effort to simplify the model, we tested whether a single dose of MA could induce the same monoamine and cognitive effects as multiple, spaced dosing without affecting survival. Adult male Sprague-Dawley rats were treated with 40 mg/kg MA subcutaneously once and tested starting 2 weeks later. MA-treated rats showed deficits in egocentric navigation in Cincinnati water maze, in spatial navigation in the Morris water maze, and in choosing a consistent problem-solving strategy in the Star water maze when given the option to show a preference. MA-treated rats had persistent dopamine and serotonin reductions in the neostriatum and nucleus accumbens, and serotonin reductions in the hippocampus of the same magnitude as in repetitive treatment models. The data demonstrate that a single dose recapitulates the neurocognitive and monoamine effects of multiple-dose regimens, thereby simplifying the model of MA-induced neurotoxicity.
Collapse
|
48
|
Morris L, Stander J, Ebrahim W, Eksteen S, Meaden OA, Ras A, Wessels A. Effect of exercise versus cognitive behavioural therapy or no intervention on anxiety, depression, fitness and quality of life in adults with previous methamphetamine dependency: a systematic review. Addict Sci Clin Pract 2018; 13:4. [PMID: 29338767 PMCID: PMC5771022 DOI: 10.1186/s13722-018-0106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Methamphetamine (MA) is a highly addictive psychostimulant used by approximately 52 million people worldwide. Chronic MA abuse leads to detrimental physiological and neurological changes, as well as increases in anxiety and depression, and decreases in overall fitness and quality of life. Exercise has been reported to possibly reverse physiological and neurological damage caused by previous MA use, and to reduce anxiety and depression in this population. The aim of this systematic review was to identify, clinically appraise and synthesise the available evidence for the effectiveness of exercise, compared to cognitive behavioural therapy (CBT), standard care or no intervention, on decreasing anxiety and depression and improving fitness and quality of life in previous MA users. METHODS Seven computerised databases were searched from inception to May 2017, namely Scopus, Cochrane Library, PubMed/MEDLINE, PEDro, CINAHL, and ScienceDirect. Search terms included exercise, methamphetamine, fitness measures, depression, anxiety and quality of life. Randomised and non-randomised controlled- or clinical trials and pilot studies, published in English, were considered for inclusion. Methodological quality was critically appraised according to the PEDro scale. Heterogeneity across studies regarding control groups and assessment intervals rendered meta analyses inappropriate for this review and results were thus described narratively using text and tables. RESULTS Two hundred and fifty-one titles were identified following the initial search, and 14 potentially-relevant titles were selected and the abstracts reviewed. Three studies (two randomised controlled trials and one quasi-experimental pilot) were included, with an average PEDro score of 6.66. Exercise resulted in significantly lower depression and anxiety scores versus CBT (p = 0.001). Balance also significantly improved following exercise versus standard care (p < 0.001); as did vital capacity, hand-grip and one-leg stand with eyes closed. There were significant changes in all subdivisions of the Quality of Life Scale Questionnaire (p < 0.05), except psychology (p = 0.227). CONCLUSIONS Level II evidence suggests that exercise is effective in reducing anxiety and depression and improving fitness in previous MA users, and Level III-2 evidence suggests that exercise is beneficial for improving quality of life in this population. Overall recovery in previous MA dependents might be significantly enhanced by including exercise in the rehabilitation process. Further research is required to strengthen these conclusions and to inform policy and health systems effectively.
Collapse
Affiliation(s)
- Linzette Morris
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Jessica Stander
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Wardah Ebrahim
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Stephanie Eksteen
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Orissa Anna Meaden
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Ané Ras
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Annemarie Wessels
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| |
Collapse
|
49
|
Aharonovich E, Shmulewitz D, Wall MM, Grant BF, Hasin DS. Self-reported cognitive scales in a US National Survey: reliability, validity, and preliminary evidence for associations with alcohol and drug use. Addiction 2017; 112:2132-2143. [PMID: 28623859 PMCID: PMC5673586 DOI: 10.1111/add.13911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/30/2016] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate relationships between measures of cognitive functioning and alcohol or drug use among adults (≥ 18 years) in the US general population. DESIGN Two cognitive scales were created based on dimensionality and reliability of self-reported Executive Function Index items. Relationships between the two scales and validators were evaluated. Associations between the cognitive scales and past-year frequency of alcohol or drug use were estimated with adjusted odds ratios (aOR). SETTING United States, using the 2012-13 National Epidemiologic Survey on Alcohol and Related Conditions-III, a nationally representative adult sample selected by multi-stage probability sampling. PARTICIPANTS 36 085 respondents. MEASUREMENTS Past-year substance use outcome variables categorized binge drinking, marijuana, cocaine, opioid, sedative/tranquilizer and stimulant use as frequent (at least weekly to daily), infrequent (any to two to three times/month) or no use, assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule-5. Key predictors were the two cognitive scales. Construct validators included education and functional impairment. Covariates included age, gender, income and race/ethnicity. FINDINGS Nine cognitive items fitted a two-factor model (comparative fit index = 0.973): attention (five items) and executive functioning (four items). Both scales were associated positively with higher education (Ps < 0.001) and negatively with functional impairment (Ps < 0.001), demonstrating construct validity. Poorer attention was associated with frequent and infrequent binge drinking and use of drugs [aOR range = 1.07 (binge drinking) to 1.72 (stimulants), Ps ≤ 0.01]. Poorer executive functioning was associated with frequent binge drinking and use of drugs [aOR range = 1.22 (binge drinking) to 2.03 (cocaine), Ps < 0.001] and infrequent use of all drugs [aOR range = 1.19 (marijuana) to 1.63 (cocaine), Ps < 0.001]. CONCLUSIONS Impairments in attention and executive functioning are positively associated with substance use in the US general population.
Collapse
Affiliation(s)
- Efrat Aharonovich
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Dvora Shmulewitz
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Melanie M. Wall
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bridget F. Grant
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA
| | - Deborah S. Hasin
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
50
|
Miner NB, Elmore JS, Baumann MH, Phillips TJ, Janowsky A. Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. Neurotoxicology 2017; 63:57-69. [PMID: 28919515 PMCID: PMC5683899 DOI: 10.1016/j.neuro.2017.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2h apart, of MA (2.5, 5, or 10mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects.
Collapse
Affiliation(s)
- Nicholas B Miner
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Josh S Elmore
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|